Биографии Характеристики Анализ

Методы линеаризации уравнений. Метод непосредственной линеаризации Типовые возмущающие воздействия

В том случае, когда в уравнении (2.4) функция представляет собой нелинейную функцию своих аргументов, динамика работы звена описывается нелинейным дифференциальным уравнением, а само звено называется нелинейным динамическим звеном. Если же описание динамики работы звена приводит к линейному дифференциальному уравнению [функция в уравнении (2.4) линейно зависит от своих аргументов], то звено называется линейным динамическим звеном. Заметим, что линейность статической характеристики звена, вообще говоря, не дает основания отнести его к разряду линейных, ибо встречаются случаи, когда нелинейные свойства звена проявляются только в неустановившихся режимах.

Исследование нелинейных дифференциальных уравнений существенно труднее и сложнее, чем линейных. Поэтому в тех случаях, когда это возможно, всегда стремятся линеаризовать нелинейное дифференциальное уравнение, т. е. заменить его приближенно некоторым линейным дифференциальным уравнением, решение которого достаточно близко к решению исходного нелинейного уравнения.

Простейший способ линеаризации основан на разложении нелинейной функции в ряд Тэйлора с последующим отбрасыванием нелинейных членов разложения. Рассмотрим этот способ применительно к уравнению (2.5), имеющему первый порядок. Все изложенное будет справедливо и для уравнений более высокого порядка.

Линеаризация нелинейного уравнения всегда производится относительно некоторого, заранее выбранного, режима работы динамического звена. Чаще всего в качестве режима, принимаемого при линеаризации за исходный, выбирается установившийся режим, характеризуемый постоянством всех обобщенных координат. Применительно к уравнению (2.5) уравнения исходного режима математически могут быть записаны так:

Здесь - постоянные величины, связанные между собой уравнением

Выбрав исходный режим, для линеаризации уравнения (2.5) поступают следующим образом.

1. Представляют все входящие в рассмотрение координаты в виде

В уравнениях отклонения соответствующих координат от их значений (2.8), принятых за исходные при линеаризации. Соотношения (2.10) - (2.12) позволяют вместо полных значений координат оперировать их отклонениями (или приращениями)

2. Левую часть уравнения (2.5) разлагают в ряд Тэйлора относительно точки с координатами соответствующей исходному режиму. В результате уравнение (2.5) переписывается в виде

В соответствии с правилом разложения функции нескольких переменных в ряд Тэйлора частные производные, входящие в левую часть уравнения (2.16), вычисляются в точке, соответствующей режиму, принятому за исходный при линеаризации, так что, например, означает частную производную от функции по переменной в которую после вычисления подставлены значения Так как в исходном режиме все координаты постоянны, то все фигурирующие в уравнении (2.16) частные производные представляют собой просто некоторые числа, зависящие от выбора исходного режима (т. е. от чисел Символом в уравнении (2.16) обозначен остаточный член разложения, содержащий вторую и более высокие степени отклонений и их произведения, умноженные на соответствующие частные производные. Функция обладает тем свойством, что

3. Отклонения координат их исходных значений считают малыми («гипотеза малых отклонений») и на этом основании в левой части уравнения (2.16) пренебрегают членами, содержащими вторую и более высокие степени отклонений и их произведения

как членами более высокого порядка малости по сравнению с членами, содержащими отклонения в первой степени, т. е. полагают

Учитывая, кроме того, соотношение (2.9), окончательно получают уравнение

Это уравнение есть линейное дифференциальное уравнение с постоянными коэффициентами. Оно представляет собой результат линеаризации нелинейного уравнения (2.5) относительно исходного режима (2.8).

Из изложенного следует, что необходимым условием линеаризации является разложимость функции фигурирующей в левой части нелинейного дифференциального уравнения, в ряд Тэйлора в окрестности точки с координатами, соответствующими режиму, выбранному при линеаризации за исходный. Если такое разложение невозможно (например, функция недифференцируема по какой-либо из координат), то рассмотренный метод линеаризации не имеет силы, и исходное нелинейное уравнение даже приближенно не может быть заменено линейным. В этом случае говорят, что динамическое звено, описываемое таким уравнением, является существенно нелинейным, т. е. нелинеаризуемым. Деление динамических звеньев на линеаризуемые и нелинеаризуемые связано со способом линеаризации, основанным на разложении нелинейной функции в ряд Тэйлора. В главе 8 будут рассмотрены методы, позволяющие осуществить линеаризацию и существенно нелинейных уравнений (методы гармонической линеаризации).

Основным допущением, которое позволяет перейти от нелинейного уравнения (2.5) к линейному уравнению (2.19), является допущение о малости отклонений всех входящих в рассмотрение координат от их значений, принятых при линеаризации за исходные. Поэтому линеаризованное уравнение (2.19) дает возможность исследовать лишь малые отклонения величин, характеризующих работу динамического звена, от исходного режима. Однако и такое рассмотрение в ряде случаев очень полезно.

Запись линейного дифференциального уравнения в форме (2.19) является довольно громоздкой и неудобной для практического применения. В автоматике при записи линейных уравнений принято выходную величину звена (или ее отклонение) и ее производные записывать в левой части уравнения, а все остальные члены переносить в правую часть. В такой форме записи уравнение (2.19) примет следующий вид:

С целью сокращения выкладок в теории автоматического управления широко используется символический метод записи линейных дифференциальных уравнений, в основе которого лежит условное (символическое) обозначение производных и интеграла:

Так называемый символ дифференцирования. Его не следует путать с комплексной переменной, фигурирующей в преобразовании Лапласа (см. § 4.2), которую иногда также обозначают буквой В отличие от преобразования Лапласа (и родственных ему операционных методов) символический метод, сокращая и унифицируя запись дифференциальных уравнений и их систем, не содержит никаких приемов, облегчающих их решение.

При использовании символических обозначений уравнение (2.20) записывается следующим образом:

Уравнение (2.25) часто переписывают в виде

чисто формально отрывая символ дифференцирования от обозначения дифференцируемой функции.

Если обозначить

то уравнение (2.26) запишется еще более компактно:

Уравнения (2.26) и (2.30) следует рассматривать просто как удобную сокращенную запись уравнения (2.20). Никакого другого смысла они не имеют. Полиномы (2.27)-(2.29), входящие в уравнение (2.30), называются символическими полиномами. Пользуясь преобразованием Лапласа, нетрудно доказать, что символические полиномы можно складывать и перемножать по правилам действий с обычными полиномами. Это обстоятельство в ряде случаев позволяет значительно упростить и облегчить преобразования систем дифференциальных уравнений (например, «свертывание» системы дифференциальных уравнений в одно уравнение - см. гл. 3).

В дальнейшем дифференциальные уравнения линейных звеньев систем управления будут записываться преимущественно в форме

(2.30). При этом часто оказывается удобным разделить все члены дифференциального уравнения на коэффициент при выходной координате звена (или ее отклонении). Так, поделив все члены уравнения (2.26) на коэффициент си получим уравнение

Поскольку соединять знаками сложения, вычитания и равенства можно лишь величины одинаковой размерности, все члены уравнения (2.31) имеют размерность величины Учитывая, что Мсек, нетрудно получить соотношения для размерностей коэффициентов уравнения (2.31):

Коэффициент называется постоянной времени звена, описываемого уравнением (2.31), а величины и - коэффициентами передачи звена по входной величине и по возмущению.

Уравнение (2.31) называется линейным дифференциальным уравнением первого порядка в стандартной форме записи. Аналогично к стандартному виду преобразуются и уравнения более высоких порядков.

Рассмотрим снова какой-либо установившийся режим работы звена, характеризующийся постоянством координат Уравнения показывают, что отклонения координат от исходных значений в таком режиме также будут постоянны. Отсюда следует, что и линеаризованное уравнение (2.31) для установившегося режима упрощается:

Положим, кроме того что Тогда

Это уравнение является линейным. Полные значения переменных в рассматриваемом режиме связаны нелинейной зависимостью:

Сопоставление уравнений (2.36) и (2.35) позволяет дать простую геометрическую интерпретацию процессу линеаризации. На самом деле, уравнение (2.36) в плоскости координат определяет статическую характеристику звена, соответствующую значению Эта характеристика может, например, иметь вид кривой, изображенной на рис. 2.3. Выбор режима (2.8), принимаемого за исходный при

линеаризации, на этой характеристике соответствует выбору точки с координатами Переход от полных значений координат к их приращениям в плоскости геометрически означает перенос начала координат из точки О в точку В координатах уравнение (2.35) представляет собой уравнение прямой, проходящей через начало координат и имеющей угловой коэффициент

Соотношение (2.37) определяет производную функции заданной в неявной форме уравнением (2.36). Поэтому окончательно

Рис. 2.3. К пояснению геометрического смысла линеаризации

Таким образом, геометрический смысл линеаризации применительно к установившимся режимам состоит в том, что реальная статическая характеристика звена заменяется касательной к ней, проведенной в точке соответствующей режиму, выбранному за исходный при линеаризации. В том случае, когда касательную к статической характеристике в точке провести нельзя (характеристика в этой точке имеет излом, разрыв, неоднозначность и т. д.), линеаризация относительно выбранного исходного режима невозможна. Поэтому часто уже по виду статической характеристики звена удается судить о возможности или невозможности линеаризации описывающего его дифференциального уравнения.

Рис. 2.3 наглядно показывает, что чем меньше отклонение величины от исходного значения тем ближе расположена касательная к статической характеристике звена и тем точнее, следовательно, линеаризация.

Коэффициент в уравнении (2.35) может быть определен графоаналитически при помощи соотношения

где - коэффициент, учитывающий масштабы, принятые по осям координат; - угол, составленный касательной к статической характеристике звена в точке с осью абсцисс.

Наличие второго члена в правой части уравнения (2.34) ничего принципиально нового не вносит и свидетельствует лишь о том, что в установившемся режиме отклонение выходной величины звена от исходного значения в общем случае определяется отклонением не только входной величины но и дополнительного воздействия (например, какого-либо возмущения).

Аналогично может быть проиллюстрирован процесс перехода от нелинейного дифференциального уравнения (2.5) к линейному уравнению (2.19). Суть перехода заключается здесь в приближенной замене многомерной поверхности, определяемой уравнением (2.5), касательной к ней многомерной плоскостью, задаваемой уравнением (2.19). В силу громоздкости и малой наглядности геометрических построений в многомерном пространстве такой подход не приносит практической пользы и подробно здесь не рассматривается.

Из сопоставления уравнений (2.5) и (2.19) видно, что результат линеаризации (2.19) может быть написан сразу, так как левая часть линеаризованного уравнения представляет собой сумму произведений частных производных функции по каждому из ее аргументов на отклонения этих аргументов от исходных значений.

Этот результат, полученный на примере дифференциального уравнения первого порядка, сохраняет силу для уравнений произвольного порядка. В частности, для уравнения (2.6) линеаризованное уравнение запишется в виде

Уравнение (2.40) можно записать в форме (2.30), если обозначить

Здесь символические полиномы имеют первую степень относительно Ранее отмечалось, что признаком стандартной формы записи дифференциальных уравнений является равенство единице первых отличных от нуля коэффициентов при младших степенях во всех участвующие в рассмотрении символических полиномах. Пусть, например, Тогда результат линеаризации уравнения (2.6) может быть записан следующим образом:

Поделив обе части последнего уравнения на коэффициент будем иметь

Предположим дополнительно, что Тогда уравнение (2.45) можно представить в виде

причем нетрудно показать, что

Уравнение (2.45) представляет собой один из примеров стандартной формы записи линейного дифференциального уравнения второго порядка. Как и для уравнения первого порядка, коэффициенты , имеющие размерность времени, называются постоянными времени звена, а величины и - коэффициентами передачи звена.

При пользовании стандартной формой записи удобно считать все постоянные времени и коэффициенты передачи звена неотрицательными числами. Поэтому, например, в том случае, когда при вычислениях по формулам (2.44) окажется, что уравнение (2.40) следует записывать так:

где коэффициенты

являются положительными.

Для уравнения (2.4) произвольного порядка результат линеаризации имеет следующий вид:

Обозначив

уравнение (2.47) можно записать так:

Уравнение (2.51) после введения символических полиномов

приводится к уравнению (2.30). Рассмотренные ранее линейные уравнения 1 и 2-го порядков являются частным случаем уравнения (2.51) при Это позволяет считать уравнение (2.51) общим уравнением обыкновенного линейного звена при наличии одного возмущающего воздействия. В правой части уравнения (2.51) фигурируют внешние воздействия умноженные на соответствующие символические многочлены. Поэтому по аналогии в том случае, когда на звено действует несколько возмущений общее уравнение звена можно записать следующим образом.

Назначение сервиса . Онлайн-калькулятор используется для нахождения минимума функции двух переменных методом непосредственной линеаризации.

Правила ввода функций:

  1. Все переменные выражаются через x 1 ,x 2
  2. Все математические операции выражаются через общепринятые символы (+,-,*,/,^). Например, x 1 2 +x 1 x 2 , записываем как x1^2+x1*x2 .

Все рассматриваемые ниже методы основываются на разложении нелинейной функции общего вида f(x) в ряд Тейлора до членов первого порядка в окрестности некоторой точки x 0:

где – отбрасываемый член второго порядка малости.
Таким образом, функция f(x) аппроксимируется в точке x 0 линейной функцией:
,
где x 0 – точка линеаризации.
Замечание . Линеаризацию следует использовать с большой осторожностью, поскольку иногда она дает весьма грубое приближение.

Общая задача нелинейного программирования

Рассмотрим общую задачу нелинейного программирования:

Пусть x t – некоторая заданная оценка решения. Использование непосредственной линеаризации приводит к следующей задаче:

Эта задача представляет собой ЗЛП. Решая ее, находим новое приближение x t +1 , которое может и не принадлежать допустимой области решений S.
Если , то оптимальное значение линеаризованной целевой функции, удовлетворяющее неравенству:

может не быть точной оценкой истинного значения оптимума.
Для сходимости к экстремуму достаточно, чтобы для последовательности точек { x t }, полученных в результате решения последовательности подзадач ЛП, выполнялось следующее условие:
значение целевой функции и невязки по ограничениям в точке x t +1 должно быть меньше их значений в точке x t .

Пример №1 .

Построим допустимую область S (см. рис.).


Допустимая область S состоит из точек кривой h(x)=0, лежащей между точкой (2;0), определяемой ограничением x 2 ≥0, и точкой (1;1), определяемой ограничением g(x) ≥0.
В результате линеаризации задачи в точке x 0 =(2;1) получаем следующую ЗЛП:

Здесь представляет собой отрезок прямой , ограниченный точками (2.5; 0.25) и (11/9; 8/9). Линии уровня линеаризованной целевой функции представляют собой прямые с наклоном -2, тогда как линии уровня исходной целевой функции – окружности с центром в точке (0;0). Ясно, что решением линеаризованной задачи является точка x 1 =(11/9; 8/9). В этой точке имеем:

так что ограничение–равенство нарушается. Произведя новую линеаризацию в точке x 1 , получаем новую задачу:

Новое решение лежит на пересечении прямых и и имеет координаты x 2 =(1.0187; 0.9965). Ограничение– равенство () все еще нарушается, но уже в меньшей степени. Если произвести еще две итерации, то получим очень хорошее приближение к решению x * =(1;1), f(x *)=2

Таблицa - Значения целевой функции для некоторых итераций:

Итерация f g h
0 5 3 –1
1 2,284 0,605 –0,0123
3 2,00015 3,44×10 -4 –1,18×10 -5
Оптимум 2 0 0

Из таблицы видно, что значения f,g и h монотонно улучшаются. Однако такая монотонность характерна для задач, функции которых являются "умеренно" нелинейными. В случае функций с ярко выраженной нелинейностью монотонность улучшения нарушается и алгоритм перестает сходиться.
Существует три способа усовершенствования методов непосредственной линеаризации:
1. Использование линейного приближения для отыскания направления спуска.
2. Глобальная аппроксимация нелинейной функции задачи при помощи кусочно–линейчатой функции.
3. Применение последовательных линеаризаций на каждой итерации для уточнения допустимой области S.

Статистическое исследование нелинейных систем представляет собой весьма сложную задачу. Сравнительная простота методов статистического анализа линейных систем является естественной причиной попыток распространить эти методы на задачи приближенного исследования точности нелинейных систем. Так возникли методы линеаризации нелинейных характеристик систем.

Простейшим видом линеаризации нелинейных систем является линеаризация при помощи разложения всех нелинейных функций, входящих в уравнения системы, в ряд Тейлора и отбрасывание всех членов ряда выше первой степени. При этом каждая входящая в уравнение системы нелинейная функция заменяется приближенным линейным выражением

где - математическое ожидание случайной функции х.

Формула вида (XVII.1) позволяет лйнеаризовать уравнения нелинейной системы относительно флюктуаций сигналов в различных элементах системы. Это дает возможность применять для приближенного исследования точности нелинейных систем методы статистической теории линейных систем. Однако формулы вида (XVII. 1) применимы только к непрерывным функциям, имеющим непрерывные производные по аргументу в области его практически возможных значений.

Между тем системы автоматического регулирования часто содержат существенно нелинейные звенья, характеристики которых разрывны или имеют разрывные производные. К таким характеристикам можно отнести релейные характеристики, ограниченные зоны линейности и т. д. (см. кн. 1 гл. IV). Для линеаризации таких характеристик был развит метод статистической линеаризации , .

Статистическая линеаризация представляет собой замену нелинейного звена линейным относительно флюктуаций звеном с сохранением в определенном смысле уровня полезного сигнала и уровня флюктуаций на выходе. При этом нелинейная функция аппроксимируется постоянным эквивалентным линейным коэффициентом усиления. Естественно, что аппроксимация нелинейных функций постоянным коэффициентом недостаточно полно

отражает физическую картину преобразования случайного сигнала, так как не учитывается преобразование спектра сигнала нелинейным звеном. В связи с этим в работе была предложена аппроксимация безынерционных нелинейных звеньев статистически эквивалентной передаточной функцией, определяемой из отношения спектральной плотности сигнала на выходе нелинейного звена к спектральной плотности сигнала на входе.

Одновременно с этим была развита статистическая линеаризация нелинейных функций при условии, когда входной сигнал содержит периодическую составляющую. Этот метод в дальнейшем получил название совместной статистической и гармонической линеаризации.

Названные методы линеаризации позволяют свести систему нелинейных дифференциальных уравнений к системе линейных, эквивалентных исходной по первым двум моментам случайной функции. Следовательно, используя метод статистической линеаризации, можно определить лишь среднее значение и дисперсию случайной функции. При использовании совместной линеаризации можно определить так же первую гармонику периодических колебаний в нелинейной системе.

В связи с тем, что в нелинейной системе функция плотности вероятности случайного сигнала может существенным образом отличаться от нормальной и при этом для характеристики точности работы знание лишь первых двух моментов не является достаточным в работе 113], был развит метод обобщенной статистически эквивалентной передаточной функции, основанный на разложении в ряд по ортогональным полиномам Чебышева - Эрмита случайных функций и позволяющий определить высшие моменты этих функций в нелинейной системе.

Основная идея метода статистической линеаризации , заключается в аппроксимации существенно нелинейных преобразований линеаризованной зависимостью, эквивалентной нелинейному преобразованию по первым двум моментам случайных функций, т. е. по среднему значению и дисперсии. Разумеется, что эта эквивалентная линеаризованная зависимость имеет различный вид для разных существенно нелинейных элементов, а также зависит от вероятностных характеристик случайного сигнала на входе нелинейного элемента.

Рассмотрим нелинейное преобразование, соответствующее реальной статической характеристике безынерционного нелинейного элемента

Преобразуемый случайный процесс может быть представлен в виде

где математическое ожидание, а процесс с нулевым математическим ожиданием.

Представим сигнал на выходе нелинейного элемента в виде эквивалентного линейного преобразования входного сигнала

где К - эквивалентные статистические передаточные коэффициенты по математическому ожиданию и дисперсии, которые необходимо определить. Первое предположение, являющееся исходным при определении этих коэффициентов, - это соблюдение равенств математического ожидания и дисперсии для случайного сигнала на выходе реального нелинейного и эквивалентного линейного элементов. Тогда коэффициент может быть определен как отношение математического ожидания на выходе нелинейного элемента к математическому ожиданию сигнала на входе

Для коэффициента в этом случае будем иметь выражение

где - средние квадратические отклонения центрированных случайных сигналов соответственно на входе и на выходе нелинейного элемента.

Второе предположение, принимаемое при статистической линеаризации, основано на требовании минимума среднего квадрата разности между случайным сигналом на выходе нелинейного элемента и случайным сигналом на выходе эквивалентного линейного элемента. Это условие можно записать следующим образом:

Раскроем это выражение:

В формуле (XVI 1.8) черта сверху означает математическое ожидание. Взяв частные производные от выражения (XVI 1.8) по получим

где - взаимная корреляционная функция сигналов на входе и на выходе эквивалентного линейного элемента при

Использование при расчетах коэффициента (XVI 1.6) дает несколько завышенное значение дисперсии, а использование коэффициента (XVI 1.9) несколько заниженное. Поэтому при расчетах в качестве эквивалентного коэффициента по случайной составляющей можно взять следующее значение:

Заметим, что при статистической линеаризации в отличие от обычной линеаризации нелинейных функций, основанной на их разложении в ряд Тейлора в окрестности некоторой рабочей точки, средние характеристики сигналов могут быть рассчитаны точно.

Теперь рассмотрим общие формулы для определения эквивалентных коэффициентов усиления. Пусть задана одномерная нормальная плотность вероятности). Тогда формулы для коэффициентов будут иметь вид

Произведем расчет коэффициентов по формулам (XVII. 11), (XVII.12) и (XVII.13) для нелинейной характеристики типа кубической параболы, которая аналитически может быть представлена формулой

Зависимости

Обработка результатов косвенных измерений при нелинейной

Представление результатов измерений

Ввиду того, что каждый аргумент может иметь соответствующие доверительные границы неисключенной систематической и случайной погрешностей, то задача определения погрешности косвенного измерения в этих случаях делится на три этапа:

а) суммирование частных неисключенных систематических погрешностей аргументов;

б) суммирование частных случайных погрешностей аргументов;

в) сложение систематической и случайной составляющих погрешности.

Доверительная граница неисключенной систематической погрешности косвенного измерения при условии одинаковой доверительной вероятности частных погрешностей и их равномерного распределения внутри заданных границ определяется по формуле (без учета знака):

где θ y – доверительная граница неисключенной систематическо погрешности среднего значения X j -го аргумента. При отсутствии корреляционной связи между аргументами оценка СКО случайной погрешности косвенного измерения вычисляется по

где S x j – оценка СКО случайной погрешности результата измерения X j -го аргумента.

При нормальном распределении погрешностей косвенного измерения доверительная граница случайной составляющей погрешности вычисляется по формуле:

где t p – квантиль Стьюдента при доверительной вероятности P с эффективным числом степеней свободы k эф , определяемом при малых объемах выборки по формуле:

При больших объемах число степеней свободы находится по формуле

Доверительная граница суммарной погрешности результата косвенного

измерения определяется по правилам, изложенным выше.

Существуют два метода определения точечной оценки результата косвенного измерения и её погрешности: линеаризации и приведения.

Для косвенных измерений при нелинейных зависимостях и некоррелированных погрешностях измерений аргументов используется метод линеаризации. Метод линеаризации основан на том, что погрешность измерения значительно меньше измеряемой величины, и поэтому вблизи средних значений Xi аргументов нелинейная функциональная зависимость линеаризуется и раскладывается в ряд Тейлора (члены высокого порядка не учитываются). Линеаризуя функцию нескольких случайных аргументов (какими и являются результаты измерений и их погрешности), можно получить, как правило, достаточно простое выражение для вычисления оценок среднего

значения и среднего квадратического отклонения функции. Разложение нелинейной функции в ряд Тейлора имеет вид:

Метод линеаризации допустим, если можно пренебречь остаточным членом R . Остаточным членом


пренебрегают, если

где X S – среднее квадратическое отклонение случайных погрешностей результата измерения x i -го аргумента. Первое слагаемое правой части уравнения есть точечная оценка истинного значения косвенной величины, которая получается подстановкой в

функциональную зависимость средних арифметических X i , значений аргументов:

Второе слагаемое

есть сумма составляющих погрешности косвенного измерения, называемых частными погрешностями, а частные производные

Коэффициентами влияния.

Отклонения ΔXi должны быть взяты из полученных значений погрешностей и такими, чтобы они максимизировали выражение для остаточного члена R . Если частные погрешности косвенного измерения не зависят друг от друга, т. е. являются некоррелированными, и известны доверительные границы погрешности аргументов при одинаковой вероятности, то предельная погрешность (без учета знака) косвенного измерения вычисляется по формуле:

значения частных производных функциональной зависимости определяются при средних значениях аргументов

Этот метод, называемый максимум-минимум, дает значительно завышенное значение погрешности косвенного измерения. Относительно правильная оценка погрешности косвенного измерения, получается, по методу квадратического суммирования

В ряде случаев расчет погрешности косвенного измерения значительно упрощается при переходе к относительным погрешностям. Для этого используется прием логарифмирования и последующего дифференцирования функциональной зависимости. Когда предельная погрешность косвенного измерения, полученная по методу максимума-минимума.

По характеру функционирования САР разделяют на 4 класса: Системы автоматической стабилизации характеризуются тем что в процессе работы системы задающее воздействие остается постоянным. Системы программного регулирования задающее воздействие изменяется по заранее установленному закону как функция времени и координат системы. Следящие системы задающее воздействие является величиной переменной но математическое описание по времени не может быть установлено т. Адаптивные или самонастраивающиеся системы такие системы автоматически...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №2. Классификация и Требования, предъявляемые к САР. Линейные и нелинейные САР. Общий метод линеаризации

(Слайд 1)

2.1. Классификация САР

(Слайд 2)

САР классифицируются по различным признакам. По характеру функционирования САР разделяют на 4 класса:

  • Системы автоматической стабилизации (характеризуются тем, что в процессе работы системы задающее воздействие остается постоянным). Пример: стабилизатор скорости вращения двигателя.
  • Системы программного регулирования (задающее воздействие изменяется по заранее установленному закону, как функция времени и координат системы). Пример: автопилот.
  • Следящие системы (задающее воздействие является величиной переменной, но математическое описание по времени не может быть установлено, т.к. источником сигнала является внешнее воздействие, закон перемещения которого заранее не известен). Пример: радиолокационная станция сопровождения самолета.
  • Адаптивные или самонастраивающиеся системы (такие системы автоматически выбирают оптимальный закон регулирования и могут в процессе работы изменять характеристики регулятора). Пример: компьютерная игра с нелинейным сюжетом.

(Слайд 3)

Так же САР разделяют по характеру сигналов в устройстве управления:

  • Непрерывные (входной и выходной сигнал непрерывные функции времени). Пример: компараторы, операционные усилители.
  • Релейные (если в системе имеется хотя бы один элемент с релейной характеристикой). Пример: различные реле, аналоговые ключи и мультиплексоры.
  • Импульсные (характеризуется наличием хотя бы одного импульсного элемента). Пример: тиристоры, цифровые схемы.

Все САР можно разделить по зависимости выходных характеристик от входных на линейные и нелинейные .

2.2. Требования предъявляемые к САР

(Слайд 4)

1. Регулируемая величина должна поддерживаться на заданном уровне независимо от возмущения. Переходный процесс представляется динамической характеристикой, по которой можно судить о качестве работы системы.

2. Должно выполняться условие устойчивости, т.е. система должна обладать запасом устойчивости.

3. Быстродействие – время переходного процесса, характеризующее быстроту реакции системы.

(Слайд 5)

4. Должны выполняться нормы перерегулирования. Для определения величины перерегулирования используются два основных параметра:

  • Коэффициент перерегулирования

где y m – максимальное отклонение выходной величины во время переходного процесса, y ∞ – значение выходной величины в установившемся режиме. Допустимое значение  = 0  25 % .

(Слайд 6)

  • Мера колебательности процесса – число колебаний за время переходного процесса (не более 2-х)

5. Должны выполнение требования статической точности. Если в системе процессы случайные, то для обеспечения точности вводятся вероятностные характеристики.

2. 3 . Линейные и нелинейные САР

Динамические процессы в системах регулирования описываются дифференциальными уравнениями.

(Слайд 7)

В линейных системах процессы описываются при помощи линейных дифференциальных уравнений. В нелинейных системах процессы описываются уравнениями, содержащими какие-либо нелинейности . Расчеты линейных систем хорошо разработаны и более просты для практического применения. Расчеты же нелинейных систем часто связаны с большими трудностями.

Чтобы система регулирования была линейной, необходимо (но недостаточно) иметь статические характеристики всех звеньев в виде прямых линий. В действительности реальные статические характеристики в большинстве случаев не являются прямолинейными. Поэтому, чтобы рассчитать реальную систему как линейную, необходимо все криволинейные статические характеристики звеньев на рабочих участках, которые используются в данном процессе регулирования, заменить прямолинейными отрезками. Это называется линеаризацией . Большинство систем непрерывного регулирования поддаётся такой линеаризации.

(Слайд 8)

Линейные системы разделяются на обыкновенные линейные системы и на особые линейные системы. К первым относятся такие системы, все звенья которых описываются обыкновенными линейными дифференциальными уравнениями с постоянными коэффициентами.

(Слайд 9)

К особым линейным системам относятся:

а) системы с переменными по времени параметрами , которые описываются линейными дифференциальными уравнениями с переменными коэффициентами;

б) системы с распределёнными параметрами , где приходится иметь дело с уравнениями в частных производных, и системы с временным запаздыванием, описываемые уравнениями с запаздывающим аргументом;

(Слайд 10)

в) импульсные системы , где приходится иметь дело с разностными уравнениями.

(Слайд 11)

Рис. 2.1. Характеристики нелинейных элементов

В нелинейных системах при анализе процесса регулирования приходится учитывать нелинейность статической характеристики хотя бы в одном её звене или какие-то нелинейные дифференциальные зависимости в уравнениях динамики системы. Иногда нелинейные звенья специально вводятся в систему для обеспечения наибольшего быстродействия или других желаемых качеств.

К нелинейным системам относятся прежде всего релейные системы, так как релейная характеристика (рис. 2.1, а и б ) не может быть заменена одной прямой линией. Нелинейным будет звено, в характеристике которого имеется зона нечувствительности (рис. 2.1, в ).

Явления насыщения или механического ограничения хода приводят к характеристике с ограничением линейной зависимости на концах (рис. 2.1, г ). Эта характеристика также должна считаться нелинейной, если рассматриваются такие процессы, когда рабочая точка выходит за пределы линейного участка характеристики.

К нелинейным зависимостям относятся также гистерезисная кривая (рис. 2.1, д ), характеристика зазора в механической передаче (рис. 2.1, е), сухое трение (рис. 2.1, ж ), квадратичное трение (рис. 2.1, и ) и др. В последних двух характеристиках x 1 обозначает скорость перемещения, а x 2 – силу или момент трения.

Нелинейной является вообще любая криволинейная зависимость между выходной и входной величинами звена (рис. 2.1, к ). Это нелинейности простейшего типа. Кроме того, нелинейности могут входить в дифференциальные уравнения в виде произведения переменных величин и их производных, а также в виде более сложных функциональных зависимостей.

Не все нелинейные зависимости поддаются простой линеаризации. Так, например, линеаризация не может быть сделана для характеристик, изображенных на рис. 2.1, а или на рис. 2.1, е. Подобные сложные случаи будут рассмотрены в разд. 9.

2.4. Общий метод линеаризации

(Слайд 12)

В большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения его обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X 1 и X 2 , а внешнее возмущение – через F (t ).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

. (2.1)

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

(Слайд 13)

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х 1 , которое обозначим Х 10 . В процессе регулирования (рис. 2.3) переменная Х 1 будет иметь значения

где обозначает отклонение переменной X 1 от установившегося значения Х 10 .

Аналогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем:

а также

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х 10 , Х 20 и F 0 . Тогда уравнение (2.1) может быть записано для установившего состояния в виде

. (2.2)

(Слайд 15)

Разложим левую часть уравнения (2.1) в ряд Тейлора

(2.3)

где  – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных

; ; ; .

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

(Слайд 16)

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в этом уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях:

(2.4)

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют собой некоторые постоянные коэффициенты в том случае, если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

(Слайд 17)

Получение уравнения (2.4) является целью проделанной линеаризации. В теории автоматического регулирования принято записывать уравнения всех звеньев так, чтобы в левой части уравнения была выходная величина, а все остальные члены переносятся в правую часть. При этом все члены уравнения делятся на коэффициент при выходной величине. В результате уравнение (2.4) принимает вид

, (2.5)

где введены следующие обозначения

(Слайд 18)

Кроме того, для удобства принято все дифференциальные уравнения записывать в операторной форме с обозначениями

И т.д.

Тогда дифференциальное уравнение (2.5) запишется в виде

, (2.6)

Эту запись будем называть стандартной формой записи уравнения динамики звена.

Коэффициенты Т 1 и Т 2 имеют размерность времени – секунды. Это вытекает из того, что все слагаемые в уравнении (2.6) должны иметь одинаковую размерность, а например, размерность (или p x 2 ) отличается от размерности х 2 на секунду в минус первой степени (с -1 ). Поэтому коэффициенты Т 1 и Т 2 называют постоянными времени .

Коэффициент k 1 имеет размерность выходной величины, деленную на размерность входной. Он называется коэффициентом передачи звена. Для звеньев, у которых выходная и входная величины имеют одинаковую размерность, используются также следующие термины: коэффициент усиления – для звена, представляющего собой усилитель или имеющего в своем составе усилитель; передаточное число – для редукторов, делителей напряжения, масштабирующих устройств и т. п.

Коэффициент передачи характеризует статические свойства звена, так как в установившемся состоянии. Следовательно, он определяет крутизну статической характеристики при малых отклонениях. Если изобразить всю реальную статическую характеристику звена, то линеаризация дает или. Коэффициент передачи k 1 будет представлять собой тангенс угла наклона касательной в той точке C (см. рис. 2.3), от которой отсчитываются малые отклонения х 1 и х 2 .

Из рисунка видно, что проделанная выше линеаризация уравнения справедлива для процессов регулирования, захватывающих такой участок характеристики АВ , на котором касательная мало отличается от самой кривой.

(Слайд 19)

Кроме того, отсюда вытекает другой, графический способ линеаризации. Если известна статическая характеристика и точка C , определяющая установившееся состояние, около которого происходит процесс регулирования, то коэффициент передачи в уравнении звена определяется графически из чертежа по зависимости k 1 = tg  c учетом масштабов чертежа и размерности x 2 . Во многих случаях графический метод линеаризации оказывается более удобным и быстрее приводит к цели.

(Слайд 20)

Размерность коэффициента k 2 равна размерности коэффициента передачи k 1 , умноженной на время. Поэтому часто уравнение (2.6) записывают в виде

где – постоянная времени.

Постоянные времени Т 1 , Т 2 и Т 3 определяют динамические свойства звена. Этот вопрос будет рассмотрен подробно ниже.

Коэффициент k 3 представляет собой коэффициент передачи по внешнему возмущению.

PAGE 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

13570. Линейные и нелинейные режимы лазерного нагрева 333.34 KB
Линейные режимы лазерного нагрева Для анализа линейных режимов лазерного нагрева рассмотрим процессы воздействия ЛИ на полупространство экспоненциально спадающим с глубиной тепловым источником. Поэтому идеализация свойств тепловых источников часто допускаемая в расчетных схемах для уменьшения математических трудностей может приводить к заметным отклонениям расчетных данных от экспериментальных. Для непрозрачных материалов в большинстве случаев нагрева ЛИ источники тепла могут считаться поверхностными коэффициент поглощения α 104  105...
16776. Требования, предъявляемые к налоговой политике государства в условиях кризиса 21.72 KB
Требования предъявляемые к налоговой политике государства в условиях кризиса Для развития предпринимательской деятельности в современных экономических условиях необходимо наличие определенных условий в том числе: - наличие эффективной налоговой системы стимулирующей развитие предпринимательства; - наличие определенной совокупности прав и свобод выбор вида хозяйственной деятельности планирование источников финансирования доступ к ресурсам организация и управление компанией и т. Таким образом для поступательного развития...
7113. Метод гармонической линеаризации 536.48 KB
Метод гармонической линеаризации Поскольку этот метод является приближённым то полученные результаты будут близки к истине только при выполнении определённых допущений: Нелинейная система должна содержать только одну нелинейность; Линейная часть системы должна представлять собой фильтр низких частот ослабляющий высшие гармоники возникающие в предельном цикле; Метод применим только к автономным системам. Изучается свободное движение системы то есть движение при ненулевых начальных условиях в отсутствие внешних воздействий....
12947. МЕТОД ГАРМОНИЧЕСКОЙ ЛИНЕАРИЗАЦИИ 338.05 KB
Переходя непосредственно к рассмотрению метода гармонической линеаризации будем считать что исследуемая нелинейная система приведена к виду показанному на. Нелинейный элемент может иметь любую характеристику лишь бы она была интегрируемой без разрывов второго рода. Преобразование данной переменной для примера нелинейным элементом с зоной нечувствительности показано на рис.
2637. Аппликационные лекарственные препараты. Общая характеристика. Классификация. Основные требования. Технология нанесения адгезивов на подложку при производстве аппликационных лекарственных препаратов 64.04 KB
Аппликационные лекарственные препараты – пластыри мозольные лейкопластыри перцовые пластыри кожные клеи – жидкие пластыри пленки ТТС и др. Общая характеристика и классификация пластырей Пластыри Emplstr лекарственная форма для наружного применения обладающая способностью прилипать к коже оказывающая действие на кожу подкожные ткани и в ряде случаев общее воздействие на организм. Пластыри одна из старейших лекарственных форм известная с очень древних времен прародители современных препаратов четвертого поколения...
7112. НЕЛИНЕЙНЫЕ СИСТЕМЫ 940.02 KB
Физические законы движения окружающего нас мира таковы что все объекты управления нелинейны. Другие нелинейности называемые структурными вводятся в систему преднамеренно для получения требуемых характеристик системы. Если нелинейности выражены слабо то поведение нелинейной системы незначительно отличается от поведения линейной системы. Создать точную модель реальной системы невозможно.
21761. Общий пантеон богов древней Мессопотамии. Боги древнего Шумера 24.7 KB
Древняя религия народов Месопотамии, несмотря на собственный консерватизм, постепенно, в ходе общественного развития, претерпевала изменения, отражаюшие в себе и политические, и социально-экономические процессы, происходящие на территории Месопотамии.
11507. формированиЕ финансового результата и общий анализ финансово-хозяйственной деятельности организации 193.55 KB
Для более глубокого ознакомления с деятельностью любого предприятия возникает необходимость в изучении его со всех возможных сторон в формировании наиболее объективного мнения как о положительных так и отрицательных сторонах в работе в выявлении наиболее уязвимых мест и способах их устранения. Для проведения финансового анализа используют специальный инструментарий так называемые финансовые коэффициенты. Используя необходимую информацию объективно и наиболее точно оценить финансовое состояние организации его прибыли и убытки изменения...
13462. Статистический анализ рисковых активов. Нелинейные модели 546.54 KB
Однако реальные данные для многих финансовых временных рядов показывают что линейные модели не всегда адекватно отражают истинную картину поведения цен. Если иметь ввиду разложение Дуба в котором привлекаются условные математические ожидания вполне естественным является предположение о том что условные распределения являются гауссовскими...
4273. Линейные математические модели 3.43 KB
Линейные математические модели. Выше отмечалось, что любая математическая модель может рассматриваться как некоторый оператор А, который является алгоритмом или определяется совокупностью уравнений - алгебраических...