Биографии Характеристики Анализ

Найти матрицы обратные заданной матрице а. Нахождение обратной матрицы онлайн

Нахождение обратной матрицы - задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором требуется находить определители и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.

Обратной матрицей А , называется такая матрица

А
. (1)

Обратной матрицей , которую требуется отыскать для данной квадратной матрицы А , называется такая матрица

произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.

Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a , не равного нулю, существует такое число b , что произведение a и b равно единице: ab = 1 . Число b называется обратным для числа b . Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.

Нахождение обратной матрицы методом алгебраических дополнений (союзной матрицы)

Для неособенной квадратной матрицы А обратной является матрица

где - определитель матрицы А , а - матрица, союзная с матрицей А .

Союзной с квадратной матрицей A называется матрица того же порядка, элементами которой являются алгебраические дополнения соответствующих элементов определителя матрицы , транспонированной относительно матрицы A. Таким образом, если

то

и

Алгоритм нахождения обратной матрицы методом алгебраических дополнений

1. Найти определитель данной матрицы A . Если определитель равен нулю, нахождение обратной матрицы прекращается, так как матрица вырожденная и обратная для неё не существует.

2. Найти матрицу, транспонированную относительно A .

3. Вычислить элементы союзной матрицы как алгебраические дополнения марицы, найденной на шаге 2.

4. Применить формулу (2): умножить число, обратное определителю матрицы A , на союзную матрицу, найденную на шаге 4.

5. Проверить полученный на шаге 4 результат, умножив данную матрицу A на обратную матрицу. Если произведение этих матриц равно единичной матрицы, значит обратная матрица была найдена верно. В противном случае начать процесс решения снова.

Пример 1. Для матрицы

найти обратную матрицу.

Решение. Для нахождения обратной матрицы необходимо найти определитель матрицы А . Находим по правилу треугольников:

Следовательно, матрица А – неособенная (невырожденная, несингулярная) и для неё существует обратная.

Найдём матрицу, союзную с данной матрицей А .

Найдём матрицу , транспонированную относительно матрицы A :

Вычисляем элементы союзной матрицы как алгебраические дополнения матрицы, транспонированной относительно матрицы A :

Следовательно, матрица , союзная с матрицей A , имеет вид

Замечание. Порядок вычисления элементов и транспонирования матрицы может быть иным. Можно сначала вычислить алгебраические дополнения матрицы A , а затем транспонировать матрицу алгебраических дополнений. В результате должны получиться те же элементы союзной матрицы.

Применяя формулу (2), находим матрицу, обратную матрице А :

Нахождение обратной матрицы методом исключения неизвестных Гаусса

Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса - приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы получим сдвоенную матрицу . Умножим обе части этой матрицы на , тогда получим

,

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

В результате должна получиться обратная матрица.

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

.

Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки вычитаем вторую, тогда получим

.

Видим, что в третьей строке в левой части все элементы получились равными нулю. Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.

Способы нахождения обратной матрицы, . Рассмотрим квадратную матрицу

Обозначим Δ =det A.

Квадратная матрица А называется невырожденной, или неособенной , если ее определитель отличен от нуля, и вырожденной, или особенной , если Δ = 0.

Квадратная матрица В есть для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема . Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Обратная матрица матрице А, обозначается через А - 1 , так что В = А - 1 и вычисляется по формуле

, (1)

где А i j - алгебраические дополнения элементов a i j матрицы A..

Вычисление A -1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A -1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 2.10 . Для матрицы найти A -1 .

Решение. Находим сначала детерминант матрицы А
значит, обратная матрица существует и мы ее можем найти по формуле: , где А i j (i,j=1,2,3) - алгебраические дополнения элементов а i j исходной матрицы.

Откуда .

Пример 2.11 . Методом элементарных преобразований найти A -1 для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.
Для этого поменяем местами первый и второй столбцы:
~ . К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной матрицей к данной матрице А. Итак,
.

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием преобразований метода Гаусса и Гаусса-Жордана. Зачастую этот метод нахождения обратной матрицы именуют методом элементарных преобразований.

Метод элементарных преобразований

Для применения этого метода в одну матрицу записывают заданную матрицу $A$ и единичную матрицу $E$, т.е. составляют матрицу вида $(A|E)$ (эту матрицу называют также расширенной). После этого с помощью элементарных преобразований, выполняемых со строками расширенной матрицы, добиваются того, что матрица слева от черты станет единичной, причём расширенная матрица примет вид $\left(E| A^{-1} \right)$. К элементарным преобразованиям в данной ситуации относят такие действия:

  1. Смена мест двух строк.
  2. Умножение всех элементов строки на некоторое число, не равное нулю.
  3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Применять указанные элементарные преобразования можно разными путями. Обычно выбирают метод Гаусса или метод Гаусса-Жордана. Вообще, методы Гаусса и Гаусса-Жордана предназначены для решения систем линейных алгебраических уравнений, а не для нахождения обратных матриц. Фразу «применение метода Гаусса для нахождения обратной матрицы» здесь нужно понимать как «применение операций, свойственных методу Гаусса, для нахождения обратной матрицы».

Нумерация примеров продолжена с первой части . В примерах и рассмотрено применение метода Гаусса для нахождения обратной матрицы, а в примерах и разобрано использование метода Гаусса-Жордана. Следует отметить, что если в ходе решения все элементы некоторой строки или столбца матрицы, расположенной до черты, обнулились, то обратной матрицы не существует.

Пример №5

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 7 & 4 & 6 \\ 2 & 5 & -4 \\ 1 & -1 & 3 \end{array} \right)$.

В этом примере будет найдена обратная матрица методом Гаусса. Расширенная матрица, имеющая в общем случае вид $(A|E)$, в данном примере примет такую форму: $ \left(\begin{array} {ccc|ccc} 7 & 4 & 6 & 1 & 0 & 0 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 1 \end{array} \right)$.

Цель: с помощью элементарных преобразований привести расширенную матрицу к виду $\left(E|A^{-1} \right)$. Применим те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Для применения метода Гаусса удобно, когда первым элементом первой строки расширенной матрицы является единица. Чтобы добиться этого, поменяем местами первую и третью строки расширенной матрицы, которая станет такой: $ \left(\begin{array} {ccc|ccc} 1 & -1 & 3 & 0 & 0 & 1 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 7 & 4 & 6 & 1 & 0 & 0 \end{array} \right)$.

Теперь приступим к решению. Метод Гаусса делится на два этапа: прямой ход и обратный (подробное описание этого метода для решения систем уравнений дано в примерах соответствующей темы). Те же два этапа будут применены и в процессе отыскания обратной матрицы.

Прямой ход

Первый шаг

С помощью первой строки обнуляем элементы первого столбца, расположенные под первой строкой:

Немного прокомментирую выполненное действие. Запись $II-2\cdot I$ означает, что от элементов второй строки вычли соответствующие элементы первой строки, предварительно умноженные на два. Это действие можно записать отдельно следующим образом:

Точно так же выполняется и действие $III-7\cdot I$. Если возникают сложности с выполнением этих операций, их можно выполнить отдельно (аналогично показанному выше действию $II-2\cdot I$), а результат потом внести в расширенную матрицу.

Второй шаг

С помощью второй строки обнуляем элемент второго столбца, расположенный под второй строкой:

Разделим третью строку на 5:

Прямой ход окончен. Все элементы, расположенные под главной диагональю матрицы до черты, обнулились.

Обратный ход

Первый шаг

С помощью третьей строки обнуляем элементы третьего столбца, расположенные над третьей строкой:

Перед переходом к следующему шагу разделим вторую строку на $7$:

Второй шаг

С помощью второй строки обнуляем элементы второго столбца, расположенные над второй строкой:

Преобразования закончены, обратная матрица методом Гаусса найдена: $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$. Проверку, при необходимости, можно сделать так же, как и в предыдущих примерах. Если пропустить все пояснения, то решение примет вид:

Ответ : $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$.

Пример №6

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {cccc} -5 & 4 & 1 & 0 \\ 2 & 3 & -2 & 1 \\ 0 & 7 & -4 & -3 \\ 1 & 4 & 0 & 6 \end{array} \right)$.

Для нахождения обратной матрицы в этом примере будем использовать те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Подробные пояснения даны в , здесь же ограничимся краткими комментариями. Запишем расширенную матрицу: $\left(\begin{array} {cccc|cccc} -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \end{array} \right)$. Поменяем местами первую и четвёртую строки данной матрицы: $\left(\begin{array} {cccc|cccc} 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \end{array} \right)$.

Прямой ход

Преобразования прямого хода завершены. Все элементы, расположенные под главной диагональю матрицы слева от черты, обнулились.

Обратный ход

Обратная матрица методом Гаусса найдена, $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$. Проверку, при необходимости, проводим так же, как и в примерах №2 и №3.

Ответ : $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$.

Пример №7

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 2 & 3 & 4 \\ 7 & 1 & 9 \\ -4 & 5 & -2 \end{array} \right)$.

Для нахождения обратной матрицы применим операции, характерные методу Гаусса-Жордана. Отличие от метода Гаусса, рассмотренного в предыдущих примерах и , состоит в том, что решение осуществляется в один этап. Напомню, что метод Гаусса делится на 2 этапа: прямой ход («делаем» нули под главной диагональю матрицы до черты) и обратный ход (обнуляем элементы над главной диагональю матрицы до черты). Для вычисления обратной матрицы методом Гаусса-Жордана двух стадий решения не потребуется. Для начала составим расширенную матрицу: $(A|E)$:

$$ (A|E)=\left(\begin{array} {ccc|ccc} 2 & 3 & 4 & 1 & 0 & 0\\ 7 & 1 & 9 & 0 & 1 & 0\\ -4 & 5 & -2 &0 & 0 & 1 \end{array} \right) $$

Первый шаг

Обнулим все элементы первого столбца кроме одного. В первом столбце все элементы отличны от нуля, посему можем выбрать любой элемент. Возьмём, к примеру, $(-4)$:

Выбранный элемент $(-4)$ находится в третьей строке, посему именно третью строку мы используем для обнуления выделенных элементов первого столбца:

Сделаем так, чтобы первый элемент третьей строки стал равен единице. Для этого разделим элементы третьей строки расширенной матрицы на $(-4)$:

Теперь приступим к обнулению соответствующих элементов первого столбца:

В дальнейших шагах использовать третью строку уже будет нельзя, ибо мы её уже применили на первом шаге.

Второй шаг

Выберем некий не равный нулю элемент второго столбца и обнулим все остальные элементы второго столбца. Мы можем выбрать любой из двух элементов: $\frac{11}{2}$ или $\frac{39}{4}$. Элемент $\left(-\frac{5}{4} \right)$ выбрать нельзя, ибо он расположен в третьей строке, которую мы использовали на предыдущем шаге. Выберем элемент $\frac{11}{2}$, который находится в первой строке. Сделаем так, чтобы вместо $\frac{11}{2}$ в первой строке стала единица:

Теперь обнулим соответствующие элементы второго столбца:

В дальнейших рассуждениях первую строку использовать нельзя.

Третий шаг

Нужно обнулить все элементы третьего столбца кроме одного. Нам надо выбрать некий отличный от нуля элемент третьего столбца. Однако мы не можем взять $\frac{6}{11}$ или $\frac{13}{11}$, ибо эти элементы расположены в первой и третьей строках, которые мы использовали ранее. Выбор невелик: остаётся лишь элемент $\frac{2}{11}$, который находится во второй строке. Разделим все элементы второй строки на $\frac{2}{11}$:

Теперь обнулим соответствующие элементы третьего столбца:

Преобразования по методу Гаусса-Жордана закончены. Осталось лишь сделать так, чтобы матрица до черты стала единичной. Для этого придется менять порядок строк. Для начала поменяем местами первую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \end{array} \right) $$

Теперь поменяем местами вторую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$. Естественно, что решение можно провести и по-иному, выбирая элементы, стоящие на главной диагонали. Обычно именно так и поступают, ибо в таком случае в конце решения не придется менять местами строки. Я привел предыдущее решение лишь с одной целью: показать, что выбор строки на каждом шаге не принципиален. Если выбирать на каждом шаге диагональные элементы, то решение станет таким.

Пусть дана квадратная матрица . Требуется найти обратную матрицу.

Первый способ. В теореме 4.1 существования и единственности обратной матрицы указан один из способов ее нахождения.

1. Вычислить определитель данной матрицы. Если, то обратной матрицы не существует (матрицавырожденная).

2. Составить матрицу из алгебраических дополненийэлементов матрицы.

3. Транспонируя матрицу , получить присоединенную матрицу.

4. Найти обратную матрицу (4.1), разделив все элементы присоединенной матрицы на определитель

Второй способ. Для нахождения обратной матрицы можно использовать элементарные преобразования.

1. Составить блочную матрицу , приписав к данной матрицеединичную матрицу того же порядка.

2. При помощи элементарных преобразований, выполняемых над строками матрицы , привести ее левый блокк простейшему виду. При этом блочная матрица приводится к виду, где- квадратная матрица, полученная в результате преобразований из единичной матрицы.

3. Если , то блокравен обратной матрице, т.е.. Если, то матрицане имеет обратной.

В самом деле, при помощи элементарных преобразований строк матрицы можно привести ее левый блокк упрощенному виду(см. рис. 1.5). При этом блочная матрицапреобразуется к виду, где- элементарная матрица, удовлетворяющая равенству. Если матрицаневырожденная, то согласно п.2 замечаний 3.3 ее упрощенный вид совпадает с единичной матрицей. Тогда из равенстваследует, что. Если же матрицавырожденная, то ее упрощенный видотличается от единичной матрицы, а матрицане имеет обратной.

11. Матричные уравнения и их решение. Матричная форма записи СЛАУ. Матричный способ (метод обратной матрицы) решения СЛАУ и условия его применимости.

Матричными уравнениями называются уравнения вида: A*X=C; X*A=C; A*X*B=C где матрица А,В,С известны,матрица Х не известна, если матрицы А и В не вырождены, то решения исходных матриц запишется в соответственном виде: Х=А -1 *С; Х=С*А -1 ; Х=А -1 *С*В -1 Матричная форма записи систем линейных алгебраических уравнений. С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица A называется матрицей системы . Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица A˜ называется расширенной матрицей системы . Её получают добавлением к матрице системы столбца, содержащего свободные члены b1,b2,...,bm. Обычно этот столбец отделяют вертикальной чертой, – для наглядности.

Матрица-столбец B называется матрицей свободных членов , а матрица-столбец X – матрицей неизвестных .

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: A⋅X=B.

Примечание

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков.

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса .

12. Однородные СЛАУ, условия существования их ненулевых решений. Свойства частных решений однородных СЛАУ.

Линейное уравнение называется однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

13 .Понятие линейной независимости и зависимости частных решений однородной СЛАУ. Фундаментальная система решений (ФСР) и её нахождение. Представление общего решения однородной СЛАУ через ФСР.

Система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно зависимой на интервале (a , b ), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a , b ): для . Если равенство для возможно только при , система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно независимой на интервале (a , b ). Другими словами, функции y 1 (x ), y 2 (x ), …, y n (x ) линейно зависимы на интервале (a , b ), если существует равная нулю на (a , b ) их нетривиальная линейная комбинация. Функции y 1 (x ),y 2 (x ), …, y n (x ) линейно независимы на интервале (a , b ), если только тривиальная их линейная комбинация тождественно равна нулю на (a , b ).

Фундаментальной системой решений (ФСР) однородной СЛАУ называется базис этой системы столбцов.

Количество элементов в ФСР равно количеству неизвестных системы минус ранг матрицы системы. Любое решение исходной системы есть линейная комбинация решений ФСР.

Теорема

Общее решение неоднородной СЛАУ равно сумме частного решения неоднородной СЛАУ и общего решения соответствующей однородной СЛАУ.

1 . Если столбцы - решения однородной системы уравнений, то любая их линейная комбинациятакже является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеетлинейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений, придавая свободным переменным следующиестандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные - равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последнихстроках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен. Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решенийоднородной системы называетсяфундаментальной системой (совокупностью) решений .

14 Минор -ого порядка, базисный минор, ранг матрицы. Вычисление ранга матрицы.

Минором порядка k матрицы А называется детерминант некоторой ее квадратной подматрицы порядка k.

В матрице А размеров m x n минор порядка r называется базисным, если он отличен от нуля, а все миноры большего порядка, если они существуют, равны нулю.

Столбцы и строки матрицы А, на пересечении которых стоит базисный минор, называются базисными столбцами и строками А.

Теорема 1. (О ранге матрицы). У любой матрицы минорный ранг равен строчному рангу и равен столбцовому рангу.

Теорема 2.(О базисном миноре). Каждый столбец матрицы раскладывается в линейную комбинацию ее базисных столбцов.

Рангом матрицы (или минорным рангом) называется порядок базисного минора или, иначе, самый большой порядок, для которого существуют отличные от нуля миноры. Ранг нулевой матрицы по определению считают 0.

Отметим два очевидных свойства минорного ранга.

1) Ранг матрицы не меняется при транспонировании, так как при транспонировании матрицы все ее подматрицы транспонируются и миноры не меняются.

2) Если А’-подматрица матрицы А, то ранг А’ не превосходит ранга А, так как ненулевой минор, входящий в А’, входит и в А.

15. Понятие -мерного арифметического вектора. Равенство векторов. Действия над векторами (сложение, вычитание, умножение на число, умножение на матрицу). Линейная комбинация векторов.

Упорядоченная совокупность n действительных или комплексных чисел называется n-мерным вектором . Числа называются координатами вектора .

Два (ненулевых) вектора a и b равны, если они равнонаправлены и имеют один и тот же модуль. Все нулевые векторы считаются равными. Во всех остальных случаях векторы не равны.

Сложение векторов. Для сложения векторов есть два способа.1. Правило параллелограмма. Чтобы сложить векторы и, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторови.

2. Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и . По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Вычитание векторов. Вектор направлен противоположно вектору. Длины векторовиравны. Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины. Он сонаправлен с вектором, если k больше нуля, и направлен противоположно, если k меньше нуля.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними. Если векторы перпендикулярны, их скалярное произведение равно нулю. А вот так скалярное произведение выражается через координаты векторов и .

Линейная комбинация векторов

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

16 .Скалярное произведение арифметических векторов. Длина вектора и угол между векторами. Понятие ортогональности векторов.

Скалярным произведением векторов а и в называется число,

Скалярное произведение используется для вычисления:1)нахождения угла между ними;2)нахождение проекции векторов;3)вычисление длины вектора;4)условия перпендикулярности векторов.

Длиной отрезка АВ называют расстоянием между точками А иВ. Угол между векторами А и В называют угол α=(а,в) ,0≤ α ≤П. На который необходимо повернуть 1 вектор,чтоб его направления совпало с другим вектором. При условии,что их начала совпадут.

Ортом а называется вектор а имеющий единичную длину и направления а.

17. Система векторов и её линейная комбинация. Понятие линейной зависимости и независимости системы векторов. Теорема о необходимом и достаточном условиях линейной зависимости системы векторов.

Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λnтакие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.

Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.

Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.

Геометрические критерии линейной зависимости:

а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.

б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3компланарны.

теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)

Система векторов векторного пространства является линейно зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие вектора этой системы.

Следствие.1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Для любой невырожденной матрицы А существует и притом единственная матрица A -1 такая, что

A*A -1 =A -1 *A = E,

где E — единичная матрица тех же порядков, что и А. Матрица A -1 называется обратной к матрице A.

Если кто-то забыл, в единичной матрице, кроме диагонали, заполненной единицами, все остальные позиции заполнены нулями, пример единичной матрицы:

Нахождение обратной матрицы методом присоединённой матрицы

Обратная матрица определяется формулой:

где A ij - элементов a ij .

Т.е. для вычисления обратной матрицы, нужно вычислить определитель этой матрицы. Затем найти алгебраические дополнения для всех её элементов и составить из них новую матрицу. Далее нужно транспортировать эту матрицу. И каждый элемент новой матрицы поделить на определитель исходной матрицы.

Рассмотрим несколько примеров.

Найти A -1 для матрицы

Р е ш е н и е. Найдём A -1 методом присоединённой матрицы. Имеем det A = 2. Найдём алгебраические дополнения элементов матрицы A. В данном случае алгебраическими дополнениями элементов матрицы будут соответствующие элементы самой матрицы, взятые со знаком в соответствии с формулой

Имеем A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. Образуем присоединённую матрицу

Транспортируем матрицу A*:

Находим обратную матрицу по формуле:

Получаем:

Методом присоединённой матрицы найти A -1 , если

Р е ш е н и е. Прежде всего вычисляем определитесь данной матрицы, чтобы убедиться в существовании обратной матрицы. Имеем

Здесь мы прибавили к элементам второй строки элементы третьей строки, умноженные предварительно на (-1), а затем раскрыли определитель по второй строке. Так как определитесь данной матрицы отличен от нуля, то обратная к ней матрица существует. Для построения присоединённой матрицы находим алгебраические дополнения элементов данной матрицы. Имеем

В соответствии с формулой

транспортируем матрицу A*:

Тогда по формуле

Нахождение обратной матрицы методом элементарных преобразований

Кроме метода нахождения обратной матрицы, вытекающего из формулы (метод присоединенной матрицы), существует метод нахождения обратной матрицы, называемый методом элементарных преобразований.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Для нахождения матрицы A -1 построим прямоугольную матрицу В = (А|Е) порядков (n; 2n), приписывая к матрице А справа единичную матрицу Е через разделительную черту:

Рассмотрим пример.

Методом элементарных преобразований найти A -1 , если

Р е ш е н и е. Образуем матрицу B:

Обозначим строки матрицы B через α 1 , α 2 , α 3 . Произведём над строками матрицы B следующие преобразования.