Биографии Характеристики Анализ

Основу внутренней среды живых организмов образует. Биология

2014-05-31

Среди неорганических соединений живых организмов особая роль принадлежит воде. Вода является основной средой, в которой происходят процессы обмена веществ и превращения энергии.

Содержание воды в большинстве живых организмов составляет 60-70 %. Вода образует основу внутренней среды живых организмов (крови, лимфы, межклеточной жидкости). Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярная (диполь). Положительный заряд сосредоточен на атомах водорода, поскольку кислород является более электроотрицательным, чем водород. Отрицательно заряженный атом кислорода одной молекулы воды притягивается к положительно заряженному атома водорода другой молекулы, образуя при этом водородная связь, который в 15-20 раз слабее, чем ковалентная. Поэтому водородные связи легко разрываются, что наблюдается, например, при испарении воды. Вследствие теплового движения молекул в воде некоторые водородные связи разрываются, некоторые образуются.

Таким образом, молекулы являются подвижными в жидком состоянии, что очень важно для процессов обмена веществ. Молекулы воды легко проникают через клеточные мембраны. Благодаря высокой полярности молекул вода является растворителем других полярных соединений. В зависимости от способности растворяться определенных соединений в воде, их условно разделяют на гидрофильные, или полярные, и гидрофобные, или неполярные. К гидрофильных соединений, растворимых в воде, относится большинство солей. Гидрофобные соединения (почти все жиры, некоторые белки) содержат неполярные группы, не образуют водородные связи, поэтому эти соединения не растворяются в воде. Она обладает высокой теплоемкостью и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной для поддержания теплового равновесия организма.

Для поддержания процессов жизнедеятельности отдельных клеток и организма в целом важное значение имеют минеральные соли. Живые организмы содержат как растворенные соли (в виде ионов), так и соли в твердом состоянии. Ионы разделяются на положительные (катионы металлических элементов К +, Na +, Са2 +, М2 + и др.) и отрицательные (анионы кислот соляной — Сl -, серной — НSO4 -, SО42 -, карбонатной — НСО3 -, фосфатной — Н2РО4 -, НРО42 — и др.).. Различная концентрация катионов К + и Na + в клетке и межклеточной жидкости вызывает разность потенциалов на мембране клетки; изменение проницаемости мембраны по К + и Na + под влиянием раздражения обеспечивает возникновение нервного и мышечного возбуждения. Анионы фосфорной кислоты поддерживают нейтральную реакцию внутриклеточной среды (рН = 6,9), анионы карбоновой кислоты — слабощелочную реакцию плазмы крови (рН = 7,4). Соединения кальция (СаСO3) входят в состав раковин моллюсков и простейших, панцирей раков. Соляная кислота создает кислую среду в желудке позвоночных животных и человека, обеспечивает этим активность ферментов желудочного сока. Остатки серной кислоты, присоединяясь к нерастворимых в воде соединений, обеспечивающих их растворимость, что способствует выведению данных соединений из клеток и организма.

Понятие о внутренней среде организма

Любой организм - одноклеточный или многоклеточный - нуждается в определенных условиях существования. Эти условия обеспечивает организмам та среда, к которой они приспособились в ходе эволюционного развития.

Внутренней средой для клеток и органов человека служат кровь, лимфа и тканевая жидкость.

Если сильно порезать палец, то потечет кровь; если порез неглубокий и сосуды не повреждены, то вместо крови на разрезе иногда проступает несколько капелек прозрачной жидкости - это и есть тканевая жидкость. Тканевая жидкость постоянно омывает клетки и служит для них средой существования. Тканевая жидкость постоянно обновляется через систему лимфатических сосудов: тканевая жидкость собирается в эти сосуды (внутри лимфатических сосудов она называется лимфой), а затем по самому крупному лимфатическому сосуду попадает в общий кровоток, где смешивается с кровью.

Первые живые образования возникли в водах Мирового океана, и средой обитания для них служила морская вода. По мере усложнения живых организмов часть их клеток изолировалась от внешней среды. Так часть среды обитания оказалась внутри организма, что позволило многим организмам покинуть водную среду и начать жить на суше.

"Маленькое море", усложняясь, постепенно превратилось во внутреннюю среду животных. В связи с этим не должен вызывать удивления тот факт, что содержание солей в морской воде и во внутренней среде организма сходно.

Во внутренней среде организма, помимо солей, содержится очень много различных веществ - белки, сахар, жироподобные вещества, гормоны и т. д. Каждый орган постоянно выделяет во внутреннюю среду продукты своей деятельности и получает из нее необходимые для себя вещества. И, несмотря на такой активный обмен, состав внутренней среды остается практически неизменным.

Гомеостаз. Поддержание постоянства условий жизни во внутренней среде называют гомеостазом .

Отдельные клетки и группы клеток человеческого организма чрезвычайно чувствительны к изменению окружающей их среды. Что же касается целого организма, то границы изменений внешней среды, которые он может переносить, значительно шире, чем у отдельных клеток. Клетки человека нормально функционируют лишь при температуре 36-38° С. Повышение или снижение температуры за пределы этих границ приводит к нарушению функций клеток. Человек же, как известно, может нормально существовать при значительно более широких колебаниях температуры внешней среды.

В клетках поддерживается постоянное количество воды и минеральных веществ. Многие клетки почти мгновенно гибнут при помещении их в дистиллированную воду. Организм же как целое может переносить и водное голодание, и избыточное поступление воды и солей.

Отдельные клетки чрезвычайно чувствительны к незначительным изменениям концентрации ионов водорода. Целый организм способен поддерживать постоянную концентрацию водородных ионов, даже когда в тканевую жидкость поступает много кислых или щелочных продуктов обмена веществ.

Этих примеров достаточно, для того чтобы убедиться в наличии у организмов специальных приспособлений для обеспечения постоянства среды обитания их клеток.

Очень важной особенностью внутренней среды является то, что содержание веществ в ней не абсолютно одинаково, а изменяется в определенных пределах, т. е. для содержания каждого Вещества нормой является не одна какая-то цифра, а определенный диапазон показателей . Например, в справочнике можно прочитать: содержание ионов калия в крови здорового человека - 16-20 мг% (т. е. 16-20 мг в 100 мл).

Практически содержание любого вещества во внутренней среде никогда не является абсолютно одинаковым - оно постоянно колеблется, но в строго определенных пределах.

Диапазон показателей для разных веществ различен. Некоторые показатели поддерживаются особенно точно; они получили название констант. К числу констант относится, например, реакция крови (т. е. концентрация в ней водородных ионов - рН).

В организме на относительно постоянном уровне удерживаются такие показатели, как кровяное давление, температура тела, осмотическое давление крови и тканевой жидкости, содержание в них белков и сахара, ионов натрия, калия, кальция, хлора, водорода.

Постоянным остается не только состав внутренней среды, но и ее объем. Однако постоянство объема внутренней среды не абсолютно неизменно. Часть жидкости из внутренней среды выводится из организма через почки с мочой, через легкие с выдыхаемыми парами воды и в пищеварительный тракт с пищеварительными соками. Часть воды испаряется с поверхности тела в виде пота. Эти потери воды постоянно пополняются за счет всасывания воды из пищеварительного тракта. Происходит постоянное обновление воды при общем сохранении ее объема. В поддержании постоянства объема жидкости во внутренней среде принимают участие и клетки. Вода, находящаяся внутри клеток, составляет примерно 50% массы тела. Если по каким-либо причинам во внутренней среде уменьшается количество жидкости, то начинается движение воды из клеток в межклеточное пространство. Это способствует сохранению постоянства объема внутренней среды.

Постоянство внутренней среды - гомеостаз - поддерживается непрерывной работой органов и тканей.

Роль различных органов в поддержании гомеостаза

Роль разных органов в сохранении гомеостаза различна. Система органов пищеварения обеспечивает поступление в кровь питательных веществ в таком виде, в каком они могут быть усвоены клетками организма.

Органы кровообращения осуществляют непрерывное движение крови и доставляют кислород и питательные вещества клеткам, а продукты распада уносят от них. Органы дыхания обеспечивают поступление кислорода в кровь и удаление углекислого газа.

Через легкие, почки, кожу из организма удаляются конечные продукты обмена веществ и некоторые другие вещества.

В поддержании гомеостаза важнейшая роль принадлежит нервной системе. Быстро реагируя на различные изменения внешней или внутренней среды, нервная система так изменяет деятельность органов, что выравниваются сдвиги или нарушения в организме.

Благодаря развитию приспособлений, обеспечивающих постоянство внутренней среды организма, его клетки менее подвержены изменяющимся влияниям внешней среды.

Нарушение гомеостаза приводит к значительным изменениям в работе органов и к различным заболеваниям. Вот почему измерение таких показателей, как температура тела, физико-химический состав крови, артериальное давление, имеет большое значение для диагностики, т. е. распознавания болезней.

Хотите опытную гетеру, представлен огромный выбор.

Любой организм - одноклеточный или многоклеточный - нуждается в определённых условиях существования. Эти условия обеспечивает организмам та среда, к которой они приспособились в ходе эволюционного развития.

Первые живые образования возникли в водах Мирового океана, и средой обитания для них служила морская вода. По мере усложнения живых организмов часть их клеток изолировалась от внешней среды. Так часть среды обитания оказалась внутри организма, что позволило многим организмам покинуть водную среду и начать жить на суше. Содержание солей во внутренней среде организма и в морской воде примерно одинаковое.

Внутренней средой для клеток и органов человека служат кровь, лимфа и тканевая жидкость.

Относительное постоянство внутренней среды

Во внутренней среде организма, помимо солей, очень много различных веществ - белки, сахар, жироподобные вещества, гормоны и т.д. каждый орган постоянно выделяет во внутреннюю среду продукты своей жизнедеятельности и получает из неё необходимые для себя вещества. И, несмотря на такой активный обмен, состав внутренней среды остаётся практически неизменным.

Выходящая из крови жидкость, становится частью тканевой жидкости. Большая часть этой жидкости поступает снова в капилляры, прежде чем они соединяются с венами, по которым кровь возвращается к сердцу, однако около 10% жидкости не попадает в сосуды. Стенки капилляров состоят из одного слоя клеток, но между соседними клетками есть узкие щели. Сокращение сердечной мышцы создаёт давление крови, в результате чего вода с растворёнными в ней солями и питательными веществами проходит через эти щели.

Все жидкости тела связаны друг с другом. Внеклеточная жидкость контактирует с кровью и со спинно-мозговой жидкостью, омывающей спинной и головной мозг. Это означает, что регуляция состава жидкостей тела происходит централизовано.

Тканевая жидкость омывает клетки и служит для них средой обитания. Она постоянно обновляется через систему лимфатических сосудов: эта жидкость собирается в сосуды, а затем по самому крупному лимфатическому сосуду попадает в общий кровоток, где смешивается с кровью.

Состав крови

Хорошо знакомая всем красная жидкость, в действительности представляет собой ткань. Долгое время за кровью признавали могучую силу: кровью скрепляли священные клятвы; жрецы заставляли своих деревянных идолов «плакать кровью»; древние греки приносили кровь в жертву своим богам.

Некоторые философы Древней Греции считали кровь носителем души. Древнегреческий врач Гиппократ назначал душевнобольным кровь здоровых людей. Он думал, что в крови здоровых людей - здоровая душа. И действительно, кровь - самая удивительная ткань нашего организма. Подвижность крови - важнейшее условие жизни организма.

Около половины объёма крови составляет жидкая её часть - плазма с растворёнными в ней солями и белками; другую половину составляют различные форменные элементы крови.

Форменные элементы крови делятся на три основные группы: белые кровяные клетки (лейкоциты), красные кровяные клетки (эритроциты) и кровяные пластинки, или тромбоциты. Все они образуются в костном мозгу (мягкая ткань, заполняющая полость трубчатых костей), но некоторые лейкоциты способны размножаться уже при выходе из костного мозга. Существует много различных типов лейкоцитов - большая часть участвует в защите организма от болезней.

Плазма крови

В 100 мл плазмы крови здорового человека содержится около 93 г воды. Остальная часть плазмы состоит из органических и неорганических веществ. Плазма содержит минеральные вещества, белки, углеводы, жиры, продукты обмена веществ, гормоны витамины.

Минеральные вещества плазмы представлены солями: хлоридами, фосфатами, карбонатами и сульфатами натрия, калия, кальция и магния. Они могут находиться как в виде ионов, так и в неионизированном состоянии. Даже незначительное нарушение солевого состава плазмы может сказаться губительным для многих тканей, и прежде всего для клеток самой крови. Суммарная концентрация минеральных содей, белков, глюкозы, мочевины и других веществ, растворённых в плазме, создаёт осмотическое давление. Благодаря осмотическому давлению происходит проникновение жидкости через клеточные оболочки, что обеспечивает обмен воды между кровью и тканью. Постоянство осмотического давления крови имеет важное значение для жизнедеятельности клеток организма. Мембраны многих клеток, в том числе и клеток крови, тоже являются полупроницаемыми.

Эритроциты

Эритроциты являются самыми многочисленными клетками крови; их основная функция состоит в переносе кислорода. Условия, при которых повышается потребность организма в кислороде, например жизнь на больших высотах или постоянная физическая нагрузка, стимулируют образование эритроцитов. Эритроциты живут в кровяном русле около четырёх месяцев, после чего разрушаются.

Лейкоциты

Лейкоциты , или белые кровяные тельца непостоянной формы. Они имеют ядро, погружённое в бесцветную цитоплазму. Основная функция лейкоцитов - защитная. Лейкоциты не только разносятся током крови, но и способны к самостоятельному передвижению с помощью ложноножек (псевдоножек). Проникая сквозь стенки капилляров, лейкоциты движутся к скоплению болезнетворных микробов в ткани и с помощью ложноножек захватывают и переваривают их. Это явление было открыто И.И.Мечниковым.

Тромбоциты, или кровяные пластинки

Тромбоциты , или кровяные пластинки очень хрупкие, легко разрушаются при повреждении кровеносных сосудов или при соприкосновении крови с воздухом.

Тромбоциты играют важную роль в свёртывании крови. Повреждённые ткани выделяют гистомин - вещество, усиливающее приток крови к повреждённому месту и способствующее выходу жидкости и белков системы свёртывания крови из кровотока в ткань. В результате сложной последовательности реакций быстро образуются тромбы, которые останавливают кровотечение. Тромбы препятствуют проникновению в рану бактерий и других чужеродных факторов.

Механизм свёртывания крови очень сложен. В плазме есть растворимый белок фибриноген, который при свёртывании крови превращается в нерастворимый фибрин и выпадает в осадок в виде длинных нитей. Из сети этих нитей и кровяных телец, которые задержались в сети, образуется тромб .

Этот процесс происходит только при наличии солей кальция. Поэтому если из крови удалить кальций, кровь теряет способность свёртываться. Это свойство используют при консервировании и переливании крови.

Кроме кальция, в процессе свёртывания принимают участие и другие факторы, например витамин К, без которого нарушается образование протромбина.

Функции крови

Кровь выполняет разнообразные функции в организме: доставляет клеткам кислород и питательные вещества; уносит углекислый газ и конечные продукты обмена; участвует в регуляции деятельности различных органов и систем посредством переноса биологически активных веществ - гормонов и др.; способствует сохранению постоянства внутренней среды - химического и газового состава, температуры тела; защищает организм от инородных тел и вредных веществ, разрушая и обезвреживая их.

Защитные барьеры организма

Защита организма от инфекций обеспечивается не только фагоцитарной функцией лейкоцитов, но и образованием особых защитных веществ - антител и антитоксинов . Они вырабатываются лейкоцитами и тканями различных органов в ответ на внедрение в организм возбудителей заболеваний.

Антитела - это белковые вещества, способные склеивать микроорганизмы, растворять или разрушать их. Антитоксины обезвреживают яды, выделяемые микробами.

Защитные вещества специфичны и действуют только на те микроорганизмы и их яды, под влиянием которых они образовались. Антитела могут сохраняться в крови в течение длительного времени. Благодаря этому человек становится невосприимчивым к некоторым инфекционным заболеваниям.

Невосприимчивость к заболеваниям, обусловленная наличием в крови и тканях специальных защитных веществ, называется иммунитетом .

Иммунная система

Иммунитет, по современным взглядам, - невосприимчивость организма к различным факторам (клетками, веществам), которые несут генетически чужеродную информацию.

Если в организме появляются какие-либо клетки или сложные органические вещества, отличающиеся от клеток и веществ организма, то благодаря иммунитету они устраняются, уничтожаются. Основная задача иммунной системы - поддержание генетического постоянства организма в онтогенезе. При делении клеток вследствие мутаций в организме нередко образуются клетки с изменённым геномом. Чтобы эти клетки-мутанты в ходе дальнейшего деления не привели к нарушениям развития органов и тканей, они уничтожаются иммунными системами организма.

В организме иммунитет обеспечивается благодаря фагоцитарным свойствам лейкоцитов и способностью некоторых клеток тела, вырабатывать защитные вещества - антитела . Следовательно по своей природе иммунитет может быть клеточным (фагоцитарным) и гуморальным (антитела).

Иммунитет к инфекционным заболеваниям делят на естественный, выработанный самим организмом без искусственных вмешательств, и искусственный, возникающий в следствие введения в организм специальных веществ. Естественный иммунитет проявляется у человека с рождения (врождённый ) или возникает после перенесённых заболеваний (приобретённый ). Искусственный иммунитет может быть активным или пассивным. Активный иммунитет вырабатывается при введении в организм ослабленных или убитых возбудителей заболеваний или их ослабленных токсинов. Этот иммунитет возникает не сразу, но сохраняется длительное время - несколько лет и даже всю жизнь. Пассивный иммунитет возникает, когда в организм вводят лечебную сыворотку с уже готовыми защитными свойствами. Этот иммунитет кратковременный, зато проявляется сразу же после введения сыворотки.

Свёртывание крови также относится к защитным реакциям организма. Оно защищает организм от кровопотери. Реакция состоит в образовании сгустка крови - тромба , закупоривающего раневой участок и останавливающий кровотечение.

В пределах биосферы можно выделить четыре основные среды обитания . Это водная среда, наземно воздушная среда, почва и среда, образуемая самими живыми организмами.

Водная среда

Вода служит средой обитания для многих организмов. Из воды же они получают все необходимые для жизни вещества: пищу, воду, газы. Поэтому, как бы ни были разнообразны водные организмы, все они должны быть приспособлены к главным особенностям жизни в водной среде. Эти особенности определяются физическими и химическими свойствами воды.

Гидробионты (обитатели водной среды) обитают как в пресной, так и в солёной воде и по месту обитания делятся на \(3\) группы:

  • планктон - организмы, живущие на поверхности водоёмов и пассивно передвигающиеся за счёт движения воды;
  • нектон - активно передвигающиеся в толще воды;
  • бентос - организмы, обитающие на дне водоёмов или зарывающиеся в ил.

В толще воды постоянно парит множество мелких растений и животных, ведущих жизнь во взвешенном состоянии. Способность к парению обеспечивается не только физическими свойствами воды, обладающей выталкивающей силой, но и специальными приспособлениями самих организмов, например, многочисленными выростами и придатками, значительно увеличивающими поверхность их тела и, следовательно, повышающими трение об окружающую жидкость.

Плотность тела таких животных, как медузы, очень близка к плотности воды.

Удерживаться в толще воды помогает им к тому же характерная форма тела, напоминающая парашют.

У активных пловцов (рыб, дельфинов, тюленей и др.) веретенообразная форма тела, а конечности в виде ласт.

Их передвижение в водной среде облегчается, кроме того, благодаря особому строению внешних покровов, выделяющих специальную смазку - слизь, снижающую трение о воду.

Вода обладает очень высокой теплоёмкостью, т.е. свойством накапливать и удерживать тепло. По этой причине в воде не бывает резких колебаний температуры, которые часто случаются на суше. Очень глубокие воды могут быть очень холодными, однако благодаря постоянству температуры у животных смог развиться ряд приспособлений, обеспечивающих жизнь даже в этих условиях.

Животные могут жить на огромных океанских глубинах. Растения же выживают только в верхнем слое воды, куда попадает лучистая энергия, необходимая для фотосинтеза. Этот слой называют фотической зоной .

Так как поверхность воды отражает большую часть света, даже в наиболее прозрачных океанских водах толщина фотической зоны не превышает \(100\) м. Животные больших глубин питаются либо живыми организмами, либо останками животных и растений, постоянно опускающимися вниз из верхнего слоя.

Подобно наземным организмам водные животные и растения дышат, им требуется кислород. Количество растворённого в воде кислорода снижается с увеличением температуры. Причём в морской воде кислород растворяется хуже, чем в пресной. По этой причине воды открытого моря тропического пояса бедны живыми организмами. И, наоборот, полярные воды богаты планктоном - мелкими рачками, которыми кормятся рыбы и крупные китообразные.

Очень важен для жизни солевой состав воды. Особенное значение для организмов имеют ионы \(Ca2+\). Моллюскам и ракообразным кальций необходим для построения раковины или панциря. Концентрация солей в воде может сильно изменяться. Вода считается пресной, если в одном её литре содержится менее \(0,5\) г растворенных солей. Морская вода отличается постоянством солености и содержит в среднем \(35\) г солей в одном литре.

Наземно воздушная среда

Наземно воздушная среда, освоенная в ходе эволюции позже водной, более сложна и разнообразна, и её населяют более высокоорганизованные живые организмы.

Наиболее важным фактором жизни обитающих здесь организмов являются свойства и состав окружающих их воздушных масс. Плотность воздуха гораздо ниже плотности воды, поэтому у наземных организмов сильно развиты опорные ткани - внутренний и наружный скелет. Формы движения очень разнообразны: бегание, прыгание, ползание, полёт и др. В воздухе летают птицы и некоторые виды насекомых. Потоки воздуха разносят семена растений, споры, микроорганизмы.

Воздушные массы постоянно находятся в движении. Температура воздуха может меняться очень быстро и на больших пространствах, поэтому живущие на суше организмы имеют многочисленные приспособления, позволяющие выдерживать резкие перепады температуры или избегать их.

Наиболее замечательным из них является развитие теплокровности, возникшее именно в наземно воздушной среде.
Важное значение для жизни растений и животных имеет химический состав воздуха (\(78%\) азота, \(21%\) кислорода и \(0,03%\) диоксида углерода). Диоксид углерода, например, является важнейшим сырьевым источником для фотосинтеза. Азот воздуха необходим для синтеза белков и нуклеиновых кислот.

Количество водяных паров в воздухе (относительная влажность) определяет интенсивность процессов транспирации у растений и испарения с кожи некоторых животных. Организмы, живущие в условиях низкой влажности, имеют многочисленные приспособления, предотвращающие сильные потери воды. Так, например, у пустынных растений мощная корневая система, способная насасывать в растение воду с большой глубины. Кактусы запасают воду в тканях и экономно её расходуют. У многих растений для уменьшения испарения листовые пластинки превращены в колючки. Многие пустынные животные в самый жаркий период впадают в спячку, которая может длиться несколько месяцев.

Почва - это верхний слой суши, преобразованной в результате жизнедеятельности живых существ. Это важный и очень сложный компонент биосферы, тесно связанный с другими её частями. Жизнь почвы необычайно богата. Некоторые организмы проводят в почве всю жизнь, другие - часть жизни. Между частицами почвы имеются многочисленные полости, которые могут быть заполнены водой или воздухом. Поэтому почву населяют как водные, так и воздуходышащие организмы. Огромную роль играет почва в жизни растений.

Условия жизни в почве во многом определяются климатическими факторами, важнейшим из которых является температура. Однако по мере погружения в почву колебания температуры становятся всё менее заметными: быстро затухают суточные, а по мере увеличения глубины и сезонные изменения температур.

Даже на небольшой глубине в почве царит полная темнота. Кроме того, по мере погружения в почву падает содержание кислорода и растет содержание углекислого газа. Поэтому на значительной глубине могут обитать лишь анаэробные бактерии, в то время как в верхних слоях почвы помимо бактерий в обилии встречаются грибы, простейшие, круглые черви, членистоногие и даже относительно крупные животные, прокладывающие ходы и строящие убежища, например кроты, землеройки, слепыши.

Среда, образуемая самими живыми организмами

Очевидно, что условия жизни внутри другого организма характеризуются большим постоянством по сравнению с условиями внешней среды.

Поэтому организмы, находящие себе место в теле растений или животных, часто полностью утрачивают органы и системы, необходимые свободноживущим видам. У них не развиты органы чувств или органы движения, зато возникают приспособления (часто весьма изощрённые) для удержания в теле хозяина и эффективного размножения.

Источники:

Каменский А. А., Криксунов Е.А., Пасечник В.В. Биология. 9 класс // ДРОФА
Каменский А. А., Криксунов Е.А., Пасечник В.В. Биология. Общая биология (базовый уровень) 10-11 класс // ДРОФА

Познакомившись с элементами, присутствующими в живых организмах, обратимся теперь к соединœениям, в состав которых эти элементы входят (рис.). Здесь также обнаруживается фундаментальное сходство между всœеми живыми организмами. Больше всœего в них содержится воды. Во всœех организмах мы находим также простые органические соединœения, играющие роль «строительных блоков», из которых строятся более крупные молекулы. Это, прежде всœего, аминокислоты, моносахариды, органические кислоты, спирты, нуклеотиды и некоторые другие вещества.

Вода. Среди неорганических соединœений живых организмов особая роль принад­лежит воде.Она является основной средой, в кото­рой происходят процессы обмена веществ и энергии. Содержание воды в живых организмах составляет 60 – 75 % от их массы, а у некоторых (к примеру, ме­дузы) – до 98 %. Вода образует основу внутренней среды организмов (крови, лимфы, тканевой жидкости). Наи­боль­шее со­дер­жа­ние во­ды в ор­га­низ­ме наблюдается в эм­брио­наль­ный пе­рио­д (95 %) и с воз­рас­том по­сте­пен­но умень­ша­ет­ся. Ко­ли­че­ст­во во­ды не­оди­на­ко­во в раз­ных тка­нях. Так, в се­ром ве­ще­ст­ве моз­га ее со­дер­жа­ние со­став­ля­ет 85 %, в кос­тях - 20 %, в эма­ли зу­бов - 10 %. Чем боль­ше в клет­ках организма во­ды, тем ин­тен­сив­нее идет об­мен ве­ществ. При по­те­ре ор­га­низ­мом 20 % во­ды мо­жет на­сту­пить смерть. Без по­треб­ле­ния во­ды че­ло­век мо­жет жить не бо­лее пяти-семи дней.

Свойства воды. Как известно, жизнь зародилась в воде и по-прежнему остается тесно с нею связанной. По этой причине физические и химические свойства воды имеют фундаментальное значение для процессов жизнедеятельности. По сравнению с другими жидкостями у воды относительно высокая температура кипения и испа­рения .

Молекула НО состоит из двух атомов водорода, соединœенных ковалентными связями с атомом кислорода (рис.).

Связи Н - О - Н расположе­ны под углом друг к другу. Атом кислорода как более электроотрицательный элемент притягивает к себе общие электронные пары от атомов водорода. Атомы водорода приобретают частично положительный заряд, а атом кислорода – частично отрицательный, ᴛ.ᴇ. молекула является полярной и представляет собой электрический диполь .В результате между молекулами воды воз­никает электростатическое взаимодействие, а, по­скольку противоположные заряды притягиваются, молекулы воды склонны «склеиваться» (рис.). Эти взаимодействия, более слабые, чем обычные ионные связи, называются водородными связями. Энергия водородной связи в 10 - 40 раз меньше энергии ковалентной связи.Каждая молекула во­ды, подобно маленькому магниту, притягива­ет к себе за счет образования водородных связей еще четыре молекулы. Благодаря образованию водородных связей молекулы связаны одна с другой, что обусловливает исходное жидкое состо­яние воды при температурах от 0º до 100 ºС и образует твердые кристаллы льда при темпе­ратуре ниже 0ºС.

Функции воды. Вода определя­ет объем и внутриклеточное давление (тургор) кле­ток. Она способна формировать водную оболочку вокруг некоторых соединœений (к примеру, белков), чем препятствует их взаимодействию. Такую воду называ­ют связанной (структурированной). Она составляет 4 - 5% от общего количества воды в организме. Другую часть воды (95 - 96%), не связанную с соединœениями, называют свободной. Именно она является универса­льным растворителœем, лучшим, чем большинство известных жидкостей.

Учитывая зависимость отрастворимости в воде, соединœе­ния условно делят на полярные, илигидрофиль­ные (от греч. гидор - вода, филиа - любить) и неполярные , или гидрофобные (от греч. фобос - страх). Гидрофильными веществами являются многие минœеральные соли, сахара, спирты, кислоты и др. Для гидрофобных веществ характерны неполярные ковалентные связи и, в связи с этим они не растворимы в воде. Гидрофобны парафин, бензин, керосин и др . Твердые гидрофобные вещества не смачиваются водой.

Воде как универсальному растворителю принад­лежит чрезвычайно важная роль. Большинство химических реакций в организме происходит толь­ко в водных растворах. Вещества проникают в клет­ку, а продукты жизнедеятельности выводятся из нее в основном в растворенном виде. Вода принимает непосредственное участие в реакциях гидролиза - расщеплении органических соединœений с присое­динœением к месту разрыва ионов молекулы воды (Н + и ОН).

Вода является также источником электронов в реакциях фотосинтеза. Отщепление от молекул воды электронов приводит к появлению побочного для растительных клеток продукта - кислорода, являющегося, однако, веществом, имеющим планетарное значение.

С водой связана также регуляция теплового режи­ма организмов. Ей свойственна высокая тепло­емкость, ᴛ.ᴇ. способность поглощать тепло при незначительных изменениях собственной температу­ры. Благодаря этому вода предотвращает резкие из­менения температуры в клетках и в организме в целом, даже когда она значительно колеблется в окружающей сре­де. Испарение воды при транспирации и потоотделœении?

При испарении воды организмами (транспирация и потоотделœение) тратится много теплоты, что защищает их от перегрева. Благодаря высокой теплопроводности вода обеспечивает рав­номерное распределœение теплоты между тканями организма (к примеру, через систему кровообращения, циркуляцию жидкости в полостях тела).

Растворенные в воде вещества могут изменять ее свойства, в частности температуру замерзания и кипе­ния, что имеет важное биологическое значение. Так, в клетках морозоустойчивых растений и холоднокровных животных с наступлением зимы повышается концент­рация растворимых белков, углеводов и других соединœений, понижающих температуру перехода воды в кристаллическое состояние, что и предотвращает их гибель.

Минœеральные соли и кислоты. Дляподдержания жизнедеятельности организма в целом и его клеток, важное значение, кроме воды, имеют минœеральные соли. В живых организмах они находятся либо в растворенном виде (дис­со­ции­ро­ван­ы на ио­ны), ли­бо в твер­дом со­стоя­нии. Наи­бо­лее важ­ны сре­ди ио­нов ка­тио­ны К+, Na+, Ca2+, Mg2+ и анио­ны НСО, НРО, HPO, Cl–, НSO, SO.

Общее содержание неорганических веществ в раз­личных клетках варьирует в пределах от одного до нескольких процентов. Их роль в клетке разнообразна. Так, разная концентрация К + внутри и Na + снаружи клеток приводит к возникновению разности элек­трических потенциалов на цитоплазматической мембране, что очень важно для передачи нервных импульсов, а также для транспорта веществ через мембраны. При умень­ше­нии этой раз­но­сти сни­жа­ет­ся воз­бу­ди­мость кле­ток.

Регуляторную функцию и активизацию многих ферментов осуществляют Са 2+ и Mg 2+ . Ионы Са2+необходимы для осуществления мышечного сокращения, сверты­вае­­мости крови, они входят в состав костей . Ионы Mg2+ входят в состав костей и зубов , активизируют энергетический обмен и синтез АТФ.

Некоторые ионы необходимы для синтеза важных органических веществ. К примеру, остатки фосфорной кислоты входят в состав нуклеотидов, АТФ; ион Fe 2+ - в состав гемоглобина, Mg 2+ - в со­став хлорофилла и т.д. Ионы NО, NHявляются источником атомов азота͵ ион SO- атомов серы, которые необходимы для синтеза молекул аминокислот.

Соеди­нения кальция (CaCO) входят в состав раковин мол­люсков, панцирей ракообразных и других животных. У некоторых протистов (радио­лярий) внутриклеточный скелœет построен из двуоксида диоксида кремния (SiO) или сернонокислого стронция (SrSО 4).

Важные функции в организме выполняют также неорганические кислоты. Так, соляная кислота создает кислую среду в желудке позвоночных живо­тных и человека, обеспечивая тем самым активность ферментов желудочного сока.

Кислотность среды. На протекание биохимических реакций в живых организмах существенное влияние оказывает концентрация ионов водорода (Н) - кислотность среды. В нейтральных растворах эта концентрация состав­ляет 10моль/л, в кислых она больше этого значения, в щелочных - меньше. В химии для описания кислот­ности среды используют так называемый водород­ный показатель (рН). Протяженность шкалы рН - от 0 до 14. Стоит сказать, что для нейтральных раство­ров рН = 7, для кислых рН < 7, для щелочных рН > 7. Внутри клеток среда нейтральная или слабощелочная (рН = 7,0-7,3); в крови величина рН обычно меняется в пределах 7,35 – 7,45, что несколько больше, чем в клетках.

В пищеварительном тракте, и в выделœениях организма рН варьирует. Экстремальные величины рН наблюдаются в желудке (около 2) и в тонком кишечнике (более 8). По причине того, что почки могут выделять как катионы, так и анионы, значительные вариации рН (4,8 – 7,5) наблюдаются в моче.

Понятие о буферных растворах. Организм в целом и его отдельные клетки поддерживают кислотность среды на постоянном уровне благодаря буферным свойствам их содержимого. Буферным принято называть раствор, содержащий смесь какой-либо слабой кислоты и ее растворимой соли. Когда концентрация ионов водорода увеличивается, свободные анионы, источником которых является соль, легко соединяются со свободными ионами Ни удаляют их из раствора. Когда кислотность снижается, высвобождаются дополнительные ионы водорода. Так в буферном растворе поддерживается относительно постоянная концентрация ионов Н. Спо­соб­ность под­дер­жи­вать сла­бо­ще­лоч­ную ре­ак­цию внеклеточной среды обеспечивают ионы НСО; нейтральную или слабощелочную внутриклеточной среды – ионы НРО, HPO.

s 1. Каково содержание воды в живых организмах? От чего оно зависит? 2. Каковы свойс­тва воды как основной составляющей внутренней среды организмов? Какие особенности строения молекул воды обеспечивают ее свойства? 3. Участвует ли вода в химических реакциях в организмах? Приведите примеры таких реакций, если они вам известны. 4. Почему вода является хоро­шим растворителœем? 5. Каковы основные функции воды в живых организмах?6. Почему неполярные вещества плохо ра­створимы в воде? 7. В каком состоянии в клетке содержатся минœеральные вещества? 8. Какова роль минœеральных веществ в клетке? 9. Что такое буферные свойства и чем они определяются?