Биографии Характеристики Анализ

Плотность атмосферы марса. Атмосфера Марса: тайна четвертой планеты

Марс, четвертая по удаленности от Солнца планета, уже длительное время является объектом пристального внимания мировой науки. Эта планета очень похожа на Землю за одним, маленьким, но судьбоносным, исключением - атмосфера Марса составляет не более одного процента от объема земной атмосферы. Газовая оболочка любой планеты является определяющим фактором, формирующим ее внешний вид и условия на поверхности. Известно, что все твердые миры Солнечной системы сформировались примерно в одинаковых условиях на расстоянии 240 млн. километров от Солнца. Если условия формирования Земли и Марса были практически одинаковыми, то почему же сейчас эти планеты настолько разные?

Все дело в размерах - Марс, сформированный из того же материала, что и Земля, имел когда-то жидкое и горячее металлическое ядро, как и наша планета. Доказательство - множество потухших вулканов на Но «красная планета» гораздо меньше Земли. А значит, и остывала она быстрее. Когда жидкое ядро окончательно остыло и затвердело, завершился процесс конвекции, а вместе с ним исчез и магнитный щит планеты - магнитосфера. Вследствие чего планета осталась беззащитной перед губительной энергией Солнца, и атмосфера Марса была практически полностью унесена солнечным ветром (гигантским потоком радиоактивных ионизированных частиц). «Красная планета» превратилась в безжизненную унылую пустыню…

Сейчас атмосфера на Марсе представляет собой тонкую разряженную газовую оболочку, не способную противостоять проникновению убийственной которая выжигает поверхность планеты. Тепловая релаксация Марса на несколько порядков меньше, чем аналогичный показатель, например, Венеры, чья атмосфера намного плотнее. Атмосфера Марса, имеющая слишком малое значение теплоемкости, формирует более резко выраженные среднесуточные показатели скорости ветра.

Состав атмосферы Марса характеризуется очень высоким содержанием (95%). Также атмосфера содержит азот (около 2,7%), аргон (примерно 1,6%) и незначительное количество кислорода (не более 0,13%). Атмосферное давление Марса в 160 раз превышает аналогичный показатель у поверхности планеты. В отличие от земной атмосферы, газовая оболочка здесь носит ярко выраженный изменчивый характер, обусловленный тем, что полярные шапки планеты, содержащие огромное количество углекислого газа, тают и намерзают в течение одного годового цикла.

По данным, полученным с исследовательского космического аппарата «Mars Express», атмосфера Марса содержит некоторое количество метана. Особенность этого газа заключается в его быстром разложении. Это значит, что где-то на планете должен находиться источник пополнения метана. Варианта здесь может быть всего два - либо геологическая активность, следы которой пока не обнаружены, либо жизнедеятельность микроорганизмов, что способно перевернуть наше представление о наличии очагов жизни в Солнечной системе.

Характерным эффектом марсианской атмосферы являются пылевые бури, которые могут бушевать месяцами. Это плотное воздушное покрывало планеты состоит преимущественно из углекислоты с незначительными вкраплениями кислорода и водяного пара. Такой затяжной эффект обусловлен крайне низкой гравитацией Марса, что позволяет даже сверхразряженной атмосфере поднимать с поверхности и удерживать длительное время миллиарды тонн пыли.

Атмосфера Марса составляет менее 1% от Земной, поэтому она не защищает планету от излучения Солнца и не сохраняет тепло на поверхности. Так вкратце можно ее описать, но давайте поподробнее ее рассмотрим.

Атмосфера Марса открыта была еще до полета автоматических межпланетных станции к планете. Благодаря противостояниям планеты, которые случаются раз в три года и спектральному анализу, астрономы уже в 19 веке знали, что она имеет весьма однородный состав, более 95% которого составляет CO2.

Цвет марсианского неба с посадочного модуля Viking Lander 1. На 1742 сол (марсианский день) видна пылевая буря.

В 20 веке, благодаря межпланетным зондам мы узнали, что атмосфера Марса и его температура сильно взаимосвязаны, ведь благодаря переносу мельчайших частичек оксида железа возникают огромные пылевые бури, которые могут охватить половину планеты, попутно подняв ее температуру.

Примерный состав

Газовая оболочка планеты состоит из состоит из 95% углекислого газа, 3% азота, 1,6% аргона, и следовых количеств кислорода, водяного пара и других газов. Кроме того, она очень сильно наполнена мелкими частицами пыли (в основном из оксида железа), которые придают ей красноватый оттенок. Благодаря сведениям о частичках оксида железа, ответить на вопрос какого цвета атмосфера, совсем не трудно.

Углекислый газ

Темные дюны — результат сублимации замерзшей углекислоты, которая весной растаяла и вырвалась в разряженную атмосферу, оставив после себя вот такие следы.

Почему атмосфера красной планеты состоит из углекислого газа? На планете нет тектоники плит вот уже в течение миллиардов лет. Отсутствие движения плит позволило вулканическим точкам извергать магму на поверхность миллионы лет подряд. Углекислый газ также является продуктом извержения и это единственный газ, которым постоянно пополняется атмосфера, собственно это фактически единственная причина, почему она существует. К тому же планета лишилась своего магнитного поля, что способствовало тому, что более легкие газы уносились солнечным ветром. Из-за непрерывных извержений, появилось множество больших вулканических гор. Гора Олимп, является крупнейшей горой в Солнечной системе.

Ученые считают, что Марс растерял всю свою атмосферу, из-за того, что потерял свою магнитосферу около 4 миллиардов лет назад. Когда-то газовая оболочка планеты была плотнее и магнитосфера защищала от солнечного ветра планету. Солнечный ветер, атмосфера и магнитосфера сильно взаимосвязаны. Солнечные частицы взаимодействует с ионосферой и уносит из нее молекулы, снижая плотность. Это и является разгадкой на вопрос куда делась атмосфера. Эти ионизированные частицы были обнаружены космическими аппаратами, в пространстве позади Марса. Это приводит к тому, что на поверхности давление в среднем 600 Па, по сравнению со средним давлением на Земле 101300 Па.

Метан

Относительно большое количество метана было обнаружено сравнительно недавно. Эта неожиданная находка показала, что атмосфера содержит метан в пропорции 30 частей на миллиард. Этот газ появляется из разных районов планеты. Данные позволяют предположить, что существует два основных источника метана.

Закат Солнца, голубой цвет неба обусловлен, отчасти, наличием метана

Считается, что Марс производит около 270 тонн метана в год. В соответствии с условиями на планете метан разрушается быстро, примерно за 6 месяцев. Для того, чтобы метан существовал в обнаруженных количествах, должны быть активные источники под поверхностью. Вулканическая активность и серпентинизация являются наиболее вероятными причинами образования метана.

Кстати, метан это одна из причин почему атмосфера планеты голубая на закате. Метан лучше рассеивает голубой цвет, нежели другие цвета.

Метан является побочным продуктом жизни, а также является результатом вулканизма, геотермальных процессов, и гидротермальной деятельности. Метан является неустойчивым газом, поэтому на планете должен быть источник, который постоянно пополняет его. Он должен быть очень активным, потому что исследования показали, что метан разрушается меньше чем за год.

Количественный состав

Химический состав атмосферы: она состоит из более 95% углекислого газа, 95,32%, если быть точным. Газы распределены следующим образом:

Диоксид углерода 95,32%
Азот 2,7%
Аргон 1,6%
Кислород 0,13%
Окись углерода 0,07%
Водяной пар 0,03%
Оксид азота 0,0013%

Строение

Атмосфера делится на четыре основных слоя: нижний, средний, верхний и экзосфера. Нижние слои это теплая область (температура около 210 К). Она нагревается от пыли в воздухе (пыль 1,5 мкм в поперечнике) и теплового излучения от поверхности.

Следует учесть, что, несмотря на очень большую разрежённость, концентрация углекислого газа, в газовой оболочке планеты, примерно в 23 раза больше, чем в нашей. Поэтому, не такая уж и дружелюбная атмосфера Марса, нельзя дышать в ней не только людям, но и другим земным организмам.

Средняя — похожа на Земную. Верхние слои атмосферы нагревается от солнечного ветра и там температура гораздо выше, чем на поверхности. Это тепло заставляет газ покидать газовую оболочку. Экзосфера начинается примерно в 200 км от поверхности и не имеет четкой границы. Как видите, распределение температуры по высоте, достаточно предсказуемо для планеты земной группы.

Погода на Марсе

Прогноз на Марсе, как правило, очень плохой. Посмотреть прогноз погоды на Марсе можно . Погода меняется каждый день и иногда даже каждый час. Это кажется необычным для планеты, которая имеет атмосферу составляющую всего 1% от Земной. Несмотря на это, климат Марса и общая температура планеты так же сильно влияют друг на друга как и на Земле.

Температура

Летом дневная температура на экваторе может доходить до 20 °С. Ночью, температура может опускаться до -90 С. 110 градусов разницы в один день, может создать пылевые смерчи и пылевые бури, которые охватывают собой всю планету на несколько недель. Зимние температуры крайне низки -140 C. Углекислый газ замерзает и превращается в сухой лед. Марсианский Северный полюс имеет метровый слой сухого льда в зимнее время, в то время как Южный полюс покрыт постоянно восемью метрами сухого льда.

Облака

Так как излучение Солнца и солнечного ветра постоянно бомбардируют планету, жидкая вода не может существовать, поэтому дождя на Марсе нет. Иногда, однако, появляются облака и начинает падать снег. Облака на Марсе очень маленькие и тонкие.

Ученые считают, что некоторые из них состоят из мелких частиц воды. Атмосфера содержит водяной пар в незначительных количествах. С первого взгляда может показаться, что облака не могут существовать на планете.

И все же на Марсе, есть условия для формирования облаков. На планете так холодно, что вода в этих облаках никогда не выпадает в виде дождя, но идет в виде снега в верхних слоях атмосферы. Ученые наблюдали это несколько раз, и нет никаких доказательств, что снег не достигает поверхности.

Пыль

Как влияет атмосфера на температурный режим увидеть довольно легко. Наиболее показательным событием являются пылевые бури, которые локально нагревают планету. Они происходят из-за перепада температур на планете, а поверхность покрыта легкой пылью, которую поднимает даже такой слабый ветер.

Эти бури запыляют панели солнечных батарей, что делает невозможным долгосрочное исследование планеты. К счастью, бури чередуются с ветром, который сдувает накопленную пыль с панелей. Но атмосфера Куриосити помешать не в состоянии, передовой американский марсоход оснащен ядерным термогенератором и ему, перебои с солнечным светом не страшны, в отличие от другого марсохода Opportunity, работающего на солнечных батареях.

Такому марсоходу не страшны никакие пылевые бури

Углекислый газ

Как уже говорилось, газовая оболочка красной планеты на 95 состоит из углекислого газа. Он может замерзать и выпадать на поверхность. Примерно 25% атмосферного углекислого газа конденсируется в полярных шапках в виде твердого льда (сухой лед). Это происходит из-за того, что Марсианские полюса не подвергаются воздействию солнечного света в течение зимнего периода.

Когда на полюса вновь падает солнечный свет, лед переходит в газообразную форму и испаряется обратно. Таким образом, происходит значительное изменение давления за год.

Пылевые смерчи

Пылевой смерч высотой 12 километров и 200 метров в диаметре

Если вы когда-либо были в пустынной местности, то видели крошечные пылевые смерчи, которые, как будто возникают из ниоткуда. Пылевые смерчи на Марсе немного более зловещи, чем на Земле. В сравнении с нашей, атмосфера краснйо планеты имеет плотность в 100 раз меньшую. Поэтому, смерчи больше похожи на торнадо, возвышающиеся на несколько километров в воздухе и имеющие сотни метров в поперечнике. Это отчасти объясняет то, что в сравнении с нашей планетой, атмосфера красная – пылевые бури и мелкодисперсная пыль из оксида железа. Также цвет газовой оболочки планеты может менять и на закате, когда садится Солнце, метан рассеивает голубую часть света сильнее чем остальные, поэтому закат на планете голубой.

Когда мы говорим об изменениях климата, то грустно качаем головами — ах, как же сильно изменилась наша планета за последнее время, как загрязнена её атмосфера… Однако если мы хотим увидеть подлинный пример того, какими фатальными могут быть изменения климата, то искать его придется не на Земле, а за её пределами. Марс весьма подойдет для этой роли.

То что было здесь миллионы лет назад, не идет ни в какое сравнение с картиной сегодняшнего дня. В наши дни, Марс — это лютый холод на поверхности, низкое давление, очень тонкая и разреженная атмосфера. Перед нами лежит лишь бледная тень былого мира, температура поверхности которого была не намного ниже нынешней температуры на земле, а по равнинам и ущельям неслись полноводные реки. Возможно здесь даже была органическая жизнь, кто знает? Все это осталось в прошлом.

Из чего состоит атмосфера Марса?

Ныне и отвергает даже возможность обитания здесь живых существ. Марсианская погода формируется множеством факторов, среди которых цикличный рост и таяние ледяных шапок, водяные пары в атмосфере и сезонные пылевых бури. Порой, гигантские пылевые бури охватывают сразу всю планету и могут длиться месяцами, окрашивая небо в густой красный цвет.

Атмосфера Марса примерно в 100 раз тоньше, чем у Земли, а на 95 процентов состоит углекислого газа. Точный состав марсианской атмосферы таков:

  • Углекислый газ: 95,32 %
  • Азот: 2,7 %
  • Аргон: 1,6 %
  • Кислород: 0,13 %
  • Окись углерода: 0,08 %

Кроме того, в незначительных количествах встречаются: вода, оксиды азота, неон, тяжелый водород, криптон и ксенон.

Как возникла атмосфера Марса? Так же, как и на Земле - в результате дегазации - выхода газов из недр планеты. Однако сила тяжести на Марсе значительно меньше, чем на Земле, поэтому большая часть газов улетучивается в мировое пространство, и лишь незначительная их часть способна удержаться вокруг планеты.

Что случилось с атмосферой Марса в прошлом?

На заре существования Солнечной системы, то есть 4,5-3,5 миллиарда лет назад, Марс обладал достаточно плотной атмосферой, благодаря чему на его поверхности вода могла находится в жидком виде. Орбитальные фотографии показывают контуры обширных речных долин, очертания древнего океана на поверхности красной планеты, а марсоходы уже не однократно находили образцы химических соединений, которые доказывают нам, что глаза не врут — все эти привычные человеческому глазу детали рельефа на Марсе, сформировались в таких же условиях, как и на Земле.

Вода на Марсе была без сомнений, вопросов здесь нет. Вопрос только в том, почему она в итоге исчезла?

Основная теория на этот счет выглядит примерно так: когда-то давно у Марса было , эффективно отражающее солнечную радиацию, однако со временем оно начало слабеть и около 3,5 млрд. лет назад практически сошло на нет (отдельные локальные очаги магнитного поля, причем по мощности вполне сравнимого с земным, есть на Марсе и сейчас). Так как размеры Марса почти вдвое меньше земных, его гравитация значительно слабее, чем у нашей планеты. Сочетание этих двух факторов (потеря магнитного поля и слабая гравитация) привели к тому. что солнечный ветер стал «выбивать» легкие молекулы из атмосферы планеты, постепенно истончая её. Так, в считанные миллионы лет, Марс оказался в роли яблока, с которого ножом аккуратно срезали кожицу.

Ослабевшее магнитное поле уже не могло эффективно «гасить» космическую радиацию, и солнце из источника жизни превратилось для Марса в убийцу. А истонченная атмосфера не могла уже удерживать тепло, поэтому температура на поверхности планеты упала до среднего значения в -60 градусов по Цельсию, лишь летним днем на экваторе, достигая +20 градусов.

Хотя атмосфера Марса сейчас примерно в 100 раз тоньше земной, она все еще достаточно толстая, чтобы на красной планете активно проистекали процессы погодообразования, выпадали осадки, возникали тучи и ветры.

«Пыльный дьявол» — небольшой торнадо на поверхности Марса, сфотографированный с орбиты планеты

Радиация, пыльные бури и другие особенности Марса

Радиация у поверхности планеты представляет опасность, однако по данным НАСА, полученным из сбора анализов марсоходом «Curiosity», следует, что даже за 500-дневный период прибывания на Марсе (+360 дней в пути), астронавты (с учетом защитного снаряжения) получили бы «дозу» радиации равную 1 зиверту (~100 рентген). Эта доза опасна, однако безусловно не убьет взрослого человека «на месте». Считается, что полученный 1 зиверт облучения, на 5% увеличивает риск астронавта на развитие рака. По мнению ученых, ради науки можно пойти и на большие лишения, тем более, первый шаг на Марс, даже если он и сулит проблемы со здоровьем в будущем… Это определенно шаг в бессмертие!

На поверхности Марса, сезонно, бушуют сотни пылевых дьяволов (торнадо) поднимающие в атмосферу пыль из железных окислов (ржавчину, по простому) которая обильно покрывает марсианские пустоши. Марсианская пыль очень мелкая, что в сочетании с малой силой тяжести приводит к тому, что в атмосфере всегда присутствует её значительно количество, достигающее особенно больших концентраций осенью и зимой в северном, и весной и летом — в южном полушариях планеты.

Пылевые бури на Марсе — крупнейшие в солнечной системе, способные покрывать всю поверхность планеты и порой идти месяцами. Основные сезоны пылевых бурь на Марсе — весна и лето.

Механизм таких мощных погодных явлений изучены не до конца, но с большой долей вероятности объясняется следующей теорией: когда большое число частичек пыли поднимается в атмосферу, это приводит к её резкому прогреву на большую высоту. Теплые массы газов устремляются в сторону холодных областей планеты, порождая ветер. Марсианская пыль, как уже отмечалось, очень легкая, поэтому сильный ветер поднимает в верх ещё больше пыли, что в свою очередь ещё сильнее нагревает атмосферу и порождает ещё более сильные ветры, которые в свою очередь поднимают ещё больше пыли… ну и так далее!

Дождей на Марсе нет, да и откуда им взяться на морозе в -60 градусов? А вот снег иногда идет. Правда состоит такой снег не из воды, а из кристалликов углекислого газа, да и по свойствам больше напоминает туман, а не снег (слишком малы «снежинки»), однако будьте уверены — это самый настоящий снег! Просто с местной спецификой.

Вообще, «снег» идет почти по всей территории Марса, причем процесс этот цикличный — ночью углекислый газ замерзает и превращается в кристаллы, выпадая на поверхность, а днем оттаивает и снова возвращается в атмосферу. Однако на северном и южном полюсах планеты, в зимний период, царит мороз до -125 градусов, поэтому единожды выпав в виде кристаллов, газ уже не испаряется, и лежит пластом до весны. Учитывая размер снежных шапок Марса, надо ли говорить, что зимой концентрация углекислого газа в атмосфере падает на десятки процентов? Атмосфера становится ещё более разреженной, и как следствие задерживает ещё меньше тепла… Марс погружается в зиму.

Марс четвертая планета от Солнца и последняя из планет земной группы. Как и остальные планеты в Солнечной системе (не считая Земли) назван в честь мифологической фигуры — римского бога войны. В дополнение к его официальному названию Марс иногда называют Красной планетой, что связано с коричнево-красным цветом его поверхности. При всем этом Марс является второй самой маленькой планетой в Солнечной системе после .

В течение практически всего девятнадцатого века считалось, что на Марсе существует жизнь. Причина такой веры заключается частично в ошибке, а частично в человеческом воображении. В 1877 году астроном Джованни Скиапарелли смог наблюдать то, что, по его мнению, было прямыми линиями на поверхности Марса. Подобно другим астрономам, когда он заметил эти полосы, то предположил, что подобная прямота связана с существованием на планете разумной жизни. Популярной в то время версией о природе этих линий было предположение о том, что это были оросительные каналы. Тем не менее, с развитием более мощных телескопов в начале двадцатого века астрономы смогли увидеть марсианскую поверхность более четко и определить, что эти прямые линии были всего лишь оптической иллюзией. В результате все более ранние предположения о жизни на Марсе остались без доказательств.

Большое количество научной фантастики написанной в течение двадцатого века было прямым следствием убеждения, что на Марсе существует жизнь. Начиная от небольших зеленых человечков, заканчивая рослыми захватчиками с лазерным оружием, марсиане были в центре внимания многих теле- и радиопрограмм, комиксов, фильмов и романов.

Не смотря на то, что открытие марсианской жизни в восемнадцатом веке в результате оказалось ложным, Марс оставался для научных кругов наиболее дружелюбной для жизни (не считая Земли) планетой в Солнечной системе. Последующие планетарные миссии были без сомнения посвящены поиску хоть какой-либо формы жизни на Марсе. Так миссия под названием Viking, осуществленная в 1970-е годы, проводила эксперименты на марсианской почве в надежде обнаружить в ней именно микроорганизмов. В то время считалось, что образование соединений в ходе экспериментов может быть результатом биологических агентов, однако позже было установлено, что соединения химических элементов могут быть созданы и без биологических процессов.

Однако даже эти данные не лишили ученых надежды. Не обнаружив признаков жизни на поверхности Марса, они предположили, что все необходимые условия могут существовать под поверхностью планеты. Эта версия актуальна и сегодня. По крайней мере, такие планетарные миссии настоящего как ExoMars и Mars Science предполагают проверку всех возможных вариантов существования жизни на Марсе в прошлом или настоящем, на поверхности и под ней.

Атмосфера Марса

По своему составу атмосфера Марса очень похожа на атмосферу , одной из наименее гостеприимных атмосфер во всей Солнечной системе. Основным компонентом в обеих средах является двуокись углерода (95% для Марса, 97% для Венеры), но есть большое отличие – парниковый эффект на Марсе отсутствует, поэтому температура на планете не превышает 20°C, в отличие от 480°С на поверхности Венеры. Такая огромная разница связана с разной плотностью атмосфер этих планет. При сопоставимой плотности, атмосфера Венеры чрезвычайно толстая, тогда как Марс обладает довольно тонким атмосферным слоем. Проще говоря, если бы толщина атмосферы Марса была более значительна, то он напоминал бы Венеру.

Кроме того Марс обладает очень разреженной атмосферой, — атмосферное давление составляет лишь около 1% от давления на . Это эквивалентно давлению в 35 километров над поверхностью Земли.

Одним из самых первых направлений в исследовании марсианской атмосферы является ее влияние на присутствие воды на поверхности. Не смотря на то, что полярные шапки содержат воду в твердом состоянии, а воздух содержит водяной пар, образующийся в результате морозов и низкого давления, сегодня все исследования указывают на то, что «слабая» атмосфера Марса не способствует существованию воды в жидком состоянии на поверхности планеты.

Тем не менее, полагаясь на последние данные марсианских миссий, ученые уверены, что вода в жидком виде на Марсе существует и находится она на один метр ниже поверхности планеты.

Вода на Марсе: предположение / wikipedia.org

Однако не смотря на тонкий атмосферный слой Марс обладает достаточно приемлемыми по земным меркам погодными условиями. Наиболее экстремальными формами этой погоды являются ветра, пыльные бури, морозы и туманы. Как результат такой погодной деятельности в некоторых районах Красной планеты были замечены значительные следы эрозии.

Еще одним интересным пунктом о марсианской атмосфере можно указать то, что как утверждает сразу несколько современных научных исследований, в далеком прошлом она была достаточно плотной для существования на поверхности планеты океанов из воды в жидком состоянии. Однако, согласно тем же исследованиям, атмосфера Марса была резко изменена. Ведущей версией такого изменения на данный момент является гипотеза о столкновении планеты с другим достаточно объемным космическим телом, что привело потере Марсом большей части своей атмосферы.

Поверхность Марса обладает двумя значительными особенностями, которые, по интересному стечению обстоятельств, связаны с различиями в полушариях планеты. Дело в том, что северное полушарие имеет достаточно гладкий рельеф и всего несколько кратеров, тогда как южное полушарие буквально испещрено возвышенностями и кратерами разной величины. Помимо топографических различий, обозначающих разницу в рельефе полушарий, есть и геологические, — исследования указывают на то, что области в северном полушарии гораздо более активны, нежели в южном.

На поверхности Марса находится самый большой из известных на сегодняшний день вулканов — Olympus Mons (Гора Олимп) и самый крупный из известных каньонов – Mariner (долина Маринер). В Солнечной системе пока не найдено ничего более грандиозного. Высота Горы Олимп составляет 25 километров (это в три раза выше Эвереста, самой высокой горы на Земле), а диаметр основания 600 километров. Длина долины Маринер составляет 4000 километров, ширина 200 километров, а глубина почти 7 километров.

На сегодняшний день самым значительным открытием в отношении марсианской поверхности было обнаружение каналов. Особенностью этих каналов является то, что они, по мнению экспертов NASA , были созданы проточной водой, и, таким образом, являются наиболее достоверным доказательством теории о том, что в далеком прошлом поверхность Марса значительно напоминала земную.

Наиболее известной перейдолией связанной с поверхностью Красной планеты является так называемое «Лицо на Марсе». Рельеф действительно очень напоминал человеческое лицо тогда, когда был получен первый снимок определенной местности космическим аппаратом Viking I в 1976 году. Многие люди в то время посчитали этот снимок настоящим доказательством того, что на Марсе существовала разумная жизнь. Последующие снимки показали, что это всего лишь игра освещения и человеческая фантазия.

Подобно другим планетам земной группы, в интерьере Марса выделяют три слоя: кора, мантия и ядро.
Не смотря на то, что точные измерения еще не сделаны, ученые сделали определенные прогнозы о толщине коры Марса на основании данных о глубине долины Маринер. Глубокая, обширная система долины, расположенной в южном полушарии, не могла бы существовать если бы кора Марса не была значительно толще земной. Предварительные оценки указывают на то, что толщина коры Марса в северном полушарии составляет порядка 35 километров и около 80 километров в южном.

Достаточно много исследований было посвящено ядру Марса, в частности выяснению того, является ли оно твердым или жидким. Некоторые теории указали на отсутствие достаточно мощного магнитного поля как признака твердого ядра. Тем не менее, в последнее десятилетие все большую популярность набирает гипотеза о том, что ядро Марса жидкое, по крайней мере, частично. На это указало открытие намагниченных пород на поверхности планеты, что может быть признаком того, что Марс обладает или обладал жидкой сердцевиной.

Орбита и вращение

Орбита Марса примечательна по трем причинам. Во-первых, ее эксцентриситет является вторым по величине среди всех планет, меньше только у Меркурия. При такой эллиптической орбите перигелий Марса составляет 2.07 х 108 километров, что гораздо дальше, чем его афелий — 2,49 х 108 километров.

Во-вторых, научные данные свидетельствуют о том, что столь высокая степень эксцентричности присутствовала далеко не всегда, и, возможно, была меньше Земной в какой-то момент истории существования Марса. Причиной такого изменения ученые называют гравитационные силы соседних планет, воздействующие на Марс.

В-третьих, из всех планет земной группы Марс является единственной, на которой год длится дольше, чем на Земле. Естественным образом это связано с его орбитальным расстоянием от Солнца. Один марсианский год равен почти 686 земным дням. Марсианский день длится примерно 24 часа 40 минут, — именно такое время требуется планете, чтобы завершить один полный оборот вокруг своей оси.

Еще одним примечательным сходством планеты с Землей является ее наклон оси, который составляет примерно 25°. Такая особенность указывает на то, что сезоны на Красной планете сменяют друг друга точно таким же образом как и на Земле. Тем не менее, полушария Марса переживают абсолютно другие, отличные от земных, температурные режимы для каждого сезона. Это связано опять же с гораздо большим эксцентриситетом орбиты планеты.

SpaceX И планы по колонизации Марса

Итак, мы знаем, что SpaceX хочет отправить людей на Марс в 2024 году, но их первой марсианской миссией будет запуск капсулы «Красного Дракона» в 2018 году. Какие шаги собирается предпринять компания для достижения этой цели?

  • 2018 год. Запуск космического зонда «Красный Дракон» в целях демонстрации технологий. Цель миссии — достичь Марса и совершить некоторые изыскания на месте посадки в небольшом масштабе. Возможно, поставка дополнительной информации для НАСА или космических агентств других государств.
  • 2020 год. Запуск космического корабля Mars Colonial Transporter MCT1 (беспилотный). Цель миссии — отправка груза и возврат образцов. Масштабные демонстрации технологии для обитания, жизнеобеспечения, энергетики.
  • 2022 год. Запуск космического корабля Mars Colonial Transporter MCT2 (беспилотный). Вторая итерация MCT. В это время MCT1 будет на обратном пути к Земле, неся марсианские образцы. MCT2 осуществляет поставку, оборудования для первого пилотируемого полета. Корабль MCT2 будет готов к запуску, как только экипаж прибудет на Красную планету через 2 года. В случае возникновения неприятностей (как в фильме «Марсианин») команда сможет им воспользоваться, чтобы покинуть планету.
  • 2024 год. Третья итерация Mars Colonial Transporter MCT3 и первый пилотируемый полет. На тот момент все технологии докажут свою работоспособность, MCT1 совершит путешествие на Марс и обратно, а MCT2 готов и протестирован на Марсе.

Марс является четвертой планетой от Солнца и последней из планет земной группы. Расстояние от Солнца составляет около 227940000 километров.

Планета названа в честь Марса — римского бога войны. У древних греков он был известен как Арес. Считается, что такую ассоциацию Марс получил из-за кроваво-красного цвета планеты. Благодаря цвету, планета также была известна и у других древних культур. Первые китайские астрономы называли Марс «Звездой Огня», а древнеегипетские жрецы обозначали его как «Ее Desher», что означает «красный».

Массив суши на Марсе и на Земле очень похож. Несмотря на то, что Марс занимает только 15% объема и 10% массы Земли, он имеет сопоставимый с нашей планетой массив суши как следствие того, что вода покрывает около 70% поверхности Земли. При этом поверхностная сила тяжести Марса составляет около 37% тяжести на Земле. Это означает, что теоретически на Марсе можно прыгать в три раза выше, чем на Земле.

Только 16 из 39 миссий на Марс были успешными. Начиная с миссии «Марс 1960А», запущенной в СССР в 1960 году, на Марс было отправлено в общей сложности 39 спускаемых орбитальных аппаратов и марсоходов, но только 16 из этих миссий были успешными. В 2016 году был запущен зонд в рамках российско-европейской миссии «ЭкзоМарс», основными целями которого будет поиск признаков жизни на Марсе, изучение поверхности и рельефа планеты и составление карты потенциальных опасностей от окружающей среды для будущих пилотируемых полетов на Марс.

Обломки с Марса были обнаружены на Земле. Считается, что следы некоторого количества марсианской атмосферы были найдены в метеоритах, отскочивших от планеты. После того, как покинули Марс эти метеориты долгое время, в течение миллионов лет, летали по Солнечной системе среди других объектов и космического мусора, но были захвачены гравитацией нашей планеты, попали в ее атмосферу и рухнули на поверхность. Изучение этих материалов позволило ученым узнать очень многое о Марсе еще до начала космических полетов.

В недалеком прошлом люди были уверены, что Марс является домом для разумной жизни. Во многом на это повлияло обнаружение прямых линий и канав на поверхности Красной планеты итальянским астрономом Джованни Скиапарелли. Он считал, что такие прямые линии не могут быть созданы природой и являются результатом разумной деятельности. Однако позже было доказано, что это не более чем оптическая иллюзия.

Самая высокая планетарная гора известная в Солнечной системе находится на Марсе. Она носит название Olympus Mons (Гора Олимп) и возвышается на 21 километр в высоту. Считается, что это вулкан, который был сформирован миллиарды лет назад. Ученые нашли достаточно много свидетельств того, что возраст вулканической лавы объекта достаточно невелик, что может быть доказательством того, что Олимп все еще может быть активным. Тем не менее есть гора в Солнечной системе, которой Олимп уступает по высоте, — это центральный пик Реясильвия, расположенный на астероиде Веста, высота которого 22 километра.

На Марсе происходят пылевые бури – самые обширные в Солнечной системе. Это связано с эллиптической формой траектории орбиты планеты вокруг Солнца. Путь орбиты более вытянутый, чем у многих других планет и эта овальная форма орбиты приводит к свирепым пылевым штормам, которые охватывают всю планету и могут длиться в течение многих месяцев.

Солнце выглядит примерно в половину своего визуального земного размера, если смотреть на него с Марса. Когда Марс находится ближе всего к Солнцу по своей орбите, а его южное полушарие обращено к Солнцу, на планете наступает очень короткое, но невероятно жаркое лето. При этом на северном полушарии наступает короткая, но холодная зима. Когда планета находится дальше от Солнца, и направлен к нему северным полушарием Марс переживает долгое и мягкое лето. На южном полушарии при этом наступает продолжительная зима.

За исключением Земли, ученые считают Марс наиболее подходящей для жизни планетой. Ведущие космические агентства планируют осуществить целый ряд космических полетов в течение следующего десятилетия для того, что выяснить существует ли на Марсе потенциал для существования жизни и возможно ли построить на нем колонию.

Марсиане и инопланетяне с Марса достаточно долгое время были основными кандидатами на роль внеземных пришельцев, что сделало Марс одной из самых популярных планет Солнечной системы.

Марс это единственная в системе планета, кроме Земли, на которой есть полярные льды. Под полярными шапками Марса была обнаружена вода в твердом состоянии.

Также как и на Земле на Марсе есть сезоны, но длятся они в два раза дольше. Это происходит потому, что Марс наклонен по своей оси примерно на 25,19 градусов, что близко к значению наклона оси Земли (22,5 градуса).

Марс не имеет магнитного поля. Некоторые ученые считают, что на оно существовало на планете около 4 миллиардов лет назад.

Две луны Марса, Фобос и Деймос, были описаны в книге «Путешествия Гулливера» автором Джонатаном Свифтом. Это было за 151 год до того, как они были открыты.

Энциклопедичный YouTube

    1 / 5

    ✪ Проект DISCOVER-AQ - исследование атмосферы (NASA по-русски)

    ✪ NASA по-русски: 18.01.13 - видео-дайджест НАСА за неделю

    ✪ ОТРИЦАТЕЛЬНАЯ МАССА [Новости науки и технологий]

    ✪ Марс, 1968, научно-фантастический киноочерк, режиссёр Павел Клушанцев

    ✪ 5 Signs of Life On Mars - The Countdown #37

    Субтитры

Изучение

Атмосфера Марса была открыта ещё до полетов автоматических межпланетных станций к планете. Благодаря спектральному анализу и противостояниям Марса с Землёй, которые случаются 1 раз в 3 года, астрономы уже в XIX веке знали, что она имеет весьма однородный состав, более 95 % которого приходится на углекислый газ . При сравнении с 0,04% углекислого газа в атмосфере Земли получается, что масса марсианского атмосферного углекислого газа превосходит массу земного почти в 12 раз, так что при терраформировании Марса углекислотный вклад в парниковый эффект может создать комфортный для человека климат несколько раньше, чем будет достигнуто давление в 1 атмосферу, даже с учётом большей удалённости Марса от Солнца.

Ещё в начале 1920-х годов проводились первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора . Измерения В. Лампланда в 1922 году дали среднюю температуру поверхности Марса 245 (−28 °C), Э. Петтит и С. Никольсон в 1924 году получили 260 K (−13 °C). Более низкое значение получили в 1960 году У. Синтон и Дж. Стронг: 230 K (−43 °C) . Первые оценки давления - усреднённого - были получены только в 60е гг с использованием наземных ИК-спектроскопов: полученное из лоренцева уширения линий углекислого газа давление 25±15 гПа означало, что именно он является основной составляющей атмосферы .

Скорость ветра можно определить по доплеровскому сдвигу спектральных линий. Так, для этого измерялся сдвиг линий в миллиметровом и субмиллиметровом диапазоне, причём измерения на интерферометре позволяют получить распределение скоростей в целом слое большой толщины .

Наиболее подробные и точные данные о температуре воздуха и поверхности, давлении, относительной влажности и скорости ветра непрерывно измеряются комплектом приборов Rover Environmental Monitoring Station (REMS) на борту марсохода Curiosity , работающего в кратере Гейла с 2012 г . А аппарат MAVEN , находящийся на орбите Марса с 2014 года, специально предназначен для подробного исследования верхних слоёв атмосферы, их взаимодействия с частицами солнечного ветра и в особенности динамики рассеяния .

Ряд процессов, сложных или пока невозможных для непосредственного наблюдения, подлежит лишь теоретическому моделированию, однако оно также является важным методом исследования.

Структура атмосферы

В целом атмосфера Марса подразделяется на нижнюю и верхнюю; последней считается область выше 80 км над поверхностью , где активную роль играют процессы ионизации и диссоциации. Её изучению посвящён раздел, который принято называть аэрономией . Обычно же когда говорят об атмосфере Марса, имеют в виду нижнюю атмосферу.

Также некоторые исследователи выделяют две крупные оболочки - гомосферу и гетеросферу. В гомосфере химический состав не зависит от высоты, поскольку процессы переноса тепла и влаги в атмосфере и их обмена по вертикали целиком определяются турбулентным перемешиванием. Так как молекулярная диффузия в атмосфере обратно пропорциональна ее плотности, то с некоторого уровня этот процесс становится преобладающим и является основной особенностью верхней оболочки - гетеросферы, где происходит молекулярное диффузное разделение. Граница раздела между этими оболочками, которая находится на высотах от 120 до 140 км, называется турбопаузой .

Нижняя атмосфера

От поверхности до высоты 20-30 км протягивается тропосфера , где температура падает с высотой. Верхняя граница тропосферы колеблется в зависимости от времени года (температурный градиент в тропопаузе меняется от 1 до 3 град/км при среднем значении 2,5 град/км) .

Над тропопаузой находится изотермическая область атмосферы - стратомезосфера , протягивающаяся до высоты 100 км. Средняя температура стратомезосферы исключительно низкая и составляет - 133°С. В отличие от Земли, где в стратосфере содержится преимущественно весь атмосферный озон , на Марсе его концентрация ничтожно мала (он распределен от высот 50 - 60 км до самой поверхности, где она максимальна) .

Верхняя атмосфера

Выше стратомезосферы простирается верхний слой атмосферы - термосфера . Для нее характерен рост температуры с высотой до максимального значения (200-350 K), после чего она остаётся постоянной до верхней границы (200 км) . В этом слое зарегистрировано присутствие атомарного кислорода; его плотность на высоте 200 км достигает 5-6⋅10 7 см −3 . Присутствие слоя с преобладанием атомарного кислорода (как и то, что основной нейтральной компонентой является углекислый газ) объединяет атмосферу Марса с атмосферой Венеры .

Ионосфера - область с высокой степенью ионизации - находится в интервале высот примерно от 80-100 до порядка 500-600 км. Содержание ионов минимально ночью и максимально днем, когда основной слой формируется на высоте 120-140 км за счёт фотоионизации углекислого газа экстремально ультрафиолетовым излучением Солнца СО 2 + hν → СО 2 + + e - , а также реакций между ионами и нейтральными веществами СО 2 + + O → О 2 + + CO и О + + СО 2 → О 2 + + CO. Концентрация ионов, из которых 90 % O 2 + и 10 % СO 2 + , достигает 10 5 на кубический сантиметр (в остальных областях ионосферы она на 1-2 порядка ниже) . Примечательно, что ионы O 2 + преобладают при практически полном отсутствии в атмосфере Марса собственно молекулярного кислорода . Вторичный слой образуется в районе 110-115 км за счёт мягкого рентгеновского излучения и выбитых быстрых электронов . На высоте 80-100 км некоторыми исследователями выделяется третий слой, иногда проявляющийся под воздействием частиц космической пыли, привносящих в атмосферу ионы металлов Fe + , Mg + , Na + . Однако позднее было не только подтверждено появление последних (причём практически по всему объёму верхней атмосферы) вследствие абляции вещества попадающих в атмосферу Марса метеоритов и других космических тел , но и вообще постоянное их присутствие. При этом из-за отсутствия у Марса магнитного поля их распределение и поведение значительно отличаются от того, что наблюдается в земной атмосфере . Над главным максимумом могут появляться благодаря взаимодействию с солнечным ветром и другие дополнительные слои. Так, слой ионов O + наиболее выражен на высоте 225 км. Помимо трёх основных видов ионов (O 2 + , СO 2 и O +), относительно недавно были зарегистрированы также H 2 + , H 3 + , He + , C + , CH + , N + , NH + , OH + , H 2 O + , H 3 O + , N 2 + /CO + , HCO + /HOC + /N 2 H + , NO + , HNO + , HO 2 + , Ar + , ArH + , Ne + , CO 2 ++ и HCO 2 + . Выше 400 км некоторые авторы выделяют «ионопаузу», однако на этот счёт пока нет единого мнения .

Что касается температуры плазмы, то вблизи главного максимума температура ионов составляет 150 К, увеличиваясь до 210 К на высоте 175 км. Выше термодинамическое равновесие ионов с нейтральным газом существенно нарушается, и их температура резко возрастает до 1000 К на высоте 250 км. Температура электронов может составлять несколько тысяч кельвин, по всей видимости, из-за магнитного поля в ионосфере, причём она растёт с увеличением зенитного угла Солнца и неодинакова в северном и южном полушариях, что, возможно, связано с асимметрией остаточного магнитного поля коры Марса. Вообще можно даже выделить три популяции высокоэнергетических электронов с различными температурными профилями. Магнитное поле влияет и на горизонтальное распределение ионов: над магнитными аномалиями формируются потоки высокоэнергетических частиц, закручивающиеся вдоль линий поля, что увеличивает интенсивность ионизации, и наблюдается повышенная плотность ионов и локальные структуры .

На высоте 200-230 км находится верхняя граница термосферы - экзобаза, над которой примерно с высоты 250 км начинается экзосфера Марса. Она состоит из лёгких веществ - водорода , углерода , кислорода , - которые появляются в результате фотохимических реакций в нижележащей ионосфере, например, диссоциативной рекомбинации O 2 + с электронами . Непрерывное снабжение верхней атмосферы Марса атомарным водородом происходит за счет фотодиссоциации водяного пара у марсианской поверхности. Ввиду очень медленного уменьшения концентрации водорода с высотой этот элемент является основным компонентом самых внешних слоев атмосферы планеты и образует водородную корону , простирающуюся на расстояние около 20 000 км , хотя строгой границы нет, и частицы из этой области просто постепенно рассеиваются в окружающее космическое пространство .

В атмосфере Марса также иногда выделяется хемосфера - слой, где происходят фотохимические реакции, а так как из-за отсутствия озонового экрана, как у Земли, ультрафиолетовое излучение доходит до самой поверхности планеты, они возможны даже там. Марсианская хемосфера простирается от поверхности до высоты около 120 км .

Химический состав нижней атмосферы

Несмотря на сильную разрежённость марсианской атмосферы, концентрация углекислого газа в ней примерно в 23 раза больше, чем в земной .

  • Азот (2,7 %) в настоящее время активно диссипирует в космос. В виде двухатомной молекулы азот устойчиво удерживается притяжением планеты, но расщепляется солнечным излучением на одиночные атомы, легко покидая атмосферу.
  • Аргон (1,6 %) представлен относительно устойчивым к диссипации тяжелым изотопом аргон-40. Легкие 36 Ar и 38 Ar имеются лишь в миллионных долях
  • Другие благородные газы : неон , криптон , ксенон (миллионные доли)
  • Оксид углерода (СО) - является продуктом фотодиссоциации СО 2 и составляет 7,5⋅10 -4 концентрации последнего - это необъяснимо малое значение, поскольку обратная реакция CO + O + M → СО 2 + M запрещена, и должно было бы накопиться гораздо больше CO. Предлагались различные теории, как угарный газ может всё же окисляться до углекислого, но все они имеют те или иные недостатки .
  • Молекулярный кислород (O 2) - появляется в результате фотодиссоциации как CO 2 , так и Н 2 О в верхней атмосфере Марса. При этом кислород диффундирует в более низкие слои атмосферы, где его концентрация достигает 1,3⋅10 -3 от приповерхностной концентрации С0 2 . Как и Ar, CO и N 2 , он относится к неконденсирующимся на Марсе веществам, поэтому его концентрация также претерпевает сезонные вариации. В верхней атмосфере, на высоте 90-130 км, содержание O 2 (доля относительно CO 2) в 3-4 раза превышает соответствующее значение для нижней атмосферы и составляет в среднем 4⋅10 -3 , изменяясь в диапазоне от 3,1⋅10 -3 до 5,8⋅10 -3 . В древности атмосфера Марса содержала, однако, большее количество кислорода, сопоставимое с его долей на юной Земле. Кислород даже в виде отдельных атомов уже не так активно диссипирует, как азот, в силу б́ольшего атомного веса, что позволяет ему накапливаться.
  • Озон - его количество сильно меняется в зависимости от температуры поверхности : оно минимально во время равноденствия на всех широтах и максимально на полюсе, где зима, кроме того, обратно пропорционально концентрации водяного пара. Присутствует один выраженный озоновый слой на высоте около 30 км и другой - между 30 и 60 км .
  • Вода. Содержание H 2 O в атмосфере Марса примерно в 100-200 раз меньше, чем в атмосфере самых сухих регионов Земли, и составляет в среднем 10-20 мкм осажденного столба воды. Концентрация водяного пара претерпевает существенные сезонные и суточные вариации . Степень насыщения воздуха парами воды обратно пропорциональна содержанию частиц пыли, являющихся центрами конденсации, и в отдельных областях (зимой, на высоте 20-50 км) был зафиксирован пар, давление которого превышает давление насыщенного пара в 10 раз - намного больше, чем в земной атмосфере .
  • Метан . Начиная с 2003 года, появляются сообщения о регистрации выбросов метана неизвестной природы , однако ни одно из них нельзя считать достоверным из-за тех или иных недостатков методов регистрации. При этом речь идёт о крайне малых величинах - 0,7 ppbv (верхний предел - 1,3 ppbv) в качестве фонового значения и 7 ppbv для эпизодических всплесков, что находится на грани разрешимости. Поскольку наряду с этим публиковалась и информация о подтверждённом другими исследованиями отсутствии CH 4 , это может свидетельствовать о каком-либо непостоянном источнике метана, а также о существовании некоего механизма его быстрого разрушения, тогда как длительность фотохимического разрушения этого вещества оценивается в 300 лет. Дискуссия по этому вопросу в настоящий момент открыта, причём он представляет особенный интерес в контексте астробиологии , ввиду того, что на Земле это вещество имеет биогенное происхождение .
  • Следы некоторых органических соединений . Наиболее важны верхние ограничения на H 2 CO, HCl и SO 2 , которые свидетельствуют об отсутствии, соответственно, реакций с участием хлора , а также вулканической активности, в частности, о невулканическом происхождении метана, если его существование будет подтверждено .

Состав и давление атмосферы Марса делают невозможным дыхание человека и других земных организмов . Для работы на поверхности планеты необходим скафандр, хотя и не настолько громоздкий и защищенный, как для Луны и открытого космоса. Атмосфера Марса сама по себе не ядовита и состоит из химически инертных газов. Атмосфера несколько тормозит метеоритные тела, поэтому кратеров на Марсе меньше чем на Луне и они менее глубокие. А микрометеориты сгорают полностью, не достигая поверхности.

Вода, облачность и осадки

Низкая плотность не мешает атмосфере формировать масштабные явления, влияющие на климат .

Водяного пара в марсианской атмосфере не более тысячной доли процента, однако по результатам недавних (2013 г.) исследований, это всё же больше, чем предполагалось ранее, и больше, чем в верхних слоях атмосферы Земли , и при низких давлении и температуре он находится в состоянии, близком к насыщению, поэтому часто собирается в облака. Как правило, водяные облака формируются на высотах 10-30 км над поверхностью. Они сосредоточены в основном на экваторе и наблюдаются практически на протяжении всего года . Облака, наблюдаемые на высоких уровнях атмосферы (более 20 км), образуются в результате конденсации CO 2 . Этот же процесс ответствен за формирование низких (на высоте менее 10 км) облаков полярных областей в зимний период, когда температура атмосферы опускается ниже точки замерзания CO 2 (-126 °С); летом же формируются аналогичные тонкие образования из льда Н 2 О

  • Одно из интересных и редких на Марсе атмосферных явлений было обнаружено («Викингом-1 ») при фотографировании северной полярной области в 1978 г. Это циклонические структуры, четко отождествляемые на фотографиях по вихревидным системам облаков с циркуляцией против часовой стрелки. Они были обнаружены в широтном поясе 65-80° с. ш. в течение «теплого» периода года, с весны до начала осени, когда здесь устанавливается полярный фронт. Его возникновение обусловлено существующим в это время года резким контрастом температур поверхности между краем ледяной шапки и окружающими равнинами. Связанные с таким фронтом волновые движения воздушных масс и приводят к появлению столь знакомых нам по Земле циклонических вихрей. Обнаруженные на Марсе системы вихревидных облаков по размеру колеблются от 200 до 500 км, скорость их перемещения около 5 км/ч, а скорость ветров на периферии этих систем около 20 м/с. Длительность существования отдельного циклонического вихря колеблется от 3 до 6 сут. Величины температур в центральной части марсианских циклонов свидетельствуют о том, что облака состоят из кристалликов льда воды .

    Снег действительно наблюдался неоднократно . Так, зимой 1979 г. в районе посадки «Викинга-2 » выпал тонкий слой снега, который пролежал несколько месяцев .

    Пылевые бури и пылевые дьяволы

    Характерная особенность атмосферы Марса - постоянное присутствие пыли; согласно спектральным измерениям, размер пылевых частиц оценивается в 1,5 мкм . Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли на высоту до 50 км. А ветры, являющиеся одним из проявлений перепада температур, часто дуют над поверхностью планеты (особенно в конце весны - начале лета в южном полушарии, когда разница температур между полушариями особенно резкая ), и их скорость доходит до 100 м/с. Таким образом формируются обширные пылевые бури, давно наблюдаемые в виде отдельных желтых облаков, а иногда в виде сплошной желтой пелены, охватывающей всю планету. Чаще всего пылевые бури возникают вблизи полярных шапок, их продолжительность может достигать 50-100 суток. Слабая желтая мгла в атмосфере, как правило, наблюдается после крупных пылевых бурь и без труда обнаруживается фотометрическими и поляриметрическими методами .

    Пылевые бури, хорошо наблюдавшиеся на снимках, сделанных с орбитальных аппаратов, оказались слабозаметными при съемке с посадочных аппаратов. Прохождение пылевых бурь в местах посадок этих космических станций фиксировалось лишь по резкому изменению температуры, давления и очень слабому потемнению общего фона неба. Слой пыли, осевшей после бури в окрестностях мест посадок «Викингов», составил лишь несколько микрометров. Все это свидетельствует о довольно низкой несущей способности марсианской атмосферы .

    С сентября 1971 по январь 1972 г. на Марсе происходила глобальная пылевая буря, которая даже помешала фотографированию поверхности с борта зонда «Маринер-9 » . Масса пыли в столбе атмосферы (при оптической толщине от 0,1 до 10), оцененная в этот период, составляла от 7,8⋅10 -5 до 1,66⋅10 -3 г/см 2 . Таким образом, общий вес пылевых частиц в атмосфере Марса за период глобальных пылевых бурь может доходить до 10 8 - 10 9 т, что соизмеримо с общим количеством пыли в земной атмосфере .

    • Полярное сияние впервые было зарегистрировано УФ-спектрометром SPICAM на борту аппарата «Марс Экспресс» . Затем оно неоднократно наблюдалось аппаратом «MAVEN », например, в марте 2015 года , а в сентябре 2017 года детектором оценки радиации (RAD) на марсоходе «Curiosity » было зафиксировано гораздо более мощное событие . Анализ данных аппарата «MAVEN» выявил и полярные сияния принципиально иного типа - диффузные, которые имеют место на низких широтах, в областях, не привязанных к аномалиям магнитного поля и вызываемых проникновением в атмосферу частиц с очень высокой энергией, порядка 200 кэВ .

      Кроме того, экстремально ультрафиолетовое излучение Солнца вызывает так называемое собственное свечение атмосферы (англ. airglow ).

      Регистрация оптических переходов при полярных сияниях и собственном свечении даёт важную информацию о составе верхней атмосферы, её температуре и динамике. Так, изучение γ- и δ-полос излучения оксида азота в ночной период помогает охарактеризовать циркуляцию между освещённой и неосвещённой областями. А регистрация излучения на частоте 130,4 нм при собственном свечении помогло выявить присутствие атомарного кислорода высокой температуры, что стало важным шагом в понимании поведения атмосферных экзосфер и корон в целом .

      Цвет

      Частицы пыли, которыми наполнена атмосфера Марса, состоят в основном из оксида железа, и он придаёт ей красновато-рыжий оттенок .

      Согласно данным измерений, атмосфера имеет оптическую толщину 0,9 - это означает, что до поверхности Марса сквозь его атмосферу доходит только 40 % падающего солнечного излучения, а остальные 60 % поглощаются висящей в воздухе пылью. Без неё марсианские небеса имели бы приблизительно тот же цвет, как у земного неба на высоте 35 километров . Следует заметить, что при этом человеческий глаз адаптировался бы к этим цветам, и баланс белого автоматически подстроился бы так, что небо виделось бы таким же, как при земных условиях освещения.

      Цвет неба весьма неоднороден, и в отсутствие облаков или пыльных бурь от относительно светлого на горизонте резко и градиентно темнеет к зениту. В относительно спокойный и безветренный сезон, когда пыли меньше, в зените небо может быть совсем чёрным.

      Тем не менее - благодаря снимкам марсоходов стало известно, что на закате и восходе вокруг Солнца небо окрашивается в голубой цвет. Причина этому рассеяние РЭЛЕЯ - свет рассеивается на частицах газа и окрашивает небо, но если марсианским днём эффект слаб и незаметен невооруженным глазом из-за разряжённости атмосферы и запылённости, то на закате солнце просвечивает намного более толстый слой воздуха, благодаря чему начинают рассеиваться синяя и фиолетовая составляющие. Тот же механизм отвечает за голубое небо на Земле днём и желто-оранжевое на закате. [ ]

      Панорама печаных дюн Рокнест, составленная из снимков марсохода Curiosity.

      Изменения

      Изменения в верхних слоях атмосферы носят довольно сложный характер, так как они связаны между собой и с нижележащими слоями. Распространяющиеся вверх атмосферные волны и приливы могут оказывать существенное влияние на структуру и динамику термосферы и, как следствие, ионосферы, например, высоту верхней границы ионосферы. Во время пылевых бурь в нижней атмосфере её прозрачность уменьшается, она нагревается и расширяется. Тогда увеличивается плотность термосферы - она может варьироваться даже на порядок, - и высота максимума концентрации электронов может подняться на величину до 30 км. Вызванные пылевыми бурями изменения в верхней атмосфере могут быть глобальными, затрагивая области до 160 км над поверхностью планеты. Отклик верхней атмосферы на эти явления занимает несколько дней, а в прежнее состояние она возвращается гораздо дольше - несколько месяцев. Ещё одно проявление взаимосвязи верхней и нижней атмосферы заключается в том, что водяной пар, которым, как выяснилось, перенасыщена нижняя атмосфера, может подвергаться фотодиссоциации на более лёгкие компоненты H и O, увеличивающие плотность экзосферы и интенсивность потери воды атмосферой Марса. Внешние факторы, вызывающие изменения в верхней атмосфере, - это экстремально ультрафиолетовое и мягкое рентгеновское излучение Солнца, частицы солнечного ветра, космическая пыль и более крупные тела, такие как метеориты . Задача осложняется тем, что их воздействие, как правило, случайно, и его интенсивность и продолжительность невозможно прогнозировать, причём на эпизодические явления накладываются циклические процессы, связанные с изменением времени суток, времени года, а также солнечным циклом . На настоящий момент по динамике параметров атмосферы в лучшем случае имеется накопленная статистика событий, но теоретическое описание закономерностей ещё не выполнено. Определенно установлена прямая пропорциональность между концентрацией частиц плазмы в ионосфере и солнечной активностью. Это подтверждается тем, что аналогичная закономерность была реально зафиксирована по результатам наблюдений в 2007-2009 гг для ионосферы Земли , несмотря на принципиальное различие магнитного поля этих планет, непосредственно влияющего на ионосферу. А выбросы частиц солнечной короны, вызывая изменение давления солнечного ветра, также влекут за собой характерное сжатие магнитосферы и ионосферы : максимум плотности плазмы опускается до 90 км .

      Суточные колебания

      Несмотря на свою разреженность, атмосфера тем не менее реагирует на изменение потока солнечного тепла медленнее, чем поверхность планеты. Так, в утренний период температура сильно меняется с высотой: была зафиксирована разница в 20° на высоте от 25 см до 1 м над поверхностью планеты. С восходом Солнца холодный воздух нагревается от поверхности и поднимается в виде характерного завихрения вверх, поднимая в воздух пыль - так образуются пылевые дьяволы . В приповерхностном слое (до 500 м высотой) имеет место температурная инверсия. После того, как атмосфера к полудню уже нагрелась, этого эффекта уже не наблюдается. Максимум достигается примерно в 2 часа в после полудня. Затем поверхность остывает быстрее, чем атмосфера, и наблюдается обратный температурный градиент. Перед заходом Солнца же температура снова убывает с высотой .

      Смена дня и ночи влияет и на верхнюю атмосферу. Прежде всего, в ночное время прекращается ионизация солнечным излучением, однако плазма продолжает первое время после захода Солнца пополняться за счёт потока с дневной стороны, а затем формируется за счёт ударов электронов, движущихся вниз вдоль линий магнитного поля (так называемое вторжение электронов) - тогда максимум наблюдается на высоте 130-170 км. Поэтому плотность электронов и ионов с ночной стороны гораздо ниже и характеризуется сложным профилем, зависящим также от локального магнитного поля и изменяющимся нетривиальным образом, закономерность которого пока не до конца понята и описана теоретически . На протяжении дня состояние ионосферы также меняется в зависимости от зенитного угла Солнца .

      Годовой цикл

      Как и на Земле, на Марсе происходит смена времен года из-за наклона оси вращения к плоскости орбиты, поэтому зимой в северном полушарии полярная шапка растет, а в южном почти исчезает, а через полгода полушария меняются местами. При этом из-за достаточно большого эксцентриситета орбиты планеты в перигелии (зимнее солнцестояние в северном полушарии) она получает до 40 % больше солнечного излучения, чем в афелии , и в северном полушарии зима короткая и относительно умеренная, а лето длинное, но прохладное, в южном же наоборот - лето короткое и относительно теплое, а зима длинная и холодная. В связи с этим южная шапка зимой разрастается до половины расстояния полюс-экватор, а северная - только до трети. Когда на одном из полюсов наступает лето, углекислый газ из соответствующей полярной шапки испаряется и поступает в атмосферу; ветры переносят его к противоположной шапке, где он снова замерзает. Таким образом происходит круговорот углекислого газа, который наряду с разными размерами полярных шапок вызывает изменение давления атмосферы Марса по мере его обращения вокруг Солнца . За счёт того, что зимой до 20-30 % всей атмосферы замерзает в полярной шапке, давление в соответствующей области соответственно падает .

      Сезонные вариации (как и суточные) претерпевает также концентрация водяного пара - они находятся в пределах 1-100 мкм. Так, зимой атмосфера практически «сухая». Водяной пар появляется в ней весной, и к середине лета его количество достигает максимума, следуя за изменениями температуры поверхности. В течение периода лето - осень водяной пар постепенно перераспределяется, причем максимум содержания его перемещается от северной полярной области к экваториальным широтам. При этом общее глобальное содержание пара в атмосфере (по данным «Викинга-1») остается приблизительно постоянным и эквивалентным 1,3 км 3 льда. Максимальное содержание Н 2 О (100 мкм осажденной воды, равное 0,2 объемных %) было зафиксировано летом над темным районом, опоясывающим северную остаточную полярную шапку - в это время года атмосфера надо льдом полярной шапки обычно близка к насыщению .

      В весенне-летний период в южном полушарии, когда наиболее активно формируются пылевые бури, наблюдаются суточные или полусуточные атмосферные приливы - увеличение давления у поверхности и термическое расширение атмосферы в ответ на её нагрев .

      Смена времён года оказывает влияние и на верхнюю атмосферу - как нейтральную компоненту (термосферу), так и плазму (ионосферу), причём этот фактор должен учитываться вместе с солнечным циклом, и это усложняет задачу описания динамики верхней атмосферы .

      Долгосрочные изменения

      См. также

      Примечания

      1. Williams, David R. Mars Fact Sheet (неопр.) . National Space Science Data Center . NASA (September 1, 2004). Дата обращения 28 сентября 2017.
      2. N. Mangold, D. Baratoux, O. Witasse, T. Encrenaz, C. Sotin. Mars: a small terrestrial planet : [англ. ] // The Astronomy and Astrophysics Review. - 2016. - Т. 24, № 1 (16 December). - С. 15. - DOI :10.1007/s00159-016-0099-5 .
      3. Атмосфера Марса (неопр.) . UNIVERSE-PLANET // ПОРТАЛ В ДРУГОЕ ИЗМЕРЕНИЕ
      4. Марс - красная звезда. Описание местности. Атмосфера и климат (неопр.) . galspace.ru - Проект "Исследование Солнечной системы" . Дата обращения 29 сентября 2017.
      5. (англ.) Out of Thin Martian Air Astrobiology Magazine , Michael Schirber, 22 Август 2011.
      6. Максим Заболоцкий. Общие сведения об атмосфере Марса (неопр.) . Spacegid.com (21.09.2013). Дата обращения 20 октября 2017.
      7. Mars Pathfinder - Science  Results - Atmospheric and Meteorological Properties (неопр.) . nasa.gov . Дата обращения 20 апреля 2017.
      8. J. L. Fox, A. Dalgarno. Ionization, luminosity, and heating of the upper atmosphere of Mars: [англ. ] // J Geophys Res. - 1979. - Т. 84, вып. A12 (1 December). - С. 7315–7333. -