Биографии Характеристики Анализ

Получение предельных углеводородов. Научная библиотека - рефераты - реферат: получение углеводородов

Углеводороды представляют собой простейшие органические соединения. Их составляют углерод и водород. Соединения этих двух элементов называются предельными углеводородами или алканами. Их состав выражается общей для алканов формулой CnH2n+2, где n - количество атомов углерода.

Вконтакте

Одноклассники

Алканы - международное наименование данных соединений . Также эти соединения называют парафинами и насыщенными углеводородами. Связь в молекулах алканов простая (или одинарная). Остальные валентности насыщены атомами водорода. Все алканы насыщены водородом до предела, его атомы находятся в состоянии sp3-гибридизации.

Гомологический ряд предельных углеводородов

Первым в гомологическом ряду насыщенных углеводородов стоит метан. Его формула CH4. Окончание -ан в наименовании предельных углеводородов являет отличительным признаком. Далее в соответствии с приведенной формулой в гомологическом ряду располагаются этан - C2H6, пропан C3H8, бутан - C4H10.

С пятого алкана в гомологическом ряду названия соединений образуются следующим образом: греческое число, указывающее число атомов углеводорода в молекуле + окончание -ан. Так, по-гречески число 5 - пэндэ, соответственно за бутаном идет пентан - C5H12. Далее - гексан C6H14. гептан - C7H16, октан - C8H18, нонан - C9H20, декан - C10H22 и т. д.

Физические свойства алканов заметно изменяются в гомологическом ряду: увеличивается температура плавления, кипения, увеличивается плотность. Метан, этан, пропан, бутан при обычных условиях, т. е. при температуре равной примерно 22 градуса тепла по Цельсию, являются газами, с пентана по гексадекан включительно - жидкостями, с гептадекана - твердыми веществами. Начиная с бутана, у алканов есть изомеры.

Существуют таблицы, отражающие изменения в гомологическом ряду алканов , которые наглядно отражают их физические свойства.

Номенклатура насыщенных углеводородов, их производные

Если происходит отрыв атома водорода от молекулы углеводорода, то образуются одновалентные частицы, которые называют радикалами (R). Название радикалу дает то углеводород, из которого этот радикал произведен, при этом окончание -ан меняется на окончание -ил. Например, из метана при отрыве атома водорода образуется радикал метил, из этана - этил, из пропана - пропил и т. д.

Радикалы также образуются и неорганическими соединениям. Например, отняв у азотной кислоты гидроксильную группу ОН, можно получить одновалентный радикал -NO2, который называется нитрогруппой.

При отрыве от молекулы алкана двух атомов водорода образуется двухвалентные радикалы, названия которых также образуются из названия соответствующих углеводородов, но окончание меняется на:

  • илиен, в том случае, если атомы водорода оторваны от одного атома углерода,
  • илен, в том случае, если от двух атомы водорода оторваны от двух соседних атомов углерода.

Алканы: химические свойства

Рассмотрим реакции, характерные для алканов. Всем алканам присущи общие химические свойства. Данные вещества являются малоактивными.

Все известные реакции с участием углеводородов подразделяются на два вида:

  • разрыв связи С-Н (примером может служить реакция замещения);
  • разрыв связи С-С (крекинг, образование отдельных частей).

Очень активны в момент образования радикалы. Сами по себе они существуют доли секунды. Радикалы легко вступают в реакции между собой. Их неспаренные электроны образуют новую ковалентную связь. Пример: CH3 + CH3 → C2H6

Радикалы легко вступают в реакции с молекулами органических веществ. Они либо присоединяются к ним, либо отрывают от них атом с неспаренным электроном, в результате чего появляются новые радикалы, которые, в свою очередь, могут вступать в реакции с другими молекулами. При такой цепной реакции получаются макромолекулы, которые перестают расти только тогда, когда оборвется цепь (пример: соединение двух радикалов)

Реакции свободных радикалов объясняют многие важные химические процессы, такие как:

  • Взрывы;
  • Окисления;
  • Крекинг нефти;
  • Полимеризацию непредельных соединений.

Подробно можно рассмотреть химические свойства насыщенных углеводородов на примере метана. Выше мы уже рассматривали строение молекулы алкана. Атомы углерода находятся в молекуле метана в состоянии sp3-гибридизации, и образуется достаточно прочная связь. Метан представляет собой газ баз запаха и цвета. Он легче воздуха. В воде малорастворим.

Алканы могут гореть. Горит метан синеватым бледным пламенем. При этом результатом реакции будут оксид углерода и вода. При смешивании с воздухом, а также в смеси с кислородом, особенно если соотношение объемов будет 1:2, данные углеводород образует взрывчатые смеси, из-за чего он крайне опасен для применения в быту и шахтах. Если метан сгорает не полностью, то образуется сажа. В промышленности ее таким образом и получают.

Из метана получают формальдегид и метиловый спирт путем его окисления в присутствии катализаторов. Если же метан сильно нагреть, то он распадается по формуле CH4 → C + 2H2

Распад метана можно осуществить до промежуточного продукта в специально оборудованных печах. Промежуточным продуктом будет ацетилен. Формула реакции 2CH4 → C2H2 + 3H2. Выделение ацетилена из метана сокращает расходы производства почти в два раза.

Также из метана получают водород, производя конверсию метана с водяным паром. Характерными для метана являются реакции замещения. Так, при обычной температуре, на свету галогены (Cl, Br) по стадиям вытесняют водород из молекулы метана. Таким образом образуются вещества, называемые галогенопроизводными. Атомы хлора , замещая в молекуле углеводорода атомы водорода, образуют смесь разных соединений.

В такой смеси присутствуют хлорметан (CH3 Cl или хлористый метил), дихлорметан (CH2Cl2или хлористый метилен), трихлорметан (CHCl3 или хлороформ), тетрахлорметан (CCl4 или четыреххлористый углерод).

Любое из этих соединений может быть выделено из смеси. В производстве важное значение отводится хлороформу и тетрахлорметану, в силу того, что они являются растворителями органических соединений (жиров, смол, каучука). Галогенопроизводные метана образуются по цепному свободнорадикальному механизму.

Свет воздействует на молекулы хлора, вследствие чего они распадаются на неорганические радикалы, которые отрывают атом водорода с одним электроном от молекулы метана. При этом образуется HCl и метил. Метил реагирует с молекулой хлора, в результате чего получается галогенопроизводное и радикал хлора. Далее радикал хлора продолжает цепную реакцию.

При обычной температуре метан обладает достаточной стойкостью к щелочам, кислотам, многим окислителям. Исключение - азотная кислота. В реакции с ней образуется нитрометан и вода.

Реакции присоединения для метана не характерны, т. к. все валентности в его молекуле насыщены.

Реакции, в которых участвуют углеводороды могут проходить не только с расщеплением связи С-Н, но и с разрывом связи С-С. Такие превращения происходят при наличии высоких температур и катализаторов. К таким реакциям относятся дегидрогенизация и крекинг.

Из насыщенных углеводородов путем окисления получают кислоты - уксусную (из бутана), жирные кислоты (из парафина).

Получение метана

В природе метан распространен достаточно широко. Он - главная составная часть большинства горючих природных и искусственных газов. Он выделяется из каменноугольных пластов в рудниках, со дна болот. Природные газы (что очень заметно в попутных газах нефтяных месторождений) содержат не только метан, но и другие алканы. Применение этих веществ разнообразно. Они используются как топливо, на различных производствах, в медицине и технике.

В условиях лаборатории данный газ выделяют при нагревании смеси ацетат натрия + гидроксид натрия, а также реакцией карбида алюминия и воды. Также метан получают из простых веществ. Для этого обязательными условиями являются нагрев и катализатор. Промышленное значение имеет получение метана синтезом на основе водяного пара.

Метан и его гомологи могут быть получены при прокаливании солей соответствующих органических кислот с щелочами. Еще одним способом получения алканов является реакция Вюрца, при которой нагреваются моногалогенопроизводные с металлическим натрием.

Источниками предельных углеводородов являются нефть и природный газ. Основной компонент природного газа – простейший углеводород метан, который используется непосредственно или подвергается переработке. Нефть, извлеченная из земных недр, также подвергается переработке, ректификации, крекингу. Больше всего углеводородов получают при переработке нефти и других природных ресурсов. Но значительное количество ценных углеводородов получают искусственно, синтетическими способами.

Изомеризация углеводородов

Наличие катализаторов изомеризации ускоряет образование углеводородов с разветвленным скелетом из линейных углеводородов. Добавление катализаторов позволяет несколько уменьшить температуру, при которой протекает реакция.
Изооктан применяют как добавку при производстве бензинов, для повышения их антидетонационных свойств, а также в качестве растворителя.

Гидрирование (присоединение водорода) алкенов

В результате крекинга образуется большое количество непредельных углеводородов с двойной связью - алкенов. Уменьшить их количество можно, добавив в систему водород и катализаторы гидрирования - металлы (платина, палладий, никель):

Крекинг в присутствии катализаторов гидрирования с добавлением водорода называется восстановительным крекингом . Основными его продуктами являются предельные углеводороды. Таким образом, повышение давления при крекинге (крекинг высокого давления ) позволяет уменьшить количество газообразных (CH 4 – C 4 H 10) углеводородов и повысить содержание жидких углеводородов с длиной цепи 6-10 атомов углерода, которые составляют основу бензинов.

Это были промышленные способы получения алканов, которые являются основой промышленной переработки основного углеводородного сырья - нефти.

Теперь рассмотрим несколько лабораторных способов получения алканов.

Декарбоксилирование натриевых солей карбоновых кислот

Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана:

Если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д.

Синтез Вюрца

При взаимодействии галогеналканов со щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:

Действие щелочного металла на смесь галоген углеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).

!!! Реакция синтеза Вюрца ведет к удлинению цепи предельных углеводородов.

Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединен к первичному атому углерода.

Гидролиз карбидов

При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан.

ПОЛУЧЕНИЕ БУТАДИЕНА-1,3 (ДИВИНИЛА)

Бутадиен-1,3 СН 2 =СН-СН-СН 2 является основным мономером для получения синтетиче­ских каучуков.

Синтез бутадиена-1,3 из этанола, разработанный С. В. Лебе­девым, был первым промышленным методом получения мономера, на основе которого в 1932 г. впервые в мире был пущен завод по производству синтетического каучука.

Суммарное уравнение реакции может быть записано в виде

2С 2 Н 5 ОН ® С 4 Н 6 + Н 2 + 2Н 2 О, ΔН = 85 кДж

Из уравнения видно, что суммарная реакция представляет собой сочетание конденсации, дегидрирования и дегидратации. Этим требованиям отвечает предложенный Лебедевым бифункциональ­ный оксидный катализатор, содержащий дегидрирующие и дегид­ратирующие компоненты. Однако теперь метод утратил свое прак­тическое значение. Принципиальный недостаток метода заключа­ется в его низкой селективности (даже теоретический выход ди­винила из 100% этанола составляет 58,7%).

В настоящее время основными способами синтеза дивинила являются дегидрирование n -бутана, выделенного из природного газа, и комплексная переработка бутан-бутиленовых фракций пи­ролиза нефтепродуктов, включающая извлечение бутадиена, выде­ление изобутилена и дегидрирование n -бутиленов в бутадиен.

При дегидрировании бутана существенную роль играют термодинамические ограничения, вследствие чего бутадиен-1,3 полу­чить в одну стадию с технически приемлемым выходом в обычных условиях практически невозможно, и лишь с помощью специаль­ных приемов (применение вакуума, окислительное дегидрирова­ние) выход может быть поднят до требуемого уровня.

Большинство промышленных установок получения дивинила из бутана работает по двухстадийной схеме. Первая стадия дегид­рирования бутана заключается в превращении его в бутилен, а вторая - это процесс получения дивинила из бутилена.

Дегидрирование бутана в бутилен на хромооксидном промотированном катализаторе, нанесенном на оксид алю­миния, протекает по реакции

С 4 Н 10 ® С 4 Н 8 + Н 2 , ΔH = 131 кДж

Состав...... Al 2 O 3 Fe 2 O 3 Cr 2 O 3 SiO 2 KNO 3 CaO H 2 O

Массовая доля, % 66,10 1,72 15,8 7,9 4,93 0,14 3,34

В процессе дегидрирования бутана катализатор покрывается углеродистыми отложениями и изменяет свой химический состав. Активность катализатора при этом резко снижается. С целью ре­активации катализатор непрерывно отводят из реактора и обжи­гают в токе воздуха в регенераторе с кипящим слоем. Углероди­стые соединения при этом выгорают, а низшие оксиды хрома окисляются до Сг 2 Оз. Технологическая схема установки дегидри­рования бутана изображена на рис. 1.

Бутан в жидком виде поступает в осушитель 1 , заполненный адсорбентом (А1 2 О 3 , цеолиты) и затем в испаритель 2. Образовав­шиеся пары нагреваются в трубчатой печи 3 до температуры 780- 820 К и поступают под распределительную решетку реактора 4 на дегидрирование. Необходимое для протекания реакции количество теплоты подводит­ся с потоком нагретого регенерированного катализатора из реге­нератора 5. Температура в регенераторе 890-920 К. Регенериро­ванный катализатор подают на верхнюю распределительную ре­шетку и, следовательно, катализатор и реакционные газы движутся противотоком. В верхней части имеется змеевик для за­калки реакционных газов. Благодаря этому температура газов быстро снижается до 720-750 К и предотвращается их дальней­шее разложение.

Транспортирование катализатора в регенератор осуществляется потоком воздуха, а в реактор - парами исходного углеводорода или азотом. Контактный газ из реактора направляется в котел-утилизатор 6 для получения вторичного пара, а затем для улавливания катализаторной пыли и дальнейшего охлаждения - в скруббер 7, орошаемый водой. Дымовые газы из регенератора освобождаются от катализаторной пыли в электрофильтре 8, за­тем проходят через скруббер и выбрасываются в атмосферу.

Для восполнения потерь и поддержания активности к цирку­лирующему в системе катализатору ежесуточно добавляется све­жий. Очищенный контактный газ поступает в турбокомпрессор 9, давление нагнетания которого составляет около 0,5 МПа, и затем в систему конденсации 10, где в качестве хладагента последова­тельно применяются вода и кипящий пропан. Несконденсированный продукт направляется в абсорбер 11 . Поглощение произво­дится смесью углеводородов С 6 -C 12 . Растворенный бутилен от­гоняется в десорбере 12 и всмеси со сжиженным продуктом из конденсатора 10 поступает в систему ректификационных колонн 13 и 14. В колоннах от продукта дегидрирования отгоняются низ­ко- и высококипящие примеси (последние добавляются к цирку­лирующему абсорбенту для компенсации потерь.). Продукты де­гидрирования бутана направляются на блок экстративной ректи­фикации 15 для выделения бутиленовой фракции.

Дегидрирование бутилена до дивинила протекает на
хромкальцийфосфатном катализаторе по реакции
C 4 Н 8 ® C 4 Н 8 + H 2 , ΔН=119кДж.

Технологическая схема дегидрирования бутиленов изображена на рис.2.


Исходную бутиленовую фракцию и водяной пар пере­гревают в трубчатых печах 1 и 2 соответственно до 770 и 990 К, смешивают непосредственно перед реактором в инжекционном смесителе 3 и направляют в реакторный блок 4. Газопаровая смесь на выходе из реактора проходит «закалку» водным конденсатом, сразу охлаждаясь до 810 К. Каждый реак­тор снабжен котлом-утилизатором 5, пройдя который контактный газ дополнительно охлаждается и очищается в системе двух скруб­беров 6 и 7, первый из которых орошается дизельным топливом, а второй водой. В скрубберах полностью конденсируется водяной пар. После вы­хода из скруббера 7 газ сжимается в компрессоре 8 и конденсиру­ется в конденсационной системе 9. Несконденсировавшиеся угле­водороды дополнительно извлекаются в блоке абсорбер-десорбер 10 и 11 . Абсорбентом служат углеводороды С 6 -C 12 , образующиеся в качестве побочных продуктов. Суммарный сжиженный поток на­правляется на колонны 12 и 13 для предварительного отделения низко- и высококипящих примесей и далее на блок экстративной ректификации 14. Конверсия бутилена составляет в среднем 40- 45% при селективности по дивинилу около 85%.

ХЛОРИРОВАНИЕ ПАРАФИНОВ И ИХ ГАЛОГЕНПРОИЗВОДНЫХ

В промышленности осуществляют термическое хлорирование в газовой фазе при температуре, необходимой для активации мо­лекул хлора, дающей начало радикальной цепной реакции: С1 2 ® С1× + С1×

RH + С1× ® R + HCl

R + Cl 2 ® RCl + С1× и т. д.

Реакция замещения атомов водорода на атомы хлора приводит
к образованию смеси моно-, ди- и полихлорзамещенных продуктов и выделению хлороводорода.

Преимущественное образование того или иного продукта опре­деляется условиями реакции; температурным режимом и молеку­лярным соотношением углеводорода и хлора (рис. 3).

Хлорирование метана проводят в хлораторе (рис. 4), представляющем собой стальной цилиндри­ческий корпус, футерованный изнутри шамотным кирпичом 2, в верхней части которого расположена насадка из фарфоровых колец 3, способствующая равномерному протеканию реакции. Половина высоты внутренней части хлоратора занята от­крытым керамическим вертикальным цилиндром 4 с отверстиями внизу, в ко­торый опущена суженным кольцом кера­мическая труба, подающая сырье. Про­цесс начинают предварительным разо­греванием внутренней части хлоратора (для возбуждения реакции). Разогрева­ние производят сжиганием части метана в смеси с воздухом, с последующей за­меной воздуха хлором. В дальнейшем реакция идет автотермично. Продукты хлорирования отводятся из верхней час­ти аппарата, затем из газовой смеси в кислотных абсорберах улавливается водой хлороводород (получается соляная кислота), газовая смесь нейтрализуется щелочью, высушивается вымораживанием, сжимается и сжижается методом глубокого охлаждения. Из жидкой смеси, содержащей хлористого метила 28-32%, хлористого ме­тилена 50-53%, хлороформа 12-14% и тетрахлорида углерода 3-5% при помощи ректификации выделяют индивидуальные про­дукты.

Все хлорзамещенные метана находят широкое применение. Так, хлористый метил СН 3 С1 используют как растворитель в произ­водстве бутилкаучука, в качестве метилирующего вещества в ор­ганическом синтезе, для получения метилхлорсиланов, которые слу­жат исходным сырьем в производстве кремнийорганических поли­меров - силиконов. Хлористый метилен СН 2 С1 2 является ценным промышленным растворителем ацетилцеллюлозы, жиров, масел, парафина, каучуков; он не горюч и не образует взрывчатых смесей с воздухом.

ХЛОРИРОВАНИЕ БЕНЗОЛА

Хлорированием бензола получают монохлорбензол или другие хлорпроизводные в зависимости от условий хлорирования. Так, при 310-330 К и молярном отношении бензола и хлора 1:0,6 на железном катализаторе образуется монохлорбензол; при более низком соотношении и катализаторе А1С1 3 получается в основном о-дихлорбензол (используется в синтезе красителей и средств борьбы с сельскохозяйственными вредителями); при той же тем­пературе в условиях ультрафиолетового облучения получают гексахлорциклогексан. На рис. 5 дана схема получения хлорбензола с отводом теплоты экзотермической реакции за счет испарения избыточного бензола.

Хлорирование проводят в стальном цилиндрическом аппарате,

футерованном кислотоупорным кирпичом, с насадкой из желез­ных и керамических колец. Смесь све­жего и оборотного бензола, обезвожен­ная азеотропной перегонкой, и сухой эле­ктрический хлор непрерывно поступают в хлоратор 1. Хлорид железа, образую­щийся за счет коррозии железных колец насадки, катализирует процесс хлориро­вания; температура реакции, поддержи­ваемая в пределах 76-85°С, обусловли­вает испарение избыточного бензола. Разделение реакционной массы происхо­дит в верхней части аппарата 2. Путем последовательной промывки сырого хлор­бензола водой и содовым раствором с последующим фракционированием полу чают чистый хлорбензол. Хлорбензолиспользуют в качестве растворителя, для получения фенола, красителей, инсектицидов.

ПРОБЛЕМА ИСПОЛЬЗОВАНИЯ ХЛОРОВОДОРОДА, ОБРАЗУЮЩЕГОСЯ В ПРОЦЕССАХ ХЛОРИРОВАНИЯ УГЛЕВОДОРОДОВ

Хлороводород является отходом хлориро­вания парафиновых и ароматических углеводородов нефтепереработки, широко применяемого в промыш­ленном органическом синтезе. Утилизация представляет собой актуальную задачу, связанную с удешевлением продуктов хлориро­вания, улучшением санитарных условий, борьбой с коррозией ме­таллов.

Часть хлороводорода используется для производства соляной кислоты путем противоточной абсорбции НС1 водой. Однако мест­ные потребности в соляной кислоте обычно много меньше, чем возможности ее производства из хлороводорода. Транспорт со­ляной кислоты на дальние расстояния затруднен ввиду ее большой коррозионной способности.

Перспективным путем утилизации НС1 является метод окисли­тельного хлорирования. Этим методом в современной промышленности синтезируют из этилена винилхлорид: в реакторе окисли­тельного хлорирования этилен превращается в 1,2-дихлорэтан, каталитическим разложением которого получают хлористый винил; образующийся при этом НС1 вновь направляют в реактор:

2СН 2 = СН 2 + 4НС1 + О 2 ® 2СН 2 С1-СН 2 С1 + 2Н 2 О, ΔН = –238 кДж/моль СН 2 С1-СН 2 С1 ® СН 2 = CHCI + НС1.

Процесс окислительного хлорирования идет при 530-570 К в присутствии катализатора (хлорная медь на инертном носителе); пиролиз дихлорэтана проводят при 770 К на пористом катализа­торе (пемза).


На рис. 6 показана упрощенная схема синтеза винилхлорида из этилена. В смесителе 1 этилен, рециркулирующий газ и хлороводород смешиваются с кислородом и поступают в реактор 2 с псевдоожиженным катализатором; пары образовавшегося ди­хлорэтана и непрореагировавшие этилен, кислород и НС1 охлаж­даются в холодильнике непосредственного смешения 3 смесью во­ды и дихлорэтана, поступающих из холодильника 4. Затем газо­паровая смесь проходит горячий щелочной скруббер 5, в котором очищается от НCl и СО 2 , охлаждается в холодильнике и, прохо­дя газоотделитель 6, отделяется от газов - смеси этилена и кис­лорода, которые возвращаются в реактор (рециркулирующий газ). Дихлорэтан в сепараторе 7 отделяется от воды, поступает в осу­шительную колонну 8, где с помощью азеотропной перегонки окончательно обезвоживается и подается в ректификационную ко­лонну 9; дихлорэтан собирается в сборнике 10. Последующий пи­ролиз дихлорэтана с получением винилхлорида происходит в труб­чатой печи 11 ; реакционная смесь из печи поступает в холодиль­ник непосредственного смешения, охлаждается циркулирующим охлажденным дихлорэтаном и, пройдя холодильник 4, поступает в ректификационную колонну 12, где отделяется НС1, который возвращается в реактор окислительного хлорирования, а винил-хлорид и непревращенный дихлорэтан разделяются в ректифика­ционной колонне 13; дихлорэтан возвращается в колонну 9, а винилхлорид поступает на полимеризацию.

Значительный интерес для утилизации представляет комби­нирование предприятий на базе газов нефтепереработки, в част­ности совместная переработка этилена и ацетилена и винилхлорид; хлороводород, образующийся при получении винилхлорида из этилена, используют для гидрохлорирования ацетилена:

СН 2 =СН 2 + С1 2 ® СН 2 С1-СН 2 С1(пиролиз)® СН 2 = СНС1 + HCI

СНºСН + НС1 ® СН 2 = СНС1

Экономичным способом утилизации хлороводорода является комбинирование хлорирования метана с окислительным хлориро­ванием в целях получения хлорзамещенных метана:

СН 4 + 4С1 2 ® CCI 4 + 4HCI

СН 4 + 4НС1 + О 2 ® СС! 4 + 2Н 2 О

В этом процессе кроме тетрахлорида углерода получают метиленхлорид и хлороформ. Тетрахлорид углерода применяют как растворитель, в сельском хозяйстве (фумигант), для тушения по­жаров и др. Хлороформ - ценный промежуточный продукт в син­тезе фенолов, фторопластов и др.

Окислительным хлорированием получают также хлорбензол из парогазовой смеси бензола, хлороводорода и воздуха (кисло­рода) при 500 К на смешанном катализаторе (А1 2 О 3 -СuС1 2 - FeCl 3):

С 6 Н 6 + НС1 + 1/ 2 О 2 ® С 6 Н 5 С1 + Н 2 О

Для утилизации хлороводорода можно применять электрохимическое окисление его в хлор.

Предложен хромцезиевый катализатор и способ применения его для окисления хлороводорода до хлора, т. е. регенерации хло­ра из отходящих газов хлорирования органических соединений.

ПРОИЗВОДСТВО АЦЕТИЛЕНА И ЕГО ПЕРЕРАБОТКА

Производство ацетилена разложением карбида кальция осуществляют в ацетиленовых генераторах мокрым и сухим способами по уравнению реакции:

СаС 2 + 2Н 2 О ® С 2 Н 2 + Са (ОН) 2 ΔH= –127 кДж.

При мокром способе в генераторах, работающих по принципу «карбид в воду», дробленый карбид кальция равномерно подается в генератор, содержащий большое количество воды, за счет нагре­вания которой и отводится выделяющаяся в ходе процесса тепло­та. Применяемая по этой схеме аппаратура и особенно коммуни­кации для удаления образующегося шлама и циркуляция воды очень громоздки. Кроме того, большие затруднения вызывают транспортировка и использование жидкого известкового молока, содержащего до 70% воды.

Разработаны также эффективные промышленные способы полу­чения ацетилена из углеводородов. Ацетилен из парафинов обра­зуется по следующим обратимым эндотермическим реакциям:

2СН 4 D С 2 Н 2 + Н 2 ΔН = 376 кДж

С 2 Н 6 D С 2 Н 2 + 2Н 2 ΔН = 311 кДж

С 3 Н 8 D С 2 Н 2 + СН 4 + Н 2 ΔН = 255 кДж

СН 4 D С + 2Н 2 ΔН = 88 кДж

Реакция (г) является побочной.

Равновесие реакций при увеличении температуры смещается в сторону образования ацетилена. Высокая степень равновесной конверсии для метана достигается при Т>1670 К, для этана - 1170 К. Но при температурах >1680 К ацетилен и углеводороды становятся неустойчивыми и разлагаются на сажу и углерод.

Реакция превращения метана в ацетилен при принятых в производстве температурах 1670-1770 К идет быстрее реакции распада ацетилена на элементы, поэтому продукты реакции быстро охлаждают, что позволяет предупредить разложение ацетилена, с этой же целью применяют высокие объемные скорости газа, при которых сырье должно находиться в реакционной зоне только тысячные доли секунды.

По способу подвода теплоты для осуществления экзотермиче­ской реакции образования ацетилена различают следующие мето­ды проведения процесса: 1) электрокрекинг газообразных углево­дородов или жидких продуктов; 2) гомогенный пиролиз; 3) термо­окислительный пиролиз.

Электрокрекинг проводится при помощи вольтовой дуги в электродуговых печах постоянного тока.

Гомогенный пиролиз заключается в разложении сырья в потоке горячих топочных газов при температу­ре около 2200 К.

В термоокислительном пиролизе необходимая теплоиа получается за счет сжигания части метана.

Основными недостатками карбидного метода получения ацетилена являются большой расход электроэнергии при про­изводстве карбида кальция и значитель­ное количество потребляемого сырья (из­вестняка и кокса), перерабатываемого в несколько стадий. В то же время при карбидном способе получается концентрированный ацетилен, очистка которого от небольших примесей не вызывает затрудне­ний.

В методах термического расщепления углеводородов исполь­зуется меньшее количество сырья, которое превращается в аце­тилен в одну стадию, но ацетилен получается разбавленным и тре­буется сложная система его очистки и концентрирования. Необхо­димо отметить, что карбидный способ дает около 70% мирового производства ацетилена.

Существуют следующие основные методы первичной переработ­ки ацетилена.

Гидратация :

а) с получением ацетальдегида и уксусной кис­лоты (катализатор(HgSO 4):

б) с получением ацетона (катализатор ZnO на активирован­ном угле)

2СН = СН + 3Н 2 О ® СН 3 СОСН 3 + СО 2 + 2Н 2

Полимеризация в линейные и циклические вещества для получения мономеров синтетического каучука и волокон.

Хлорирование с получением растворителей и мономеров.

Винилирование ацетиленом различных веществ с получением мономеров:

ROH ® ROCH=CH 2

RCOOH ® RCOOCH=CH 2

Углеводороды - очень большой класс соединений, относящихся к органическим. Они включают в себя несколько основных групп веществ, среди которых практически каждое находит широкое применение в промышленности, быту, природе. Особенное значение имеют галогенопроизводные углеводороды, о которых и пойдет речь в статье. Они имеют не только высокое промышленное значение, но и являются важным сырьем при множестве химических синтезов, получении лекарственных средств и прочих важных соединений. Уделим особое внимание строению их молекул, свойствам и другим особенностям.

Галогенопроизводные углеводороды: общая характеристика

С точки зрения химической науки, к данному классу соединений относятся все те углеводороды, в которых один или несколько атомов водорода замещены на тот или иной галоген. Это очень обширная категория веществ, так как они имеют важное промышленное значение. В течение довольно короткого времени люди научились синтезировать практически все галогенопроизводные углеводородов, применение которых необходимо в медицине, химической отрасли, пищевой промышленности и быту.

Основной метод получения данных соединений - это синтетический путь в лаборатории и промышленности, так как в природе практически ни один из них не встречается. Вследствие наличия атома галогена они обладают высокой реакционной способностью. Это во многом определяет области их применения в химических синтезах как промежуточных продуктов.

Так как представителей галогенопроизводные углеводороды имеют много, принято классифицировать их по разным признакам. В основу ложится как строение цепи и кратность связи, так и различие в атомах галогенов и месте их положения.

Галогенопроизводные углеводородов: классификация

Первый вариант разделения основан на общепринятых принципах, которые применяются для всех Классификация основана на различии в типе углеродной цепи, ее цикличности. По данному признаку выделяют:

  • предельные галогенопроизводные углеводороды;
  • непредельные;
  • ароматические;
  • алифатические;
  • ациклические.

Следующее разделение основано на виде атома галогена и его количественном содержании в составе молекулы. Так, выделяют:

  • монопроизводные;
  • дипроизводные;
  • три-;
  • тетра-;
  • пентапроизводные и так далее.

Если говорить о виде галогена, то тогда название подгруппы состоит из двух слов. Например, монохлорпроизводное, трийодпроизводное, тетрабромгалогеналкен и так далее.

Также существует еще один вариант классификации, по которому разделяются преимущественно галогенопроизводные предельных углеводородов. Это номер атома углерода, к которому присоединен галоген. Так, выделяют:

  • первичные производные;
  • вторичные;
  • третичные и так далее.

Каждого конкретного представителя можно ранжировать по всем признакам и определить полное место в системе органических соединений. Так, например, соединение с составом СН 3 - СН 2 -СН=СН-CCL 3 можно классифицировать так. Это непредельное алифатическое трихлорпроизводное пентена.

Строение молекулы

Наличие атомов галогена не может не сказаться как на физических и химических свойствах, так и на общих чертах строения молекулы. Общая формула для данного класса соединений имеет вид R-Hal, где R - свободный углеводородный радикал любого строения, а Hal - атом галогена, один или несколько. Связь между углеродом и галогеном сильно поляризована, вследствие чего молекула в целом склонна к двум эффектам:

  • отрицательный индуктивный;
  • мезомерный положительный.

При этом первый из них выражен значительно сильнее, поэтому атом Hal всегда проявляет свойства электроноакцепторного заместителя.

В остальном все особенности строения молекулы ничем не отличаются от таковых у обычных углеводородов. Свойства объясняются строением цепи и ее разветвленностью, количеством атомов углерода, силой ароматических признаков.

Особого внимания заслуживает номенклатура галогенопроизводных углеводородов. Как правильно следует называть данные соединения? Для этого нужно соблюдать несколько правил.

  1. Нумерация цепи начинается с того края, к которому ближе расположен атом галогена. Если же имеется какая-либо кратная связь, то отсчет начинается именно с нее, а не с электроноакцепторного заместителя.
  2. Название Hal указывается в префиксе, также следует указывать номер атома углерода, от которого он отходит.
  3. Последним шагом дается название основной цепи атомов (либо кольцу).

Пример подобного названия: СН 2 =СН-CHCL 2 - 3-дихлорпропен-1.

Также название можно давать и по В этом случае произносится наименование радикала, а затем - галогена с суффиксом -ид. Пример: СН 3 -СН 2 -СН 2 Br - пропилбромид.

Как и другие классы органических соединений, галогенопроизводные углеводороды строение имеют особенное. Это позволяет многих представителей обозначать исторически сложившимися названиями. Например, фторотан CF 3 CBrClH. Наличие сразу трех галогенов в составе молекулы обеспечивает данному веществу особые свойства. Его применяют в медицине, поэтому чаще пользуются именно исторически сложившимся названием.

Способы синтеза

Способы получения галогенопроизводных углеводородов достаточно разнообразны. Можно выделить пять основных методов синтеза данных соединений в лаборатории и промышленности.

  1. Галогенирование обычных углеводородов нормального строения. Общая схема реакции: R-H + Hal 2 → R-Hal + HHal. Особенности протекания процесса заключаются в следующем: с хлором и бромом обязательно нужно ультрафиолетовое облучение, с йодом реакция практически невозможна либо очень медленна. С фтором взаимодействие слишком активное, поэтому использовать данный галоген в чистом виде нельзя. Кроме того, при галогенировании ароматических производных нужно использовать особые катализаторы процесса - кислоты Льюиса. Например, хлорид железа или алюминия.
  2. Получение галогенопроизводных углеводородов осуществляется также путем гидрогалогенирования. Однако для этого исходным соединением обязательно должен быть непредельный углеводород. Пример: R=R-R + HHal → R-R-RHal. Чаще всего подобное используется для получения хлорэтилена или винилхлорида, так как это соединение является важным сырьем для промышленных синтезов.
  3. Воздействие гидрогалогенов на спирты. Общий вид реакции: R-OH + HHal→R-Hal + H 2 O. Особенностью является обязательное наличие катализатора. Примеры ускорителей процесса, которые можно использовать: хлориды фосфора, серы, цинка или железа, серная кислота, раствор в соляной кислоте - реактив Лукаса.
  4. Декарбоксилирование солей кислот при окисляющем агенте. Другое название способа - реакция Бородина-Хунсдиккера. Суть заключается в отщеплении молекулы углекислого газа от серебряных производных при воздействии окисляющего агента - галогена. В результате образуются галогенопроизводные углеводородов. Реакции в общем виде выглядят так: R-COOAg + Hal → R-Hal + CO 2 + AgHal.
  5. Синтез галоформов. Другими словами, это получение тригалогенпроизводных метана. Самый простой способ их производства - воздействие на ацетон щелочным раствором галогенов. В результате и происходит формирование галоформных молекул. Таким же способом синтезируются в промышленности галогенопроизводные ароматических углеводородов.

Особое внимание следует уделить синтезу непредельных представителей рассматриваемого класса. Основной метод - это воздействие на алкины солями ртути и меди в присутствие галогенов, которое приводит к образованию продукта с двойной связью в цепи.

Галогенопроизводные ароматических углеводородов получаются по реакциям галогенирования аренов или алкиларенов в боковую цепь. Это важные промышленные продукты, так как именно они используются в качестве инсектицидов в сельском хозяйстве.

Физические свойства

Галогенопроизводных углеводородов напрямую зависят от строения молекулы. На температуры кипения и плавления, агрегатное состояние влияют количество атомов углерода в цепи и возможные ответвления в боковую часть. Чем их больше, тем показатели становятся выше. В целом можно охарактеризовать физические параметры в нескольких пунктах.

  1. Агрегатное состояние: первые низшие представители - газы, последующие до С 12 - жидкости, выше - твердые тела.
  2. Имеют резкий неприятный специфический запах практически все представители.
  3. Очень плохо растворимы в воде, однако сами - отличные растворители. В органических соединениях растворяются очень хорошо.
  4. Температуры кипения и плавления увеличиваются с ростом числа атомов углерода в главной цепи.
  5. Все соединения, кроме фторпроизводных, тяжелее воды.
  6. Чем больше разветвлений в главной цепи, тем ниже температура кипения вещества.

Сложно обозначить множество сходных общих черт, ведь представители сильно различаются по составу и строению. Поэтому лучше приводить значения для каждого конкретного соединения из данного ряда углеводородов.

Химические свойства

Одним из самых важных параметров, который обязательно учитывается в химической промышленности и реакциях синтеза, являются химические свойства галогенопроизводных углеводородов. Они неодинаковы для всех представителей, так как есть ряд причин, обусловливающих различие.

  1. Строение углеродной цепи. Проще всего реакции замещения (нуклеофильного типа) происходят у вторичных и третичных галогеналкилов.
  2. Вид атома галогена также имеет важное значение. Связь между углеродом и Hal сильно поляризована, что и обеспечивает легкий ее разрыв с высвобождением свободных радикалов. Однако проще всего рвется связь именно между йодом и углеродом, что объясняется закономерным изменением (уменьшением) энергии связи в ряду: F-Cl-Br-I.
  3. Наличие ароматического радикала или кратных связей.
  4. Строение и разветвленность самого радикала.

В целом лучше всего галогеналкилы вступают в реакции именно нуклеофильного замещения. Ведь на атоме углерода после разрыва связи с галогеном концентрируется частично положительный заряд. Это позволяет радикалу в целом становиться акцептором элетроноотрицательных частиц. Например:

  • ОН - ;
  • SO 4 2- ;
  • NO 2 - ;
  • CN - и прочие.

Этим объясняется тот факт, что от галогенпроизводных углеводородов можно перейти практически к любому классу органических соединений, нужно лишь подобрать соответствующий реагент, который предоставит нужную функциональную группу.

В общем можно сказать, что химические свойства галогенопроизводных углеводородов заключаются в способности вступать в следующие взаимодействия.

  1. С нуклеофильными частицами разного рода - реакции замещения. В результате могут получиться: спирты, простые и нитросоединения, амины, нитрилы, карбоновые кислоты.
  2. Реакции элиминирования или дегидрогалогенирования. В результате воздействия спиртового раствора щелочи происходит отщепление молекулы галогеноводорода. Так формируется алкен, низкомолекулярные побочные продукты - соль и вода. Пример реакции: CH 3 -CH 2 -CH 2 -CH 2 Br + NaOH (спирт) →CH 3 -CH 2 -CH=CH 2 + NaBr + H 2 O . Данные процессы - один из основных способов синтеза важных алкенов. Процесс всегда сопровождается действием высоких температур.
  3. нормального строения по методу синтеза Вюрца. Суть реакции заключается в воздействии на галогенозамещенный углеводород (две молекулы) металлическим натрием. Как сильно электроположительный ион, натрий акцептирует атомы галогена из соединения. В результате освободившиеся углеводородные радикалы замыкаются между собой связью, формируя алкан нового строения. Пример: CH 3 -CH 2 Cl + CH 3 -CH 2 Cl + 2Na →CH 3 -CH 2 -CH 2 -CH 3 + 2NaCl.
  4. Синтез гомологов ароматических углеводородов по методу Фриделя-Крафтса. Суть процесса - в воздействии на бензол галогеналкилом в присутствии хлорида алюминия. В результате реакции замещения происходит образование толуола и хлороводорода. В данном случае присутствие катализатора является необходимым. Помимо самого бензола таким способом можно окислять и его гомологи.
  5. Получение жидкости Греньяра. Этот реактив представляет собой галогенозамещенный углеводород с ионом магния в составе. Изначально осуществляется воздействие металлическим магнием в эфире на производный галогеналкил. В результате формируется комплексное соединение с общей формулой RMgHal, именуемое реактивом Греньяра.
  6. Реакции восстановления до алкана (алкена, арена). Осуществляются при воздействии водородом. В результате формируется углеводород и побочный продукт - галогеноводород. Пример в общем виде: R-Hal + H 2 →R-H + HHal.

Это основные взаимодействия, в которые способны легко вступать галогенпроизводные углеводородов разного строения. Конечно, есть и специфические реакции, которые следует рассматривать для каждого конкретного представителя.

Изомерия молекул

Изомерия галогенопроизводных углеводородов - вполне естественное явление. Ведь известно, что чем больше атомов углерода в цепи, тем выше количество изомерных форм. Кроме того, непредельные представители имеют кратные связи, что также становится причиной появления изомеров.

Можно выделить две основные разновидности данного явления для этого класса соединений.

  1. Изомерия углеродного скелета радикала и основной цепи. Сюда же можно отнести и положение кратной связи, если она имеется в молекуле. Как и у простых углеводородов, начиная с третьего представителя можно записывать формулы соединений, имеющих идентичные молекулярные, но различные структурные формульные выражения. Причем, для галогенозамещенных углеводородов количество изомерных форм на порядок выше, чем для соответствующих им алканов (алкенов, алкинов, аренов и так далее).
  2. Положение галогена в составе молекулы. Его место в названии указывается цифрой, и даже если меняется всего на единицу, то свойства таких изомеров будут уже совсем различны.

О пространственной изомерии здесь речь не идет, поскольку атомы галогена делают это невозможным. Как и у всех остальных органических соединений, у галогеналкилов изомеры отличаются не только по строению, но и по физическим и химическим характеристикам.

Производные непредельных углеводородов

Подобных соединений, конечно, много. Однако нас интересуют именно галогенопроизводные непредельных углеводородов. Их же можно разделить на три основные группы.

  1. Винильные - когда атом Hal располагается непосредственно у атома углерода кратной связи. Пример молекулы: СН 2 =CCL 2.
  2. С изолированным положением. Атом галогена и кратная связь располагаются в противоположных частях молекулы. Пример: СН 2 =СН-СН 2 -СН 2 -Cl.
  3. Аллильные производные - атом галогена расположен к двойной связи через один атом углерода, то есть находится в альфа-положении. Пример: СН 2 =СН-СН 2 -CL.

Особое значение имеет такое соединение, как хлористый винил СН 2 =CHCL. Оно способно к с образованием важных продуктов, таких, как изоляционные материалы, непромокаемые ткани и прочее.

Еще один представитель непредельных галогенпроизводных - хлоропрен. Формула его - СН₂=CCL-СН=СН₂. Это соединение является исходным сырьем для синтеза ценных видов каучука, которые отличаются огнеустойчивостью, долгим сроком службы, плохой проницаемостью для газов.

Тетрафторэтилен (или тефлон) - полимер, который обладает качественными техническими параметрами. Используется для изготовления ценного покрытия технических деталей, посуды, различных приборов. Формула - CF 2 =CF 2 .

Ароматические углеводороды и их производные

Ароматическими называют те соединения, в состав которых входит бензольное кольцо. Среди них также есть целая группа галогенопроизводных. Можно выделить два основных типа их по строению.

  1. Если атом Hal связан непосредственно с ядром, то есть кольцом ароматическим, то тогда соединения принято называть галогенаренами.
  2. Атом галогена связан не с кольцом, а с боковой цепью атомов, то есть радикалом, отходящим в боковую ветвь. Такие соединения называются арилалкил галогенидами.

Среди рассматриваемых веществ можно назвать несколько представителей, имеющих наибольшее практическое значение.

  1. Гексахлорбензол - С 6 Cl 6 . С начала XX века использовался как сильный фунгицид, а также инсектицид. Обладает хорошим дезинфицирующим действием, поэтому его применяли для протравки семян перед высевкой. Имеет неприятный запах, жидкость достаточно едкая, прозрачная, может вызывать слезотечение.
  2. Бромистый бензил С 6 Н 5 СН 2 Br. Используется в качестве важного реагента при синтезе металлорганических соединений.
  3. Хлорбензол С 6 Н 5 CL. Жидкое бесцветное вещество, обладающее специфическим запахом. Используется при производстве красителей, пестицидов. Является одним из лучших органических растворителей.

Использование в промышленности

Галогенопроизводные углеводородов применение себе в промышленности и химических синтезах находят очень широкое. О непредельных и ароматических представителях мы уже сказали. Теперь обозначим в целом области использования всех соединений подобного ряда.

  1. В строительстве.
  2. В качестве растворителей.
  3. При производстве тканей, резины, каучуков, красителей, полимерных материалов.
  4. Для синтеза многих органических соединений.
  5. Фторпроизводные (фреоны) - это хладагенты в холодильных установках.
  6. Используются в качестве пестицидов, инсектицидов, фунгицидов, масел, олифы, смол, смазочных материалов.
  7. Идут на изготовление изоляционных материалов и пр.

Характерные химические свойства углеводородов: алканов, алкенов, диенов, алкинов, ароматических углеводородов

Алканы

Алканы — углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле $С_{n}Н_{2n+2}$.

Гомологический ряд метана

Как вы уже знаете, гомологи — это вещества, сходные по строению и свойствам и отличающиеся на одну или более групп $СН_2$.

Предельные углеводороды составляют гомологический ряд метана.

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Как вам уже известно, простейший алкан, для которого характерны структурные изомеры, — это бутан:

Рассмотрим подробнее для алканов основы номенклатуры ИЮПАК:

1. Выбор главной цепи.

Формирование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

2.

Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (—$СН_3$), затем пропил ($—СН_2—СН_2—СН_3$), этил ($—СН_2—СН_3$) и т. д.

Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

3. Формирование названия.

В начале названия указывают цифры — номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую ($2.2-$). После номера через дефис указывают количество заместителей (ди — два, три — три, тетра — четыре, пента — пять) и название заместителя (метил, этил, пропил ). Затем без пробелов и дефисов — название главной цепи. Главная цепь называется как углеводород — член гомологического ряда метана (метан, этан, пропан и т. д. ).

Названия веществ, структурные формулы которых приведены выше, следующие:

— структура А: $2$-метилпропан;

— структура Б: $3$-этилгексан;

— структура В: $2,2,4$-триметилпентан;

— структура Г: $2$-метил $4$-этилгексан.

Физические и химические свойства алканов

Физические свойства. Первые четыре представителя гомологического ряда метана — газы. Простейший из них — метан — газ без цвета, вкуса и запаха (запах газа, почувствовав который, надо звонить $104$, определяется запахом меркаптанов — серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от $С_5Н_{12}$ до $С_{15}Н_{32}$ — жидкости; более тяжелые углеводороды — твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства.

1. Реакции замещения. Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

$CH_4+Cl_2→CH_3Cl+HCl$.

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

$CH_3Cl+Cl_2→HCl+{CH_2Cl_2}↙{\text"дихлорметан(хлористый метилен)"}$,

$CH_2Cl_2+Cl_2→HCl+{CHСl_3}↙{\text"трихлорметан(хлороформ)"}$,

$CHCl_3+Cl_2→HCl+{CCl_4}↙{\text"тетрахлорметан(четыреххлористый углерод)"}$.

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). В ходе пропускания алканов над катализатором ($Pt, Ni, Al_2O_3, Cr_2O_3$) при высокой температуре ($400-600°С$) происходит отщепление молекулы водорода и образование алкена:

$CH_3—CН_3→СH_2=CH_2+Н_2$

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов — это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

$СН_4+2О_2→СО_2+2Н_2O+880 кДж.$

В общем виде реакцию горения алканов можно записать следующим образом:

$C_{n}H_{2n+2}+({3n+1}/{2})O_2→nCO_2+(n+1)H_2O$

Термическое расщепление углеводородов:

$C_{n}H_{2n+2}{→}↖{400-500°C}C_{n-k}H_{2(n-k)+2}+C_{k}H_{2k}$

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов:

$R—CH_2CH_2:CH_2—R→R—CH_2CH_2·+·CH_2—R$.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

$R—CH_2CH_2·+·CH_2—R→R—CH=CH_2+CH_3—R$.

Реакции термического расщепления лежат в основе промышленного процесса — крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры $1000°С$ начинается пиролиз метана — разложение на простые вещества:

$CH_4{→}↖{1000°C}C+2H_2$

При нагревании до температуры $1500°С$ возможно образование ацетилена:

$2CH_4{→}↖{1500°C}CH=CH+3H_2$

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация. Алканы с шестью и более углеродными атомами в цепи в присутствии катализатора циклизируются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии $sp^3$-гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных $С—С$ (углерод — углерод) связей и слабополярных $С—Н$ (углерод — водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т.е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т.к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Алкены

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкадиены (полиены), алкины. Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство непредельности связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов — алканов.

Алкены — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n}$.

Свое второе название — олефины — алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров — масел (от лат. oleum — масло).

Гомологический ряд этена

Неразветвленные алкены составляют гомологический ряд этена (этилена):

$С_2Н_4$ — этен, $С_3Н_6$ — пропен, $С_4Н_8$ — бутен, $С_5Н_{10}$ — пентен, $С_6Н_{12}$ — гексен и т. д.

Изомерия и номенклатура

Для алкенов, так же, как и для алканов, характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, — это бутен:

Особым видом структурной изомерии является изомерия положения двойной связи:

$СН_3—{СН_2}↙{бутен-1}—СН=СН_2$ $СН_3—{СН=СН}↙{бутен-2}—СН_3$

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии — геометрической, или цис-транс изомерии.

Цис- изомеры отличаются от транс- изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости $π$-связи, а следовательно, и свойствами.

Алкены изомерны циклоалканам (межклассовая изомерия), например:

Номенклатура алкенов, разработанная ИЮПАК, схожа с номенклатурой алканов.

1. Выбор главной цепи.

Образование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

2. Нумерация атомов главной цепи.

Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. Например, правильное название соединения:

$5$-метилгексен-$2$, а не $2$-метилгексен-$4$, как можно было бы предположить.

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей, так же, как для предельных углеводородов.

3. Формирование названия.

Названия алкенов формируются так же, как и названия алканов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс, обозначающий принадлежность соединения к классу алкенов, — -ен.

Например:

Физические и химические свойства алкенов

Физические свойства. Первые три представителя гомологического ряда алкенов — газы; вещества состава $С_5Н_{10}$ - $С_{16}Н_{32}$ — жидкости; высшие алкены — твердые вещества.

Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства.

Реакции присоединения. Напомним, что отличительной чертой представителей непредельных углеводородов — алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму

1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов — платины, палладия, никеля:

$CH_3—CH_2—CH=CH_2+H_2{→}↖{Pt}CH_3—CH_2—CH_2—CH_3$.

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т.к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция — дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе ($CCl_4$) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалоген алканов:

$СН_2=СН_2+Br_2→CH_2Br—CH_2Br$.

3.

$CH_3-{CH}↙{пропен}=CH_2+HBr→CH_3-{CHBr}↙{2-бромпропен}-CH_3$

Эта реакция подчиняется правилу Марковникова:

При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т.е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.

Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:

${CH_2}↙{этен}=CH_2+H_2O{→}↖{t,H_3PO_4}CH_3-{CH_2OH}↙{этанол}$

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

Эта реакция протекает также в соответствии с правилом Марковникова — катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа — к менее гидрированному.

5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

$nCH_2{=}↙{этен}CH_2{→}↖{УФ-свет,R}(...{-CH_2-CH_2-}↙{полиэтилен}...)_n$

Эта реакция присоединения протекает по свободнорадикальному механизму.

6. Реакция окисления.

Как и любые органические соединения, алкены горят в кислороде с образованием $СО_2$ и $Н_2О$:

$СН_2=СН_2+3О_2→2СО_2+2Н_2О$.

В общем виде:

$C_{n}H_{2n}+{3n}/{2}O_2→nCO_2+nH_2O$

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:

Алкадиены (диеновые углеводороды)

Алкадиены — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, две двойные связи между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n-2}$.

В зависимости от взаимного расположения двойных связей различают три вида диенов:

— алкадиены с кумулированным расположением двойных связей:

— алкадиены с сопряженными двойными связями;

$CH_2=CH—CH=CH_2$;

— алкадиены с изолированными двойными связями

$CH_2=CH—CH_2—CH=CH_2$.

Эти все три вида алкадиенов существенно отличаются друг от друга по строению и свойствам. Центральный атом углерода (атом, образующий две двойные связи) в алкадиенах с кумулированными связями находится в состоянии $sp$-гибридизации. Он образует две $σ$-связи, лежащие на одной прямой и направленные в противоположные стороны, и две $π$-связи, лежащие в перпендикулярных плоскостях. $π$-Связи образуются за счет негибридизированных р-орбиталей каждого атома углерода. Свойства алкадиенов с изолированными двойными связями весьма специфичны, т.к. сопряженные $π$-связи существенно влияют друг на друга.

р-Орбитали, образующие сопряженные $π$-связи, составляют практически единую систему (ее называют $π$-системой), т.к. р-орбитали соседних $π$-связей частично перекрываются.

Изомерия и номенклатура

Для алкадиенов характерна как структурная изомерия, так и цис-, транс-изомерия.

Структурная изомерия.

изомерия углеродного скелета:

изомерия положения кратных связей:

${CH_2=CH—CH=CH_2}↙{бутадиен-1,3}$ ${CH_2=C=CH—CH_3}↙{бутадиен-1,2}$

Цис-, транс- изомерия (пространственная и геометрическая)

Например:

Алкадиены изомерны соединениям классов алкинов и циклоалкенов.

При формировании названия алкадиена указывают номера двойных связей. Главная цепь должна обязательно содержать две кратные связи.

Например:

Физические и химические свойства алкадиенов

Физические свойства.

В обычных условиях пропандиен-1,2, бутадиен-1,3 — газы, 2-метилбутадиен-1,3 — летучая жидкость. Алкадиены с изолированными двойными связями (простейший из них — пентадиен-1,4) — жидкости. Высшие диены — твердые вещества.

Химические свойства.

Химические свойства алкадиенов с изолированными двойными связями мало отличаются от свойств алкенов. Алкадиены с сопряженными связями обладают некоторыми особенностями.

1. Реакции присоединения. Алкадиены способны присоединять водород, галогены, галогеноводороды.

Особенностью присоединения к алкадиенам с сопряженными связями является способность присоединять молекулы как в положениях 1 и 2, так и в положениях 1 и 4.

Соотношение продуктов зависит от условий и способа проведения соответствующих реакций.

2. Реакция полимеризации. Важнейшим свойством диенов является способность полимеризоваться под воздействием катионов или свободных радикалов. Полимеризация этих соединений является основой синтетических каучуков:

$nCH_2={CH—CH=CH_2}↙{бутадиен-1,3}→{(... —CH_2—CH=CH—CH_2— ...)_n}↙{\text"синтетический бутадиеновый каучук"}$.

Полимеризация сопряженных диенов протекает как 1,4-присоединение.

В этом случае двойная связь оказывается центральной в звене, а элементарное звено, в свою очередь, может принимать как цис- , так и транс- конфигурацию.

Алкины

Алкины — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну тройную связь между атомами углерода и соответствующие общей формуле $С_{n}Н_{2n-2}$.

Гомологический ряд этина

Неразветвленные алкины составляют гомологический ряд этина (ацетилена):

$С_2Н_2$ — этин, $С_3Н_4$ — пропин, $С_4Н_6$ — бутин, $С_5Н_8$ — пентин, $С_6Н_{10}$ — гексин и т. д.

Изомерия и номенклатура

Для алкинов, так же как и для алкенов, характерна структурная изомерия: изомерия углеродного скелета и изомерия положения кратной связи. Простейший алкин, для которого характерны структурные изомеры положения кратной связи класса алкинов, — это бутин:

$СН_3—{СН_2}↙{бутин-1}—С≡СН$ $СН_3—{С≡С}↙{бутин-2}—СН_3$

Изомерия углеродного скелета у алкинов возможна, начиная с пентина:

Так как тройная связь предполагает линейное строение углеродной цепи, геометрическая (цис-, транс- ) изомерия для алкинов невозможна.

Наличие тройной связи в молекулах углеводородов этого класса отражается суффиксом -ин , а ее положение в цепи — номером атома углерода.

Например:

Алкинам изомерны соединения некоторых других классов. Так, химическую формулу $С_6Н_{10}$ имеют гексин (алкин), гексадиен (алкадиен) и циклогексен (циклоалкен):

Физические и химические свойства алкинов

Физические свойства. Температуры кипения и плавления алкинов, так же, как и алкенов, закономерно повышаются при увеличении молекулярной массы соединений.

Алкины имеют специфический запах. Они лучше растворяются в воде, чем алканы и алкены.

Химические свойства.

Реакции присоединения. Алкины относятся к непредельным соединениям и вступают в реакции присоединения. В основном это реакции электрофильного присоединения.

1. Галогенирование (присоединение молекулы галогена). Алкин способен присоединить две молекулы галогена (хлора, брома):

$CH≡CH+Br_2→{CHBr=CHBr}↙{1,2-дибромэтан},$

$CHBr=CHBr+Br_2→{CHBr_2-CHBr_2}↙{1,1,2,2-тетрабромэтан}$

2. Гидрогалогенирование (присоединение галогеноводорода). Реакция присоединения галогеноводорода, протекающая по электрофильному механизму, также идет в две стадии, причем на обеих стадиях выполняется правило Марковникова:

$CH_3-C≡CH+Br→{CH_3-CBr=CH_2}↙{2-бромпропен},$

$CH_3-CBr=CH_2+HBr→{CH_3-CHBr_2-CH_3}↙{2,2-дибромпропан}$

3. Гидратация (присоединение воды). Боль шое значение для промышленного синтеза кетонов и альдегидов имеет реакция присоединения воды (гидратация), которую называют реакцией Кучерова:

4. Гидрирование алкинов. Алкины присоединяют водород в присутствии металлических катализаторов ($Pt, Pd, Ni$):

$R-C≡C-R+H_2{→}↖{Pt}R-CH=CH-R,$

$R-CH=CH-R+H_2{→}↖{Pt}R-CH_2-CH_2-R$

Так как тройная связь содержит две реакционноспособные $π$-связи, алканы присоединяют водород ступенчато:

1) тримеризация.

При пропускании этина над активированным углем образуется смесь продуктов, одним из которых является бензол:

2) димеризация.

Помимо тримеризации ацетилена, возможна его димеризация. Под действием солей одновалентной меди образуется винилацетилен:

$2HC≡CH→{HC≡C-CH=CH_2}↙{\text"бутен-1-ин-3(винилацетилен)"}$

Это вещество используется для получения хлоропрена:

$HC≡C-CH=CH_2+HCl{→}↖{CaCl}H_2C={CCl-CH}↙{хлоропрен}=CH_2$

полимеризацией которого получают хлоропреновый каучук:

$nH_2C=CCl-CH=CH_2→(...-H_2C-CCl=CH-CH_2-...)_n$

Окисление алкинов.

Этин (ацетилен) горит в кислороде с выделением очень большого количества теплоты:

$2C_2H_2+5O_2→4CO_2+2H_2O+2600кДж$ На этой реакции основано действие кислородно-ацетиленовой горелки, пламя которой имеет очень высокую температуру (более $3000°С$), что позволяет использовать ее для резки и сварки металлов.

На воздухе ацетилен горит коптящим пламенем, т.к. содержание углерода в его молекуле выше, чем в молекулах этана и этена.

Алкины, как и алкены, обесцвечивают подкисленные растворы перманганата калия; при этом происходит разрушение кратной связи.

Реакции, характеризующие основные способы получения кислородсодержащих соединений

1. Гидролиз галогеналканов. Вы уже знаете, что образование галокеналканов при взаимодействии спиртов с галогеноводородами — обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов — реакции этих соединений с водой:

$R-Cl+NaOH{→}↖{H_2O}R-OH+NaCl+H_2O$

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

2. Гидратация алкенов — присоединение воды по $π$-связи молекулы алкена — уже знакома вам, например:

${CH_2=CH_2}↙{этен}+H_2O{→}↖{H^{+}}{C_2H_5OH}↙{этанол}$

Гидратация пропена приводит, в соответствии с правилом Марковникова, к образованию вторичного спирта — пропанола-2:

3. Гидрирование альдегидов и кетонов. Вы уже знаете, что окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

4. Окисление алкенов. Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

$CH_2=CH_2+[O]+H_2O{→}↖{KMnO_4}HO-CH_2-CH_2-OH$

5. Специфические способы получения спиртов. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают при взаимодействии водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

$CO+2H_2{→}↖{t,p,ZnO}CH_3-OH$

Необходимую для этой реакции смесь угарного газа и водорода, называемую также синтез-газом ($СО + nН_2О$), получают при пропускании паров воды над раскаленным углем:

$C+H_2O{→}↖{t}CO+H_2-Q$

6. Брожение глюкозы. Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

${C_6H_{12}O_6}↙{глюкоза}{→}↖{дрожжи}2C_2H_5OH+2CO_2$

Способы получения альдегидов и кетонов

Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов . Еще раз отметим, что при окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов — кетоны:

Реакция Кучерова . Из ацетилена в результате реакции гидратации получается уксусный альдегид, из гомологов ацетилена — кетоны:

При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

Карбоновые кислоты могут быть получены окислением первичных спиртов альдегидов:

Ароматические карбоновые кислоты образуются при окислении гомологов бензола:

Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катализируемые кислотой, обратимы:

Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль.