Биографии Характеристики Анализ

Понятие неравенства, связанные определения. Простейшие неравенства Открытый числовой луч


Обратной стороной равенства выступает неравенство . В этой статье мы введем понятие неравенства, и дадим начальную информацию о них в контексте математики.

Сначала разберем, что такое неравенство, введем понятия не равно, больше, меньше. Дальше поговорим о записи неравенств с помощью знаков не равно, меньше, больше, меньше или равно, больше или равно. После этого затронем основные типы неравенств, дадим определения строгих и нестрогих, верных и неверных неравенств. Дальше мимоходом перечислим основные свойства неравенств. Наконец, остановимся на двойных, тройных и т.д. неравенствах, и разберем, какой смысл они несут в себе.

Навигация по странице.

Что такое неравенство?

Понятие неравенства , как и , связано со сравнением двух объектов. И если равенство характеризуется словом «одинаковые», то неравенство, напротив, говорит о различии сравниваемых объектов. Например, объекты и - одинаковые, про них можно сказать, что они равные. А вот два объекта и отличаются, то есть, они не равны или неравные .

Неравенство сравниваемых объектов познается вместе со смыслом таких слов, как выше, ниже (неравенство по высоте), толще, тоньше (неравенство по толщине), дальше, ближе (неравенство по удаленности от чего-либо), длиннее, короче (неравенство по длине), тяжелее, легче (неравенство по весу), ярче, тусклее (неравенство по яркости), теплее, холоднее и т.п.

Как мы уже отмечали при знакомстве с равенствами, можно говорить как о равенстве двух объектов в целом, так и о равенстве их некоторых характеристик. Это же относится и к неравенствам. В качестве примера приведем два объекта и . Очевидно, они не одинаковые, то есть, в целом они неравные. Они не равны по размеру, также они не равны по цвету, однако, можно говорить о равенстве их форм – они оба являются кругами.

В математике общий смысл неравенства сохраняется. Но в ее контексте речь идет о неравенстве математических объектов: чисел, значений выражений, значений каких-либо величин (длин, весов, площадей, температур и т.п.), фигур, векторов и т.п.

Не равно, больше, меньше

Иногда ценность представляет именно сам факт неравенства двух объектов. А когда сравниваются значения каких-либо величин, то, выяснив их неравенство, обычно идут дальше, и выясняют, какая величина больше , а какая – меньше .

Смысл слов «больше» и «меньше» мы познаем практически с первых дней нашей жизни. На интуитивном уровне мы воспринимаем понятие больше и меньше в плане размера, количества и т.п. А дальше постепенно начинаем осознавать, что при этом фактически речь идет о сравнении чисел , отвечающим количеству некоторых предметов или значениям некоторых величин. То есть, в этих случаях мы выясняем, какое из чисел больше, а какое – меньше.

Приведем пример. Рассмотрим два отрезка AB и CD , и сравним их длины . Очевидно, они не равны, также очевидно, что отрезок AB длиннее отрезка CD . Таким образом, согласно смыслу слова «длиннее», длина отрезка AB больше длины отрезка CD , и в то же время длина отрезка CD меньше длины отрезка AB .

Еще пример. С утра была зафиксирована температура воздуха 11 градусов Цельсия, а в обед – 24 градуса. Согласно , 11 меньше 24 , следовательно, значение температуры с утра было меньше, чем ее значение в обед (температура в обед стала больше, чем была температура с утра).

Запись неравенств с помощью знаков

На письме приняты несколько знаков для записи неравенств. Первый из них – знак не равно , он представляет собой перечеркнутый знак равно: ≠. Знак не равно ставится между неравными объектами. Например, запись |AB|≠|CD| обозначает, что длина отрезка AB не равна длине отрезка CD . Аналогично, 3≠5 – три не равно пяти.

Аналогично используются знак больше > и знак меньше ≤. Знак больше записывается между большим и меньшим объектами, а знак меньше – между меньшим и большим. Приведем примеры использования этих знаков. Запись 7>1 читается как семь больше одного, а записать, что площадь треугольника ABC меньше площади треугольника DEF с использованием знака ≤ можно как SABC≤SDEF .

Также широко в ходу знак больше или равно вида ≥, а также знак меньше или равно ≤. Подробнее об их смысле и назначении поговорим в следующем пункте.

Еще заметим, что алгебраические записи со знаками не равно, меньше, больше, меньше или равно, больше или равно, аналогичные рассмотренным выше, называют неравенствами. Более того, имеет место определение неравенств в смысле вида их записи:

Определение.

Неравенства – это имеющие смысл алгебраические выражения, составленные с использованием знаков ≠, <, >, ≤, ≥.

Строгие и нестрогие неравенства

Определение.

Знаки меньше называют знаками строгих неравенств , а записанные с их помощью неравенства – строгими неравенствами .

В свою очередь

Определение.

Знаки меньше или равно ≤ и больше или равно ≥ называют знаками нестрогих неравенств , а составленные с их использованием неравенства – нестрогими неравенствами .

Сфера применения строгих неравенств понятна из вышеприведенной информации. А для чего нужны нестрогие неравенства? На практике с их помощью удобно моделировать ситуации, которые можно описать фразами «не больше» и «не меньше». Фраза «не больше» по сути означает меньше или столько же, ей отвечает знак меньше или равно вида ≤. Аналогично, «не меньше» значит столько же или больше, ей соответствует знак больше или равно ≥.

Отсюда становится понятно, почему знаки < и > получили название знаков строгих неравенств, а ≤ и ≥ - нестрогих. Первые исключают возможность равенства объектов, а вторые – допускают ее.

В заключение этого пункта покажем пару примеров использования нестрогих неравенств. Например, с помощью знака больше или равно можно записать тот факт, что a является неотрицательным числом, как |a|≥0 . Еще пример: известно, что среднее геометрическое двух положительных чисел a и b меньше или равно их среднему арифметическому, то есть, .

Верные и неверные неравенства

Неравенства могут быть верными или неверными.

Определение.

Неравенство является верным , если оно соответствует введенному выше смыслу неравенства, в противном случае оно является неверным .

Приведем примеры верных и неверных неравенств. Например, 3≠3 – это неверное неравенство, так как числи 3 и 3 равные. Другой пример: пусть S – это площадь некоторой фигуры, тогда S<−7 – неверное неравенство, так как известно, что площадь фигуры по определению выражается неотрицательным числом. И еще пример неверного неравенства: |AB|>|AB| . А вот неравенства −3<12 , |AB|≤|AC|+|BC| и |−4|≥0 – верные. Первое из них отвечает , второе – выражает неравенство треугольника , а третье – согласуется с определением модуля числа.

Отметим, что наряду со словосочетанием «верное неравенство» используются такие словосочетания: «справедливое неравенство», «имеет место неравенство» и т.п., означающие одно и то же.

Свойства неравенств

Согласно тому, как мы ввели понятие неравенства, можно описать основные свойства неравенств . Понятно, что объект не может быть не равен самому себе. В этом состоит первое свойство неравенств. Второе свойство не менее очевидно: если первый объект не равен второму, то второй не равен первому.

Введенные на некотором множестве понятия «меньше» и «больше» задают на исходном множестве так называемые отношения «меньше» и «больше». Это же относится и к отношениям «меньше или равно» и «больше или равно». Они также обладают характерными свойствами.

Начнем со свойств отношений, которым соответствуют знаки < и >. Перечислим их, после чего дадим необходимые комментарии для пояснения:

  • антирефлексивность;
  • антисимметричность;
  • транзитивность.

Свойство антирефлексивности с помощью букв можно записать так: для любого объекта a неравенства a>a и ab , то ba . Наконец, свойство транзитивности состоит в том, что из ab и b>c следует, что a>c . Это свойство также воспринимается достаточно естественно: если первый объект меньше (больше) второго, а второй меньше (больше) третьего, то понятно, что первый объект подавно меньше (больше) третьего.

В свою очередь отношениям «меньше или равно» и «больше или равно» присущи следующие свойства:

  • рефлексивности: имеют место неравенства a≤a и a≥a (так как они включают в себя случай a=a );
  • антисимметричности: если a≤b , то b≥a , и если a≥b , то b≤a ;
  • транзитивности: из a≤b и b≤c следует, что a≤c , а из a≥b и b≥c следует, что a≥c .

Двойные, тройные неравенства и т.д.

Свойство транзитивности, которое мы затронули в предыдущем пункте, позволяет составлять так называемые двойные, тройные и т.д. неравенства, представляющие собой цепочки неравенств. Для примера приведем двойное неравенство a

Теперь разберем, как понимать такие записи. Их следует трактовать в согласии со смыслом содержащихся в них знаков. Например, двойное неравенство a

В заключение заметим, что иногда удобно использовать записи в виде цепочек, содержащих одновременно как знаки равно, не равно, так и знаки строгих и нестрогих неравенств. Например, x=2

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.

Например, неравенством является выражение \(x>5\).

Виды неравенств:

Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

Например:
\(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

\(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

\(2x+1\geq4(5-x)\)

Переменная только в первой степени

\(3x^2-x+5>0\)

Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

\(\log_{4}{(x+1)}<3\)

\(2^{x}\leq8^{5x-2}\)

... и так далее.

Что такое решение неравенства?

Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

\(x+6>10\) \(|-6\)
\(x>4\)

То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

Ответ: \(x\in(4;+\infty)\)

Когда в неравенстве меняется знак?

В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

\(3>1\) \(|\cdot2\)
\(6>2\)

Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

\(3>1\) \(|\cdot(-3)\)
\(-9>-3\)

Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
С делением получится аналогично, можете проверить сами.

Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

Пример: Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

\(2x+2-1<7+8x\)

Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

\(2x-8x<7-2+1\)

\(-6x<6\) \(|:(-6)\)

Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

Запишем ответ в виде интервала

Ответ: \(x\in(-1;\infty)\)

Неравенства и ОДЗ

Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

Пример: Решить неравенство \(\sqrt{x+1}<3\)

Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

\(x+1<9\) \(|-1\)
\(x<8\)

Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

\(\sqrt{-5+1}<3\)
\(\sqrt{-4}<3\)

Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

\(x+1\geq0\)
\(x\geq-1\)

И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

Ответ: \(\left[-1;8\right)\)

Простейшие линейные неравенства — это неравенства вида x>a; x≥a; x

Решение простейшего линейного неравенства можно изобразить на числовой прямой в виде и записать в виде интервала.

Неравенства бывают строгие и нестрогие.

Строгие неравенства — это неравенства со знаками больше (>) или меньше (<).

Нестрогие неравенства — это неравенства со знаками больше либо равно(≥) или меньше либо равно(≤).

При изображении на числовой прямой решения строгого неравенства точку выкалываем (она рисуется пустой внутри), точку из нестрогого неравенства закрашиваем (для запоминания можно использовать ).

Числовой промежуток, соответствующий решению неравенства x

Числовой промежуток — решение неравенства x>a или x≥a — лежит справа от точки a (штриховка идет от точки a вправо, на плюс бесконечность) (для запоминания можно использовать ).

Скобка, соответствующая точке a строгого неравенства x>a или x

В нестрогом неравенстве x≥a или x≤a точка a — с квадратной скобкой.

Бесконечность и минус бесконечность в любом неравенстве всегда записываются с круглой скобкой.

Если обе скобки в записи круглые, числовой промежуток называется открытым. Концы открытого промежутка не являются решением неравенства и не включаются в ответ.

Конец промежутка с квадратной скобкой включается в ответ.

Запись промежутка всегда ведётся слева направо, от меньшего — к большему.

Решение простейших линейных неравенств схематически можно представить в виде схемы:

Рассмотрим примеры решения простейших линейных неравенств.

Title="Rendered by QuickLaTeX.com">

Читают: «икс больше двенадцати».

Решение :

Неравенство нестрогое, на числовой прямой 12 изображаем выколотой точкой.

К знаку неравенства мысленно пририсовываем стрелочку: —>. Стрелочка указывает, что от 12 штриховка уходит вправо, к плюс бесконечности:

Так как неравенство строгое и точка x=12 выколотая, в ответ 12 записываем с круглой скобкой.

Читают: «икс принадлежит открытому промежутку от двенадцати до бесконечности».

Читают: «икс больше минус трёх целых семи десятых»

Решение :

Неравенство нестрогое, поэтому -3,7 на числовой прямой изображаем закрашенной точкой. Мысленно пририсовываем к знаку неравенства стрелочку: —≥. Стрелочка направлена вправо, поэтому штриховка от -3,7 идёт вправо, на бесконечность:

Так как неравенство нестрогое и точка x= -3,7 закрашенная, -3,7 в ответ записываем с квадратной скобкой.

Читают: «икс принадлежит промежутку от минус трёх целых семи десятых до бесконечности, включая минус три целых семь десятых».

Читают: «икс меньше нуля целых двух десятых» (или «икс меньше чем нуль целых две десятых»).

Решение :

Неравенство строгое, 0,2 на числовой прямой изображаем выколотой точкой. К знаку неравенства мысленно пририсовываем стрелочку: <—. Стрелочка подсказывает, что от 0,2 штриховка уходит влево, к минус бесконечности:

Неравенство строгое, точка выколотая, 0,2 — с круглой скобкой.

Читают: «икс принадлежит открытому промежутку от минус бесконечности до нуля целых двух десятых».

Читают: «икс меньше либо равен пяти».

Решение :

Неравенство нестрогое, на числовой прямой 5 изображаем закрашенной точкой. К знаку неравенства мысленно пририсовываем стрелочку: ≤—. Направление штриховки — влево, к минус бесконечности:

Неравенство нестрогое, точка закрашенная, 5 — с квадратной скобкой.

Читают: «икс принадлежит промежутку от минус бесконечности до пяти, включая пять».

Рубрика: |

С неравенствами мы познакомились в школе, где применяем числовые неравенства. В данной статье рассмотрим свойства числовых неравенств, не которых строятся принципы работы с ними.

Свойства неравенств аналогичны свойствам числовых неравенств. Будут рассмотрены свойства, его обоснования, приведем примеры.

Числовые неравенства: определение, примеры

При введении понятия неравенства имеем, что их определение производится по виду записи. Имеются алгебраические выражения, которые имеют знаки ≠ , < , > , ≤ , ≥ . Дадим определение.

Определение 1

Числовым неравенством называют неравенство, в записи которого обе стороны имеют числа и числовые выражения.

Числовые неравенства рассматриваем еще в школе после изучения натуральных чисел. Такие операции сравнения изучаются поэтапно. Первоначальные имею вид 1 < 5 , 5 + 7 > 3 . После чего правила дополняются, а неравенства усложняются, тогда получаем неравенства вида 5 2 3 > 5 , 1 (2) , ln 0 . 73 - 17 2 < 0 .

Свойства числовых неравенств

Чтобы правильно работать с неравенствами, необходимо использовать свойства числовых неравенств. Они идут из понятия неравенства. Такое понятие задается при помощи утверждения, которое обозначается как «больше» или «меньше».

Определение 2

  • число a больше b , когда разность a - b – положительное число;
  • число a меньше b , когда разность a - b – отрицательное число;
  • число a равно b , когда разность a - b равняется нулю.

Определение используется при решении неравенств с отношениями «меньше или равно», «больше или равно». Получаем, что

Определение 3

  • a больше или равно b , когда a - b является неотрицательным числом;
  • a меньше или равно b , когда a - b является неположительным числом.

Определения будут использованы при доказательствах свойств числовых неравенств.

Основные свойства

Рассмотрим 3 основные неравенства. Использование знаков < и > характерно при свойствах:

Определение 4

  • антирефлексивности , которое говорит о том, что любое число a из неравенств a < a и a > a считается неверным. Известно, что для любого a имеет место быть равенство a − a = 0 , отсюда получаем, что а = а. Значит, a < a и a > a неверно. Например, 3 < 3 и - 4 14 15 > - 4 14 15 являются неверными.
  • ассиметричности . Когда числа a и b являются такими, что a < b , то b > a , и если a > b , то b < a . Используя определение отношений «больше», «меньше» обоснуем его. Так как в первой части имеем, что a < b , тогда a − b является отрицательным числом. А b − a = − (a − b) положительное число, потому как число противоположно отрицательному числу a − b . Отсюда следует, что b > a . Аналогичным образом доказывается и вторая его часть.

Пример 1

Например, при заданном неравенстве 5 < 11 имеем, что 11 > 5 , значит его числовое неравенство − 0 , 27 > − 1 , 3 перепишется в виде − 1 , 3 < − 0 , 27 .

Перед тем, как перейти к следующему свойству, заметим, что при помощи ассиметричности можно читать неравенство справа налево и наоборот. Таким образом, числовое неравенство можно изменять и менять местами.

Определение 5

  • транзитивности . Когда числа a , b , c соответствуют условию a < b и b < c , тогда a < c , и если a > b и b > c , тогда a > c .

Доказательство 1

Первое утверждение можно доказать. Условие a < b и b < c означает, что a − b и b − c являются отрицательными, а разность а - с представляется в виде (a − b) + (b − c) , что является отрицательным числом, потому как имеем сумму двух отрицательных a − b и b − c . Отсюда получаем, что а - с является отрицательным числом, а значит, что a < c . Что и требовалось доказать.

Аналогичным образом доказывается вторая часть со свойством транизитивности.

Пример 2

Разобранное свойство рассматриваем на примере неравенств − 1 < 5 и 5 < 8 . Отсюда имеем, что − 1 < 8 . Аналогичным образом из неравенств 1 2 > 1 8 и 1 8 > 1 32 следует, что 1 2 > 1 32 .

Числовые неравенства, которые записываются с помощью нестрогих знаков неравенства, обладают свойством рефлексивности, потому как a ≤ a и a ≥ a могут иметь случай равенства а = а. им присуща ассиметричность и транзитивность.

Определение 6

Неравенства, имеющие в записи знаки ≤ и ≥ , имеют свойства:

  • рефлексивности a ≥ a и a ≤ a считаются верными неравенствами;
  • антисимметричности, когда a ≤ b , тогда b ≥ a , и если a ≥ b , тогда b ≤ a .
  • транзитивности, когда a ≤ b и b ≤ c , тогда a ≤ c , а также, если a ≥ b и b ≥ c , то тогда a ≥ c .

Доказательство производится аналогичным образом.

Другие важные свойства числовых неравенств

Для дополнения основных свойств неравенств используются результаты, которые имеют практическое значение. Применяется принцип метода оценка значений выражений, на которых и базируются принципы решения неравенств.

Данный пункт раскрывает свойства неравенств для одного знака строгого неарвенства. Аналогично производится для нестрогих. Рассмотрим на примере, сформулировав неравенство если a < b и c являются любыми числами, то a + c < b + c . Справедливыми окажутся свойства:

  • если a > b , то a + c > b + c ;
  • если a ≤ b , то a + c ≤ b + c ;
  • если a ≥ b , то a + c ≥ b + c .

Для удобного представления дадим соответствующее утверждение, которое записывается и приводятся доказательства, показываются примеры использования.

Определение 7

Прибавление или вычисления числа к обеим сторонам. Иначе говоря, когда a и b соответствуют неравенству a < b , тогда для любого такого числа имеет смысл неравенство вида a + c < b + c .

Доказательство 2

Чтобы доказать это, необходимо, чтобы уравнение соответствовало условию a < b . Тогда (a + c) − (b + c) = a + c − b − c = a − b . Из условия a < b получим, что a − b < 0 . Значит, (a + c) − (b + c) < 0 , откуда a + c < b + c . Множество действительных числе могут быть изменены с помощью прибавления противоположного числа – с.

Пример 3

К примеру, если обе части неравенства 7 > 3 увеличиваем на 15 , тогда получаем, что 7 + 15 > 3 + 15 . Это равно 22 > 18 .

Определение 8

Когда обе части неравенства умножить или разделить на одно и то же число c , получим верное неравенство. Если взять число c отрицательным, то знак поменяется на противоположный. Иначе это выглядит так: для a и b неравенство выполняется, когда a < b и c являются положительными числами, то a· c < b · c , а если v является отрицательным числом, тогда a · c > b · c .

Доказательство 3

Когда имеется случай c > 0 , необходимо составить разность левой и правой частей неравенства. Тогда получаем, что a · c − b · c = (a − b) · c . Из условия a < b , то a − b < 0 , а c > 0 , тогда произведение (a − b) · c будет отрицательным. Отсюда следует, что a · c − b · c < 0 , где a · c < b · c . Другая часть доказывается аналогичным образом.

При доказательстве деление на целое число можно заменить умножением на обратное заданному, то есть 1 c . Рассмотрим пример свойства на определенных числах.

Пример 4

Разрешено обе части неравенства 4 < 6 умножаем на положительное 0 , 5 , тогда получим неравенство вида − 4 · 0 , 5 < 6 · 0 , 5 , где − 2 < 3 . Когда обе части делим на - 4 , то необходимо изменить знак неравенства на противоположный. отсюда имеем, что неравенство примет вид − 8: (− 4) ≥ 12: (− 4) , где 2 ≥ − 3 .

Теперь сформулируем вытекающие два результата, которые используются при решении неравенств:

  • Следствие 1. При смене знаков частей числового неравенства меняется сам знак неравенства на противоположный, как a < b , как − a > − b . Это соответствует правилу умножения обеих частей на - 1 . Оно применимо для перехода. Например, − 6 < − 2 , то 6 > 2 .
  • Следствие 2. При замене обратными числами частей числового неравенства на противоположный, меняется и его знак, причем неравенство останется верным. Отсюда имеем, что a и b являются положительными числами, a < b , 1 a > 1 b .

При делении обеих частей неравенства a < b разрешается на число a · b . Данное свойство используется при верном неравенстве 5 > 3 2 имеем, что 1 5 < 2 3 . При отрицательных a и b c условием, что a < b , неравенство 1 a > 1 b может получиться неверным.

Пример 5

Например, − 2 < 3 , однако, - 1 2 > 1 3 являются неверным равенством.

Все пункты объединяет то, что действия над частями неравенства дают верное неравенство на выходе. Рассмотрим свойства, где изначально имеется несколько числовых неравенств, а его результат получим при сложении или умножении его частей.

Определение 9

Когда числа a , b , c , d справедливы для неравенств a < b и c < d , тогда верным считается a + c < b + d . Свойство можно формировать таким образом: почленно складывать числа частей неравенства.

Доказательство 4

Докажем, что (a + c) − (b + d) является отрицательным числом, тогда получим, что a + c < b + d . Из условия имеем, что a < b и c < d . Выше доказанное свойство позволяет прибавлять к обеим частям одинаковое число. Тогда увеличим неравенство a < b на число b , при c < d , получим неравенства вида a + c < b + c и b + c < b + d . Полученное неравенство говорит о том, что ему присуще свойство транзитивности.

Свойство применяется для почленного сложения трех, четырех и более числовых неравенств. Числам a 1 , a 2 , … , a n и b 1 , b 2 , … , b n справедливы неравенства a 1 < b 1 , a 2 < b 2 , … , a n < b n , можно доказать метод математической индукции, получив a 1 + a 2 + … + a n < b 1 + b 2 + … + b n .

Пример 6

Например, при данных трех числовых неравенствах одного знака − 5 < − 2 , − 1 < 12 и 3 < 4 . Свойство позволяет определять то, что − 5 + (− 1) + 3 < − 2 + 12 + 4 является верным.

Определение 10

Почленное умножение обеих частей дает в результате положительное число. При a < b и c < d , где a , b , c и d являются положительными числами, тогда неравенство вида a · c < b · d считается справедливым.

Доказательство 5

Чтобы доказать это, необходимо обе части неравенства a < b умножить на число с, а обе части c < d на b . В итоге получим, что неравенства a · c < b · c и b · c < b · d верные, откуда получим свойство транизитивности a · c < b · d .

Это свойство считается справедливым для количества чисел, на которые необходимо умножить обе части неравенства. Тогда a 1 , a 2 , … , a n и b 1 , b 2 , … , b n являются положительные числами, где a 1 < b 1 , a 2 < b 2 , … , a n < b n , то a 1 · a 2 · … · a n < b 1 · b 2 · … · b n .

Заметим, что при записи неравенств имеются неположительные числа, тогда их почленное умножение приводит к неверным неравенствам.

Пример 7

К примеру, неравенство 1 < 3 и − 5 < − 4 являются верными, а почленное их умножение даст результат в виде 1 · (− 5) < 3 · (− 4) , считается, что − 5 < − 12 это является неверным неравенством.

Следствие: Почленное умножение неравенств a < b с положительными с a и b , причем получается a n < b n .

Свойства числовых неравенств

Рассмотрим ниже свойства числовых неравенств.

  1. a < a , a > a - неверные неравенства,
    a ≤ a , a ≥ a - верные неравенства.
  2. Если a < b , то b > a - антисимметричность.
  3. Если a < b и b < c то a < c - транзитивность.
  4. Если a < b и c - любоое число, то a + с < b + c .
  5. Если a < b и c - положительное число, то a · c < b · c ,
    Если a < b и c - отрицательное число, то a · c > b · c .

Следствие 1: если a < b , то - a > - b .

Следствие 2: если a и b - положительные числа и a < b , то 1 a > 1 b .

  1. Если a 1 < b 1 , a 2 < b 2 , . . . , a n < b n , то a 1 + a 2 + . . . + a n < b 1 + b 2 + . . . + b n .
  2. Если a 1 , a 2 , . . . , a n , b 1 , b 2 , . . . , b n - положительные числа и a 1 < b 1 , a 2 < b 2 , . . . , a n < b n , то a 1 · a 2 · . . . · a n < b 1 · b 2 · . . . b n .

Cледствие 1: если a < b , a и b - положительные числа, то a n < b n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Содержание урока

Определения и свойства

Неравенством мы будем называть два числовых или буквенных выражения, соединенных знаками >, <, ≥, ≤ или ≠.

Пример: 5 > 3

Данное неравенство говорит о том, что число 5 больше, чем число 3. Острый угол знака неравенства должен быть направлен в сторону меньшего числа. Это неравенство является верным, поскольку 5 больше, чем 3.

Если на левую чашу весов положить арбуз массой 5 кг, а на правую — арбуз массой 3 кг, то левая чаша перевесит правую, и экран весов покажет, что левая чаша тяжелее правой:

Если 5 > 3 , то 3 < 5 . То есть левую и правую часть неравенства можно поменять местами, изменив знак неравенства на противоположный. В ситуации с весами: большой арбуз можно положить на правую чашу, а маленький арбуз на левую. Тогда правая чаша перевесит левую, и экран покажет знак <

Если в неравенстве 5 > 3 , не трогая левую и правую часть, поменять знак на < , то получится неравенство 5 < 3 . Это неравенство не является верным, поскольку число 3 не может быть больше числа 5.

Числа, которые располагаются в левой и правой части неравенства, будем называть членами этого неравенства. Например, в неравенстве 5 > 3 членами являются числа 5 и 3.

Рассмотрим некоторые важные свойства для неравенства 5 > 3 .
В будущем эти свойства будут работать и для других неравенств.

Свойство 1.

Если к левой и правой части неравенства 5 > 3 прибавить или вычесть одно и то же число, то знак неравенства не изменится.

Например, прибавим к обеим частям неравенства число 4. Тогда получим:

Теперь попробуем вычесть из обеих частей неравенства 5 > 3 какое-нибудь число, скажем число 2

Видим, что левая часть по-прежнему больше правой.

Из данного свойства следует, что любой член неравенства можно перенести из одной части в другую часть, изменив знак этого члена. Знак неравенства при этом не изменится.

Например, перенесём в неравенстве 5 > 3 , член 5 из левой части в правую часть, изменив знак этого члена. После переноса члена 5 в правую часть, в левой части ничего не останется, поэтому запишем там 0

0 > 3 − 5

0 > −2

Видим, что левая часть по-прежнему больше правой.

Свойство 2.

Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства не изменится.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь положительное число, скажем на число 2. Тогда получим:

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь число. Разделим их на 2

Видим, что левая часть по-прежнему больше правой.

Свойство 3.

Если обе части неравенства умножить или разделить на одно и то же отрицательное число , то знак неравенства изменится на противоположный.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь отрицательное число, скажем на число −2 . Тогда получим:

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь отрицательное число. Давайте разделим их на −1

Видим, что левая часть стала меньше правой. То есть знак неравенства изменился на противоположный.

Само по себе неравенство можно понимать, как некоторое условие. Если условие выполняется, то неравенство является верным. И наоборот, если условие не выполняется, то неравенство не верно.

Например, чтобы ответить на вопрос является ли верным неравенство 7 > 3 , нужно проверить выполняется ли условие «больше ли 7, чем 3» . Мы знаем, что число 7 больше, чем число 3. То есть условие выполнено, а значит и неравенство 7 > 3 верно.

Неравенство 8 < 6 не является верным, поскольку не выполняется условие «8 меньше, чем 6».

Другим способом определения верности неравенства является составление разности из левой и правой части данного неравенства. Если разность положительна, то левая часть больше правой части. И наоборот, если разность отрицательна, то левая часть меньше правой части. Более точно это правило выглядит следующим образом:

Число a больше числа b , если разность a − b положительна. Число a меньше числа b , если разность a − b отрицательна.

Например, мы выяснили, что неравенство 7 > 3 является верным, поскольку число 7 больше, чем число 3. Докажем это с помощью правила, приведённого выше.

Составим разность из членов 7 и 3. Тогда получим 7 − 3 = 4 . Согласно правилу, число 7 будет больше числа 3, если разность 7 − 3 окажется положительной. У нас она равна 4, то есть разность положительна. А значит число 7 больше числа 3.

Проверим с помощью разности верно ли неравенство 3 < 4 . Составим разность, получим 3 − 4 = −1 . Согласно правилу, число 3 будет меньше числа 4, если разность 3 − 4 окажется отрицательной. У нас она равна −1, то есть разность отрицательна. А значит число 3 меньше числа 4.

Проверим верно ли неравенство 5 > 8 . Составим разность, получим 5 − 8 = −3 . Согласно правилу, число 5 будет больше числа 8, если разность 5 − 8 окажется положительной. У нас разность равна −3, то есть она не является положительной. А значит число 5 не больше числа 3. Иными словами, неравенство 5 > 8 не является верным.

Строгие и нестрогие неравенства

Неравенства, содержащие знаки >, < называют строгими . А неравенства, содержащие знаки ≥, ≤ называют нестрогими .

Примеры строгих неравенства мы рассматривали ранее. Таковыми являются неравенства 5 > 3 , 7 < 9 .

Нестрогим, например, является неравенство 2 ≤ 5 . Данное неравенство читают следующим образом: «2 меньше или равно 5» .

Запись 2 ≤ 5 является неполной. Полная запись этого неравенства выглядит следующим образом:

2 < 5 или 2 = 5

Тогда становится очевидным, что неравенство 2 ≤ 5 состоит из двух условий: «два меньше пять» и «два равно пять» .

Нестрогое неравенство верно в том случае, если выполняется хотя бы одно из его условий. В нашем примере верным является условие «2 меньше 5» . Значит и само неравенство 2 ≤ 5 верно.

Пример 2 . Неравенство 2 ≤ 2 является верным, поскольку выполняется одно из его условий, а именно 2 = 2.

Пример 3 . Неравенство 5 ≤ 2 не является верным, поскольку не выполняется ни одно из его условий: ни 5 < 2 ни 5 = 2 .

Двойное неравенство

Число 3 больше, чем число 2 и меньше, чем число 4 . В виде неравенства это высказывание можно записать так: 2 < 3 < 4 . Такое неравенство называют двойным.

Двойное неравенство может содержать знаки нестрогих неравенств. К примеру, если число 5 больше или равно, чем число 2, и меньше или равно, чем число 7 , то можно записать, что 2 ≤ 5 ≤ 7

Чтобы правильно записать двойное неравенство, сначала записывают член находящийся в середине, затем член находящийся слева, затем член находящийся справа.

Например, запишем, что число 6 больше, чем число 4, и меньше, чем число 9.

Сначала записываем 6

Слева записываем, что это число больше, чем число 4

Справа записываем, что число 6 меньше, чем число 9

Неравенство с переменной

Неравенство, как и равенство может содержать переменную.

Например, неравенство x > 2 содержит переменную x . Обычно такое неравенство нужно решить, то есть выяснить при каких значениях x данное неравенство становится верным.

Решить неравенство означает найти такие значения переменной x , при которых данное неравенство становится верным.

Значение переменной, при котором неравенство становится верным, называется решением неравенства .

Неравенство x > 2 становится верным при x = 3, x = 4, x = 5, x = 6 и так далее до бесконечности. Видим, что это неравенство имеет не одно решение, а множество решений.

Другими словами, решением неравенства x > 2 является множество всех чисел, бóльших 2. При этих числах неравенство будет верным. Примеры:

3 > 2

4 > 2

5 > 2

Число 2, располагающееся в правой части неравенства x > 2 , будем называть границей данного неравенства. В зависимости от знака неравенства, граница может принадлежать множеству решений неравенства либо не принадлежать ему.

В нашем примере граница неравенства не принадлежит множеству решений, поскольку при подстановке числа 2 в неравенство x > 2 получается не верное неравенство 2 > 2 . Число 2 не может быть больше самого себя, поскольку оно равно самому себе (2 = 2) .

Неравенство x > 2 является строгим. Его можно прочитать так: «x строго больше 2″ . То есть все значения, принимаемые переменной x должны быть строго больше 2. В противном случае, неравенство верным не будет.

Если бы нам было дано нестрогое неравенство x ≥ 2 , то решениями данного неравенства были бы все числа, которые больше 2, в том числе и само число 2. В этом неравенстве граница 2 принадлежит множеству решений неравенства, поскольку при подстановке числа 2 в неравенство x ≥ 2 получается верное неравенство 2 ≥ 2 . Ранее было сказано, что нестрогое неравенство является верным, если выполняется хотя бы одно из его условий. В неравенстве 2 ≥ 2 выполняется условие 2 = 2 , поэтому и само неравенство 2 ≥ 2 верно.

Как решать неравенства

Процесс решения неравенств во многом схож с процессом решения уравнений. При решении неравенств мы будем применять свойства, которые изучили вначале данного урока, такие как: перенос слагаемых из одной части неравенства в другую часть, меняя знак; умножение (или деление) обеих частей неравенства на одно и то же число.

Эти свойства позволяют получить неравенство, которое равносильно исходному. Равносильными называют неравенства, решения которых совпадают.

Решая уравнения мы выполняли тождественные преобразования до тех пор, пока в левой части уравнения не оставалась переменная, а в правой части значение этой переменной (например: x = 2, x = 5 ). Иными словами, заменяли исходное уравнение на равносильное ему уравнение до тех пор, пока не получалось уравнение вида x = a , где a значение переменной x . В зависимости от уравнения, корней могло быть один, два, бесконечное множество, либо не быть совсем.

А при решении неравенств мы будем заменять исходное неравенство на равносильное ему неравенство до тех пор, пока в левой части не останется переменная этого неравенства, а в правой части его граница.

Пример 1 . Решить неравенство 2x > 6

Итак, нужно найти такие значения x , при подстановке которых в 2x > 6 получится верное неравенство.

Вначале данного урока было сказано, что если обе части неравенства разделить на какое-нибудь положительное число, то знак неравенства не изменится. Если применить это свойство к неравенству, содержащему переменную, то получится неравенство равносильное исходному.

В нашем случае, если мы разделим обе части неравенства 2x > 6 на какое-нибудь положительное число, то получится неравенство, которое равносильно исходному неравенству 2x > 6.

Итак, разделим обе части неравенства на 2.

В левой части осталась переменная x , а правая часть стала равна 3. Получилось равносильное неравенство x > 3. На этом решение завершается, поскольку в левой части осталась переменная, а в правой части граница неравенства.

Теперь можно сделать вывод, что решениями неравенства x > 3 являются все числа, которые больше 3. Это числа 4, 5, 6, 7 и так далее до бесконечности. При этих значениях неравенство x > 3 будет верным.

4 > 3

5 > 3

6 > 3

7 > 3

Отметим, что неравенство x > 3 является строгим. «Переменная x строго больше трёх».

А поскольку неравенство x > 3 равносильно исходному неравенству 2x > 6 , то их решения будут совпадать. Иначе говоря, значения, которые подходят неравенству x > 3, будут подходить и неравенству 2x > 6. Покажем это.

Возьмём, например, число 5 и подставим его сначала в полученное нами равносильное неравенство x > 3 , а потом в исходное 2x > 6 .

Видим, что в обоих случаях получается верное неравенство.

После того, как неравенство решено, ответ нужно записать в виде так называемого числового промежутка следующим образом:

В этом выражении говорится, что значения, принимаемые переменной x , принадлежат числовому промежутку от трёх до плюс бесконечности.

Иначе говоря, все числа, начиная от трёх до плюс бесконечности являются решениями неравенства x > 3 . Знак в математике означает бесконечность.

Учитывая, что понятие числового промежутка очень важно, остановимся на нём подробнее.

Числовые промежутки

Числовым промежутком называют множество чисел на координатной прямой, которое может быть описано с помощью неравенства.

Допустим, мы хотим изобразить на координатной прямой множество чисел от 2 до 8. Для этого сначала на координатной прямой отмечаем точки с координатами 2 и 8, а затем выделяем штрихами ту область, которая располагается между координатами 2 и 8. Эти штрихи будут играть роль чисел, располагающихся между числами 2 и 8

Числа 2 и 8 назовём границами числового промежутка. Рисуя числовой промежуток, точки для его границ изображают не в виде точек как таковых, а в виде кружков, которые можно разглядеть.

Границы могут принадлежать числовому промежутку либо не принадлежать ему.

Если границы не принадлежат числовому промежутку, то они изображаются на координатной прямой в виде пустых кружков .

Если границы принадлежат числовому промежутку, то кружки необходимо закрасить .

На нашем рисунке кружки были оставлены пустыми. Это означало, что границы 2 и 8 не принадлежат числовому промежутку. Значит в наш числовой промежуток будут входить все числа от 2 до 8, кроме чисел 2 и 8.

Если мы хотим включить границы 2 и 8 в числовой промежуток, то кружки необходимо закрасить:

В данном случае в числовой промежуток будут входить все числа от 2 до 8, включая числа 2 и 8.

На письме числовой промежуток обозначается указанием его границ с помощью круглых или квадратных скобок.

Если границы не принадлежат круглыми скобками .

Если границы принадлежат числовому промежутку, то границы обрамляются квадратными скобками .

На рисунке представлено два числовых промежутка от 2 до 8 с соответствующими обозначениями:

На первом рисунке числовой промежуток обозначен с помощью круглых скобок , поскольку границы 2 и 8 не принадлежат этому числовому промежутку.

На втором рисунке числовой промежуток обозначен с помощью квадратных скобок , поскольку границы 2 и 8 принадлежат этому числовому промежутку.

С помощью числовых промежутков можно записывать ответы к неравенствам. Например, ответ к двойному неравенству 2 ≤ x ≤ 8 записывается так:

x ∈ [ 2 ; 8 ]

То есть сначала записывают переменную, входящую в неравенство, затем с помощью знака принадлежности ∈ указывают к какому числовому промежутку принадлежат значения этой переменной. В данном случае выражение x ∈ [ 2 ; 8 ] указывает на то, что переменная x, входящая в неравенство 2 ≤ x ≤ 8, принимает все значения в промежутке от 2 до 8 включительно. При этих значениях неравенство будет верным.

Обратим внимание на то, что ответ записан с помощью квадратных скобок, поскольку границы неравенства 2 ≤ x ≤ 8 , а именно числа 2 и 8 принадлежат множеству решений этого неравенства.

Множество решений неравенства 2 ≤ x ≤ 8 также можно изобразить с помощью координатной прямой:

Здесь границы числового промежутка 2 и 8 соответствуют границам неравенства 2 ≤ x x 2 ≤ x ≤ 8 .

В некоторых источниках границы, которые не принадлежат числовому промежутку, называют открытыми .

Открытыми их называют по той причине, что числовой промежуток остаётся открытым из-за того, что его границы не принадлежат этому числовому промежутку. Пустой кружок на координатной прямой математики называют выколотой точкой . Выколоть точку значит исключить её из числового промежутка или из множества решений неравенства.

А в случае, когда границы принадлежат числовому промежутку, их называют закрытыми (или замкнутыми), поскольку такие границы закрывают (замыкают) собой числовой промежуток. Закрашенный кружок на координатной прямой также говорит о закрытости границ.

Существуют разновидности числовых промежутков. Рассмотрим каждый из них.

Числовой луч

Числовым лучом x ≥ a , где a x — решение неравенства.

Пусть a = 3 . Тогда неравенство x ≥ a примет вид x ≥ 3 . Решениями данного неравенства являются все числа, которые больше 3, включая само число 3.

Изобразим числовой луч, заданный неравенством x ≥ 3, на координатной прямой. Для этого отметим на ней точку с координатой 3, а всю оставшуюся справа от неё область выделим штрихами. Выделяется именно правая часть, поскольку решениями неравенства x ≥ 3 являются числа, бóльшие 3. А бóльшие числа на координатной прямой располагаются правее

x ≥ 3 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x ≥ 3 .

Точка 3, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства x ≥ 3 принадлежит множеству его решений.

На письме числовой луч, заданный неравенством x ≥ a,

[ a ; +∞)

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница числового луча принадлежит ему, а другая нет, поскольку бесконечность сама по себе границ не имеет и подразумевается, что по ту сторону нет числа, замыкающего этот числовой луч.

Учитывая то, что одна из границ числового луча закрыта, данный промежуток часто называют закрытым числовым лучом .

Запишем ответ к неравенству x ≥ 3 с помощью обозначения числового луча. У нас переменная a равна 3

x ∈ [ 3 ; +∞)

В этом выражении говорится, что переменная x , входящая в неравенство x ≥ 3, принимает все значения от 3 до плюс бесконечности.

Иначе говоря, все числа от 3 до плюс бесконечности, являются решениями неравенства x ≥ 3 . Граница 3 принадлежит множеству решений, поскольку неравенство x ≥ 3 является нестрогим.

Закрытым числовым лучом также называют числовой промежуток, который задаётся неравенством x ≤ a . Решениями неравенства x ≤ a a , включая само число a .

К примеру, если a x ≤ 2 . На координатной прямой граница 2 будет изображаться закрашенным кружком, а вся область, находящаяся слева , будет выделена штрихами. В этот раз выделяется левая часть, поскольку решениями неравенства x ≤ 2 являются числа, меньшие 2. А меньшие числа на координатной прямой располагаются левее

x ≤ 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x ≤ 2 .

Точка 2, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства x ≤ 2 принадлежит множеству его решений.

Запишем ответ к неравенству x ≤ 2 с помощью обозначения числового луча:

x ∈ (−∞ ; 2 ]

x ≤ 2. Граница 2 принадлежит множеству решений, поскольку неравенство x ≤ 2 является нестрогим.

Открытый числовой луч

Открытым числовым лучом называют числовой промежуток, который задаётся неравенством x > a , где a — граница данного неравенства, x — решение неравенства.

Открытый числовой луч во многом похож на закрытый числовой луч. Различие в том, что граница a не принадлежит промежутку, как и граница неравенства x > a не принадлежит множеству его решений.

Пусть a = 3 . Тогда неравенство примет вид x > 3 . Решениями данного неравенства являются все числа, которые больше 3, за исключением числа 3

На координатной прямой граница открытого числового луча, заданного неравенством x > 3, будет изображаться в виде пустого кружка. Вся область, находящаяся справа, будет выделена штрихами:

Здесь точка 3 соответствует границе неравенства x > 3 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x > 3 . Точка 3, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x > 3 не принадлежит множеству его решений.

x > a , обозначается следующим образом:

(a ; +∞)

Круглые скобки указывают на то, что границы открытого числового луча не принадлежат ему.

Запишем ответ к неравенству x > 3 с помощью обозначения открытого числового луча:

x ∈ (3 ; +∞)

В этом выражении говорится, что все числа от 3 до плюс бесконечности, являются решениями неравенства x > 3 . Граница 3 не принадлежит множеству решений, поскольку неравенство x > 3 является строгим.

Открытым числовым лучом также называют числовой промежуток, который задаётся неравенством x < a , где a — граница данного неравенства, x — решение неравенства. Решениями неравенства x < a являются все числа, которые меньше a , исключая число a .

К примеру, если a = 2 , то неравенство примет вид x < 2 . На координатной прямой граница 2 будет изображаться пустым кружком, а вся область, находящаяся слева, будет выделена штрихами:

Здесь точка 2 соответствует границе неравенства x < 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x < 2 . Точка 2, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x < 2 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x < a , обозначается следующим образом:

(−∞ ; a )

Запишем ответ к неравенству x < 2 с помощью обозначения открытого числового луча:

x ∈ (−∞ ; 2)

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства x < 2. Граница 2 не принадлежит множеству решений, поскольку неравенство x < 2 является строгим.

Отрезок

Отрезком a ≤ x ≤ b , где a и b x — решение неравенства.

Пусть a = 2 , b = 8 . Тогда неравенство a ≤ x ≤ b примет вид 2 ≤ x ≤ 8 . Решениями неравенства 2 ≤ x ≤ 8 являются все числа, которые больше 2 и меньше 8. При этом границы неравенства 2 и 8 принадлежат множеству его решений, поскольку неравенство 2 ≤ x ≤ 8 является нестрогим.

Изобразим отрезок, заданный двойным неравенством 2 ≤ x ≤ 8 на координатной прямой. Для этого отметим на ней точки с координатами 2 и 8, а располагающуюся между ними область выделим штрихами:

x ≤ 8 , а выделенная штрихами область соответствует множеству значений x x ≤ 8 . Точки 2 и 8, являющиеся границами отрезка, изображены в виде закрашенных кружков, поскольку границы неравенства 2 ≤ x ≤ 8 принадлежат множеству его решений.

На письме отрезок, заданный неравенством a ≤ x ≤ b обозначается следующим образом:

[ a ; b ]

Квадратные скобки с обеих сторон указывают на то, что границы отрезка принадлежат ему. Запишем ответ к неравенству 2 ≤ x

x ∈ [ 2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8 включительно, являются решениями неравенства 2 ≤ x ≤ 8 .

Интервал

Интервалом называют числовой промежуток, который задаётся двойным неравенством a < x < b , где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2 , b = 8 . Тогда неравенство a < x < b примет вид 2 < x < 8 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая числа 2 и 8.

Изобразим интервал на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 < x < 8 , а выделенная штрихами область соответствует множеству значений x < x < 8 . Точки 2 и 8, являющиеся границами интервала, изображены в виде пустых кружков, поскольку границы неравенства 2 < x < 8 не принадлежат множеству его решений.

На письме интервал, заданный неравенством a < x < b, обозначается следующим образом:

(a ; b )

Круглые скобки с обеих сторон указывают на то, что границы интервала не принадлежат ему. Запишем ответ к неравенству 2 < x < 8 с помощью этого обозначения:

x ∈ (2 ; 8)

В этом выражении говорится, что все числа от 2 до 8, исключая числа 2 и 8, являются решениями неравенства 2 < x < 8 .

Полуинтервал

Полуинтервалом называют числовой промежуток, который задаётся неравенством a ≤ x < b , где a и b — границы данного неравенства, x — решение неравенства.

Полуинтервалом также называют числовой промежуток, который задаётся неравенством a < x ≤ b .

Одна из границ полуинтервала принадлежит ему. Отсюда и название этого числового промежутка.

В ситуации с полуинтервалом a ≤ x < b ему (полуинтервалу) принадлежит левая граница.

А в ситуации с полуинтервалом a < x ≤ b ему принадлежит правая граница.

Пусть a = 2 , b = 8 . Тогда неравенство a ≤ x < b примет вид 2 ≤ x < 8 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, включая число 2, но исключая число 8.

Изобразим полуинтервал 2 ≤ x < 8 на координатной прямой:

x < 8 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 ≤ x < 8 .

Точка 2, являющаяся левой границей полуинтервала, изображена в виде закрашенного кружка, поскольку левая граница неравенства 2 ≤ x < 8 принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде пустого кружка, поскольку правая граница неравенства 2 ≤ x < 8 не принадлежит множеству его решений.

a ≤ x < b, обозначается следующим образом:

[ a ; b )

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница полуинтервала принадлежит ему, а другая нет. Запишем ответ к неравенству 2 ≤ x < 8 с помощью этого обозначения:

x ∈ [ 2 ; 8)

В этом выражении говорится, что все числа от 2 до 8, включая число 2, но исключая число 8, являются решениями неравенства 2 ≤ x < 8 .

Аналогично на координатной прямой можно изобразить полуинтервал, заданный неравенством a < x ≤ b . Пусть a = 2 , b = 8 . Тогда неравенство a < x ≤ b примет вид 2 < x ≤ 8 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая число 2, но включая число 8.

Изобразим полуинтервал 2 < x ≤ 8 на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 < x ≤ 8 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 < x ≤ 8 .

Точка 2, являющаяся левой границей полуинтервала, изображена в виде пустого кружка, поскольку левая граница неравенства 2 < x ≤ 8 не принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде закрашенного кружка, поскольку правая граница неравенства 2 < x ≤ 8 принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a < x ≤ b, обозначается так: (a ; b ] . Запишем ответ к неравенству 2 < x ≤ 8 с помощью этого обозначения:

x ∈ (2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8, исключая число 2, но включая число 8, являются решениями неравенства 2 < x ≤ 8 .

Изображение числовых промежутков на координатной прямой

Числовой промежуток может быть задан с помощью неравенства или с помощью обозначения (круглых или квадратных скобок). В обоих случаях нужно суметь изобразить этот числовой промежуток на координатной прямой. Рассмотрим несколько примеров.

Пример 1 . Изобразить числовой промежуток, заданный неравенством x > 5

Вспоминаем, что неравенством вида x > a задаётся открытый числовой луч. В данном случае переменная a равна 5. Неравенство x > 5 строгое, поэтому граница 5 будет изображаться в виде пустого кружкá. Нас интересуют все значения x, которые больше 5, поэтому вся область справа будет выделена штрихами:

Пример 2 . Изобразить числовой промежуток (5; +∞) на координатной прямой

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью неравенства, а с помощью обозначения числового промежутка.

Граница 5 обрамлена круглой скобкой, значит она не принадлежит промежутку. Соответственно, кружок остаётся пустым.

Символ +∞ указывает, что нас интересуют все числа, которые больше 5. Соответственно, вся область справа от границы 5 выделяется штрихами:

Пример 3 . Изобразить числовой промежуток (−5; 1) на координатной прямой.

Круглыми скобками с обеих сторон обозначаются интервалы. Границы интервала не принадлежат ему, поэтому границы −5 и 1 будут изображаться на координатной прямой в виде пустых кружков. Вся область между ними будет выделена штрихами:

Пример 4 . Изобразить числовой промежуток, заданный неравенством −5 < x < 1

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью обозначения промежутка, а с помощью двойного неравенства.

Неравенством вида a < x < b , задаётся интервал. В данном случае переменная a равна −5 , а переменная b равна единице. Неравенство −5 < x < 1 строгое, поэтому границы −5 и 1 будут изображаться в виде пустых кружка. Нас интересуют все значения x, которые больше −5 , но меньше единицы, поэтому вся область между точками −5 и 1 будет выделена штрихами:

Пример 5 . Изобразить на координатной прямой числовые промежутки [-1; 2] и

В этот раз изобразим на координатной прямой сразу два промежутка.

Квадратными скобками с обеих сторон обозначаются отрезки. Границы отрезка принадлежат ему, поэтому границы отрезков [-1; 2] и будут изображаться на координатной прямой в виде закрашенных кружков. Вся область между ними будет выделена штрихами.

Чтобы хорошо увидеть промежутки [−1; 2] и , первый можно изобразить на верхней области, а второй на нижней. Так и поступим:

Пример 6 . Изобразить на координатной прямой числовые промежутки [-1; 2) и (2; 5]

Квадратной скобкой с одной стороны и круглой с другой обозначаются полуинтервалы. Одна из границ полуинтервала принадлежат ему, а другая нет.

В случае с полуинтервалом [-1; 2) левая граница будет принадлежать ему, а правая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

А в случае с полуинтервалом (2; 5] ему будет принадлежать только правая граница, а левая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

Изобразим промежуток [-1; 2) на верхней области координатной прямой, а промежуток (2; 5] — на нижней:

Примеры решения неравенств

Неравенство, которое путём тождественных преобразований можно привести к виду ax > b (или к виду ax < b ), будем называть линейным неравенством с одной переменной .

В линейном неравенстве ax > b , x — это переменная, значения которой нужно найти, а — коэффициент этой переменной, b — граница неравенства, которая в зависимости от знака неравенства может принадлежать множеству его решений либо не принадлежать ему.

Например, неравенство 2x > 4 является неравенством вида ax > b . В нём роль переменной a играет число 2, роль переменной b (границы неравенства) играет число 4.

Неравенство 2x > 4 можно сделать ещё проще. Если мы разделим обе его части на 2, то получим неравенство x > 2

Получившееся неравенство x > 2 также является неравенством вида ax > b , то есть линейным неравенством с одной переменной. В этом неравенстве роль переменной a играет единица. Ранее мы говорили, что коэффициент 1 не записывают. Роль переменной b играет число 2.

Отталкиваясь от этих сведений, попробуем решить несколько простых неравенств. В ходе решения мы будем выполнять элементарные тождественные преобразования с целью получить неравенство вида ax > b

Пример 1 . Решить неравенство x − 7 < 0

Прибавим к обеим частям неравенства число 7

x − 7 + 7 < 0 + 7

В левой части останется x , а правая часть станет равна 7

x < 7

Путём элементарных преобразований мы привели неравенство x − 7 < 0 к равносильному неравенству x < 7 . Решениями неравенства x < 7 являются все числа, которые меньше 7. Граница 7 не принадлежит множеству решений, поскольку неравенство строгое.

Когда неравенство приведено к виду x < a (или x > a ), его можно считать уже решённым. Наше неравенство x − 7 < 0 тоже приведено к такому виду, а именно к виду x < 7 . Но в большинстве школ требуют, чтобы ответ был записан с помощью числового промежутка и проиллюстрирован на координатной прямой.

Запишем ответ с помощью числового промежутка. В данном случае ответом будет открытый числовой луч (вспоминаем, что числовой луч задаётся неравенством x < a и обозначается как (−∞ ; a )

x ∈ (−∞ ; 7)

На координатной прямой граница 7 будет изображаться в виде пустого кружка, а вся область, находящаяся слева от границы, будет выделена штрихами:

Для проверки возьмём любое число из промежутка (−∞ ; 7) и подставим его в неравенство x < 7 вместо переменной x . Возьмём, например, число 2

2 < 7

Получилось верное числовое неравенство, значит и решение верное. Возьмём ещё какое-нибудь число, например, число 4

4 < 7

Получилось верное числовое неравенство. Значит решение верное.

А поскольку неравенство x < 7 равносильно исходному неравенству x − 7 < 0 , то решения неравенства x < 7 будут совпадать с решениями неравенства x − 7 < 0 . Подставим те же тестовые значения 2 и 4 в неравенство x − 7 < 0

2 − 7 < 0

−5 < 0 — Верное неравенство

4 − 7 < 0

−3 < 0 Верное неравенство

Пример 2 . Решить неравенство −4x < −16

Разделим обе части неравенства на −4. Не забываем, что при делении обеих частей неравенства на отрицательное число , знак неравенства меняется на противоположный :

Мы привели неравенство −4x < −16 к равносильному неравенству x > 4 . Решениями неравенства x > 4 будут все числа, которые больше 4. Граница 4 не принадлежит множеству решений, поскольку неравенство строгое.

x > 4 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 3 . Решить неравенство 3y + 1 > 1 + 6y

Перенесём 6y из правой части в левую часть, изменив знак. А 1 из левой части перенесем в правую часть, опять же изменив знак:

3y − 6y > 1 − 1

Приведём подобные слагаемые:

−3y > 0

Разделим обе части на −3. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Решениями неравенства y < 0 являются все числа, меньшие нуля. Изобразим множество решений неравенства y < 0 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 4 . Решить неравенство 5(x − 1) + 7 ≤ 1 − 3(x + 2)

Раскроем скобки в обеих частях неравенства:

Перенесем −3x из правой части в левую часть, изменив знак. Члены −5 и 7 из левой части перенесем в правую часть, опять же изменив знаки:

Приведем подобные слагаемые:

Разделим обе части получившегося неравенства на 8

Решениями неравенства являются все числа, которые меньше . Граница принадлежит множеству решений, поскольку неравенство является нестрогим.

Пример 5 . Решить неравенство

Умножим обе части неравенства на 2. Это позволит избавиться от дроби в левой части:

Теперь перенесем 5 из левой части в правую часть, изменив знак:

После приведения подобных слагаемых, получим неравенство 6x > 1 . Разделим обе части этого неравенства на 6. Тогда получим:

Решениями неравенства являются все числа, которые больше . Граница не принадлежит множеству решений, поскольку неравенство является строгим.

Изобразим множество решений неравенства на координатной прямой и запишем ответ в виде числового промежутка:

Пример 6 . Решить неравенство

Умножим обе части на 6

После приведения подобных слагаемых, получим неравенство 5x < 30 . Разделим обе части этого неравенства на 5

Решениями неравенства x < 6 являются все числа, которые меньше 6. Граница 6 не принадлежит множеству решений, поскольку неравенство является x < 6 строгим.

Изобразим множество решений неравенства x < 6 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 7 . Решить неравенство

Умножим обе части неравенства на 10

В получившемся неравенстве раскроем скобки в левой части:

Перенесем члены без x в правую часть

Приведем подобные слагаемые в обеих частях:

Разделим обе части получившегося неравенства на 10

Решениями неравенства x ≤ 3,5 являются все числа, которые меньше 3,5. Граница 3,5 принадлежит множеству решений, поскольку неравенство является x ≤ 3,5 нестрогим.

Изобразим множество решений неравенства x ≤ 3,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 8 . Решить неравенство 4 < 4x < 20

Чтобы решить такое неравенство, нужно переменную x освободить от коэффициента 4. Тогда мы сможем сказать в каком промежутке находится решение данного неравенства.

Чтобы освободить переменную x от коэффициента, можно разделить член 4x на 4. Но правило в неравенствах таково, что если мы делим член неравенства на какое-нибудь число, то тоже самое надо сделать и с остальными членами, входящими в данное неравенство. В нашем случае на 4 нужно разделить все три члена неравенства 4 < 4x < 20

Решениями неравенства 1 < x < 5 являются все числа, которые больше 1 и меньше 5. Границы 1 и 5 не принадлежат множеству решений, поскольку неравенство 1 < x < 5 является строгим.

Изобразим множество решений неравенства 1 < x < 5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 9 . Решить неравенство −1 ≤ −2x ≤ 0

Разделим все члены неравенства на −2

Получили неравенство 0,5 ≥ x ≥ 0 . Двойное неравенство желательно записывать так, чтобы меньший член располагался слева, а больший справа. Поэтому перепишем наше неравенство следующим образом:

0 ≤ x ≤ 0,5

Решениями неравенства 0 ≤ x ≤ 0,5 являются все числа, которые больше 0 и меньше 0,5. Границы 0 и 0,5 принадлежат множеству решений, поскольку неравенство 0 ≤ x ≤ 0,5 является нестрогим.

Изобразим множество решений неравенства 0 ≤ x ≤ 0,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 10 . Решить неравенство

Умножим обе неравенства на 12

Раскроем скобки в получившемся неравенстве и приведем подобные слагаемые:

Разделим обе части получившегося неравенства на 2

Решениями неравенства x ≤ −0,5 являются все числа, которые меньше −0,5. Граница −0,5 принадлежит множеству решений, поскольку неравенство x ≤ −0,5 является нестрогим.

Изобразим множество решений неравенства x ≤ −0,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 11 . Решить неравенство

Умножим все части неравенства на 3

Теперь из каждой части получившегося неравенства вычтем 6

Каждую часть получившегося неравенства разделим на −1. Не забываем, что при делении всех частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Решениями неравенства 3 ≤ a ≤ 9 являются все числа, которые больше 3 и меньше 9. Границы 3 и 9 принадлежат множеству решений, поскольку неравенство 3 ≤ a ≤ 9 является нестрогим.

Изобразим множество решений неравенства 3 ≤ a ≤ 9 на координатной прямой и запишем ответ в виде числового промежутка:

Когда решений нет

Существуют неравенства, которые не имеют решений. Таковым, например, является неравенство 6x > 2(3x + 1) . В процессе решения этого неравенства мы придём к тому, что знак неравенства > не оправдает своего местоположения. Давайте посмотрим, как это выглядит.

Раскроем скобки в правой части данного неравенство, получим 6x > 6x + 2 . Перенесем 6x из правой части в левую часть, изменив знак, получим 6x − 6x > 2 . Приводим подобные слагаемые и получаем неравенство 0 > 2 , которое не является верным.

Для наилучшего понимания, перепишем приведение подобных слагаемых в левой части следующим образом:

Получили неравенство 0x > 2 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль не может быть больше, чем число 2. Значит неравенство 0x > 2 не имеет решений.

x > 2 , то не имеет решений и исходное неравенство 6x > 2(3x + 1) .

Пример 2 . Решить неравенство

Умножим обе части неравенства на 3

В получившемся неравенстве перенесем член 12x из правой части в левую часть, изменив знак. Затем приведём подобные слагаемые:

Правая часть получившегося неравенства при любом x будет равна нулю. А ноль не меньше, чем −8. Значит неравенство 0x < −8 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0x < −8 , то не имеет решений и исходное неравенство .

Ответ : решений нет.

Когда решений бесконечно много

Существуют неравенства, имеющие бесчисленное множество решений. Такие неравенства становятся верными при любом x .

Пример 1 . Решить неравенство 5(3x − 9) < 15x

Раскроем скобки в правой части неравенства:

Перенесём 15x из правой части в левую часть, изменив знак:

Приведем подобные слагаемые в левой части:

Получили неравенство 0x < 45 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль меньше, чем 45. Значит решением неравенства 0x < 45 является любое число.

x < 45 имеет бесчисленное множество решений, то и исходное неравенство 5(3x − 9) < 15x имеет те же решения.

Ответ можно записать в виде числового промежутка:

x ∈ (−∞; +∞)

В этом выражении говорится, что решениями неравенства 5(3x − 9) < 15x являются все числа от минус бесконечности до плюс бесконечности.

Пример 2 . Решить неравенство: 31(2x + 1) − 12x > 50x

Раскроем скобки в левой части неравенства:

Перенесём 50x из правой части в левую часть, изменив знак. А член 31 из левой части перенесём в правую часть, опять же изменив знак:

Приведём подобные слагаемые:

Получили неравенство 0x > −31 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль больше, чем −31 . Значит решением неравенства 0x < −31 является любое число.

А если приведённое равносильное неравенство 0x > −31 имеет бесчисленное множество решений, то и исходное неравенство 31(2x + 1) − 12x > 50x имеет те же решения.

Запишем ответ в виде числового промежутка:

x ∈ (−∞; +∞)

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках