Биографии Характеристики Анализ

Причины потери корней при решении уравнений. Посторонние корни уравнения, отсеивание посторонних корней

Основные методы решения уравнений

Что такое решение уравнения?

Тождественное преобразование. Основные

виды тождественных преобразований.

Посторонний корень. Потеря корня.

Решение уравнения – это процесс, состоящий в основном в замене заданного уравнения другим уравнением, ему равносильным . Такая замена называется тождественным преобразованием . Основные тождественные преобразования следующие:

1.

Замена одного выражения другим, тождественно равным ему. Например, уравнение (3 x+ 2 ) 2 = 15 x+ 10 можно заменить следующим равносильным: 9 x 2 + 12 x + 4 = 15 x + 10 .

2.

Перенос членов уравнения из одной стороны в другую с обратными знаками. Так, в предыдущем уравнении мы можем перенести все его члены из правой части в левую со знаком « – »: 9 x 2 + 12 x + 4 15 x – 10 = 0, после чего получим: 9 x 2 3 x – 6 = 0 .

3.

Умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля. Это очень важно, так как новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим, может быть равно нулю.

П р и м е р. Уравнение x – 1 = 0 имеет единственный корень x = 1.

Умножив обе его части на x – 3 , мы получим уравнение

( x – 1)( x – 3) = 0, у которого два корня: x = 1 и x = 3.

Последнее значение не является корнем заданного уравнения

x – 1 = 0. Это так называемый посторонний корень .

И наоборот, деление может привести к потере корня . Так

в нашем случае, если (x – 1 )( x – 3 ) = 0 является исходным

уравнением, то корень x = 3 будет потерян при делении

обеих частей уравнения на x – 3 .

В последнем уравнении (п.2) мы можем разделить все его члены на 3 (не ноль!) и окончательно получим:

3 x 2 – x – 2 = 0 .

Это уравнение равносильно исходному:

(3 x+ 2) 2 = 15 x + 10 .

4.

Можно возвести обе части уравнения в нечётную степень или извлечь из обеих частей уравнения корень нечётной степени . Необходимо помнить, что:

а) возведение в чётную степень может привести к приобретению посторонних корней ;

б) неправильное извлечение корня чётной степени может привести к потере корней .

П р и м е р ы. Уравнение 7 x = 35 имеет единственный корень x = 5 .

Возведя обе части этого уравнения в квадрат, получим

уравнение:

49 x 2 = 1225 .

имеющее два корня: x = 5 и x = 5. Последнее значение

является посторонним корнем.

Неправильное извлечение квадратного корня из обеих

частей уравнения 49 x 2 = 1225 даёт в результате 7 x = 35,

и мы теряем корень x = 5.

Правильное извлечение квадратного корня приводит к

уравнению: | 7 x | = 35, а следовательно, к двум случаям:

1) 7 x = 35, тогда x = 5 ; 2) 7 x = 35, тогда x = 5 .

Следовательно, при правильном извлечении квадратного

корня мы не теряем корней уравнения.

Что значит правильно извлечь корень? Здесь мы встречаемся

с очень важным понятием арифметического корня

(см. ).

ЗУБЫ. Зубы позвоночных по своему строению и развитию совершенно сходны с плакоид ными чешуями, покрывающими всю кожу акуловых рыб. Поскольку вся ротовая полость, а частью и полость глотки, выстлана эктодермальным эпителием, типичная пла коидная… …

ТУБЕРКУЛЕЗ ЛЕГКИХ - ТУБЕРКУЛЕЗ ЛЕГКИХ. Содержание: I. Патологическая анатомия...........110 II. Классификация легочного туберкулеза.... 124 III. Клиника.....................128 IV. Диагностика..................160 V. Прогноз..................... 190 VІ. Лечение … Большая медицинская энциклопедия

ОТРАВЛЕНИЕ - ОТРАВЛЕНИЕ. Под отравлением разумеют «расстройства функций животн. организма, вызываемые экзогенными или эндогенными, химически или физико химически действующими веществами, к рые в отношении качества, количества или концентрации чужды… … Большая медицинская энциклопедия

Клубеньковые бактерии бобовых - Данные палеонтологии свидетельствуют о том, что самыми древними бобовыми культурами, имевшими клубеньки, были некоторые растения, принадлежащие к группе Eucaesalpinioideae. У современных видов бобовых растений клубеньки обнаружены … Биологическая энциклопедия

Список серий мультсериала «Лунтик» - В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

РАСТЕНИЕ И СРЕДА - Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия

Список серий сериала «Лунтик» - Основная статья: Приключения Лунтика и его друзей Содержание 1 Количество серий 2 Список серий мультсериала Лунтик и его друзья … Википедия

Болезни плодовых деревьев - Плодовые деревья благодаря постоянным заботам о них человека должны достигать гораздо старшего возраста, чем некультурные родичи их, если бы не противодействующие влияния многих условий самой культуры, а именно требования, предъявляемые нами… …

Валка леса - В. леса, или извлечение лесного дохода в виде древесины и коры, может быть выполнена двояким образом: выкапыванием или выкорчевыванием целых деревьев, т. е. стволов вместе с корнями, или же отдельно, по частям сперва валятся, или снимаются с… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Грош - (польск. grosz, от нем. Groschen, от лат. grossus (dēnārius) «толстый денарий») монета различных стран и времён. Содержание 1 Появление гроша … Википедия

Монеты США - 20 долларов Сент Годенса самая красивая и дорогая монета США Монеты США монеты, чеканящиеся на Монетном дворе США. Выпускаются с 1792 года … Википедия

Книги

  • Основные причины выпадения волос у женщин , Алексей Мичман , Проблемой выпадения волос в какой-то момент жизни страдает шесть из десяти женщин. Потеря волос может происходить по ряду причин, таких как наследственность, гормональные изменения в… Категория:

§ 1. ПОТЕРЯННЫЕ И ПОСТОРОННИЕ КОРНИ ПРИ РЕШЕНИИ УРАВНЕНИЙ (НА ПРИМЕРАХ)

СПРАВОЧНЫЙ МАТЕРИАЛ

1. В двух теоремах § 3 главы VII говорилось о том, какие действия над уравнениями не нарушают их равносильности.

2. Рассмотрим теперь такие операции над уравнениями, которые могут привести к новому уравнению, неравносильному исходному уравнению. Вместо общих рассуждений ограничимся рассмотрением лишь конкретных примеров.

3. Пример 1. Дано уравнение Раскроем скобки в данном уравнении, перенесем все члены в левую часть и решим квадратное уравнение. Его корнями являются

Если сократить обе части уравнения на общий множитель то получится уравнение которое неравносильно первоначальному, так как имеет всего один корень

Таким образом, сокращение обеих частей уравнения на множитель, содержащий неизвестное, может привести к потере корней уравнения.

4. Пример 2. Дано уравнение Данное уравнение имеет единственный корень Возведем обе части этого уравнения в квадрат, получим Решая это уравнение, найдем два корня:

Усматриваем, что новое уравнение неравносильно исходному уравнению Корень является корнем уравнения которое после возведения в квадрат обеих частей приводит к уравнению

5. Посторонние корни могут появиться также при умножении обеих частей уравнения на множитель, содержащий неизвестное, если этот множитель при действительных значениях х обращается в нуль.

Пример 3. Если обе части уравнения умножим на то получим новое уравнение которое после переноса члена из правой части в левую и разложения на множители дает уравнение откуда либо

Корень не удовлетворяет уравнению которое имеет единственный корень

Отсюда делаем вывод: при возведении обеих частей уравнения в квадрат (вообще в четную степень), а также при умножении на множитель, содержащий неизвестное и обращающийся в нуль при действительных значениях неизвестного, могут появляться посторонние корни.

Все соображения, высказанные здесь по вопросу о потере и появлении посторонних корней уравнения, в одинаковой мере относятся к любым уравнениям (алгебраическим, тригонометрическим и др.).

6. Уравнение называется алгебраическим, если в нем над неизвестным выполняются только алгебраические операции - сложение, вычитание, умножение, деление, возведение в степень и извлечение корня с натуральным показателем (причем число таких операций конечное).

Так, например, уравнения

являются алгебраическими, а уравнения

Тема тригонометрических уравнений начинается со школьной лекции, которая строится в виде эвристической беседы. На лекции рассматривается теоретический материал и образцы решения всех типовых задач по плану:

  • Простейшие тригонометрические уравнения.
  • Основные методы решения тригонометрических уравнений.
  • Однородные уравнения.

На следующих уроках начинается самостоятельная отработка навыков, основанная на применении принципа совместной деятельности учителя и ученика. Сначала устанавливаются цели для учащихся, т.е. определяется, кто хочет знать не более того, что требуется государственным стандартом, а кто готов заниматься больше.

Итоговая диагностика создается с учетом уровневой дифференциации, что позволяет учащимся осознанно определять тот минимум знаний, который необходим для получения оценки “3”. Исходя из этого, отбираются разноуровневые материалы для диагностики знаний учащихся. Такая работа позволяет осуществить индивидуальный подход к учащимся, включить каждого в осознанную учебную деятельность, формировать навыки самоорганизованности и самообучения, обеспечивать переход к активному, самостоятельному мышлению.

Семинар проводится после отработки основных навыков решения тригонометрических уравнений. За несколько уроков до семинара ученикам даются вопросы, которые будут рассматриваться на нем.

Семинар состоит из трех частей.

1. Во вводной части рассматривается весь теоретический материал, включая знакомство с проблемами, которые возникнут при решении сложных уравнений.

2. Во второй части рассматриваются решение уравнений вида:

  • а cosx + bsinx = c.
  • a (sinx + cosx) + bsin2x + c = 0.
  • уравнения, решаемые через понижение степени.

В этих уравнениях применяются универсальная подстановка, формулы понижения степени, метод вспомогательного аргумента.

3. В третьей части рассматриваются проблемы потери корней и приобретение посторонних корней. Показывается, как надо отбирать корни.

Ученики работают в группах. Для решения примеров вызываются хорошо подготовленные ребята, которые могут показать и объяснить материал.

Семинар рассчитан на хорошо подготовленного ученика, т.к. на нем рассматриваются вопросы несколько выходящие за рамки программного материала. В него включены уравнения более сложного вида, и особо рассматриваются проблемы, возникающие при решении сложных тригонометрических уравнений.

Семинар проводился для учеников 10 – 11 классов. Каждый ученик получил возможность расширить и углубить свои знания по этой теме, сравнить уровень своих знаний не только с требованиями, предъявляемыми к выпускнику школы, но и с требованиями предъявляемыми поступающим в В.У.З.

СЕМИНАР

Тема: "Решение тригонометрических уравнений"

Цели:

  • Обобщить знания по решению тригонометрических уравнений всех типов.
  • Заострить внимание на проблемах: потеря корней; посторонние корни; отбор корней.

ХОД УРОКА.

I. Вводная часть

1. Основные методы решения тригонометрических уравнений

  • Разложение на множители.
  • Введение новой переменной.
  • Функционально-графический метод.

2. Некоторые типы тригонометрических уравнений.

  • Уравнения, сводящиеся к квадратным уравнениям, относительно cos х = t, sin х = t.

Asin 2 x + Bcosx + C = 0; Acos 2 x + Вsinx + C = 0.

Решаются методом введения новой переменной.

  • Однородные уравнения первой и второй степени

Уравнение первой степени: Asinx + Bcosx = 0 разделим на cos x, получим Atg x + B = 0

Уравнение второй степени: Asin 2 x + Bsinx cosx + Сcos 2 x = 0 разделим на cos 2 x, получим Atg 2 x + Btgx + C = 0

Решаются методом разложения на множители и методом введения новой переменной.

Применимы все методы.

  • Понижение степени:

1). Аcos2x + Вcos 2 x = C; Acos2x + Bsin 2 x = C.

Решаются методом разложения на множители.

2). Asin2x + Bsin 2 x = C; Asin2x + Bcos 2 x = C.

  • Уравнение вида: A(sinx + cosx) + Bsin2x + C = 0.

Сводятся к квадратным относительно t = sinx + cosx; sin2x = t 2 – 1.

3. Формулы.

х + 2 n; Проверка обязательна!

  • Понижение степени: cos 2 x = (1 + cos2x): 2; sin 2 x = (1 – cos 2x): 2
  • Метод вспомогательного аргумента.

Acosx + Bsinx заменим на Csin (x + ), где sin = а/С; cos= в/С;

– вспомогательный аргумент.

4. Правила.

  • Увидел квадрат – понижай степень.
  • Увидел произведение – делай сумму.
  • Увидел сумму – делай произведение.

5. Потеря корней, лишние корни.

  • Потеря корней: делим на g(х); опасные формулы (универсальная подстановка). Этими операциями сужаем область определения.
  • Лишние корни: возводим в четную степень; умножаем на g(х) (избавляемся от знаменателя). Этими операциями расширяем область определения.

II. Примеры тригонометрических уравнений

1. Уравнения вида Asinx + Bcosx = C

1) Универсальная подстановка.О.Д.З. х – любое.

3 sin 2x + cos 2x + 1= 0.

tgx = u. х /2 + n;

u = – 1/3.

tg x = –1/3, x = arctg (–1/3) + k, k Z.

Проверка: 3sin( + 2n) + cos( + 2n) + 1= 3 sin + cos + 1 = 0 – 1 + 1 = 0.

х = /2 + n, n э Z. Является корнем уравнения.

Ответ: х = arctg(–1/3) + k, k Z. x = /2 + n, n Z.

2) Функционально-графический метод. О.Д.З. х – любое.

Sinx – cosx = 1
Sinx = cosx + 1.

Построим графики функций: y = sinx, y = cosx + 1.

Ответ: х = /2 + 2 n, Z ; x = + 2k, k Z.

3) Введение вспомогательного аргумента. О.Д.З.: х – любое.

8cosx + 15 sinx = 17.

8/17 cosx + 15/17 sinx = 1, т.к. (8/17) 2 + (15/17) 2 = 1, то существует такое , что sin = 8/17,

cos = 15/17, значит sin cosx + sinx cos = 1; = arcsin 8/17.

Ответ: x = /2 + 2n – , x = /2 + 2n – arcsin 8/17, n Z.

2. Понижение порядка: Acos2x + Bsin2x = C. Acos2x + Bcos2x = C.

1). sin 2 3x + sin 2 4x + sin 2 6x + sin 2 7x = 2. О.Д.З.: х – любое.

1 – cos 6x + 1 – cos 8x + 1 – cos 12x + 1 – cos 14x = 4
cos 6x + cos 8x + cos 12x + cos 14x = 0
2cos10x cos 4x + 2cos 10x cos 2x = 0
2cos 10x(cos 4x + cos 2x) = 0
2cos10x 2cos3x cosx = 0
cos10x = 0, cos3x = 0, cosx = 0.

Ответ: х = /20 + n/10, n Z. x = /6 + k/3, k Z, x = /2 + m, m Z.

При k = 1 и m = 0
k = 4 и m = 1.
серии совпадают.

3. Сведение к однородному. Asin2x + Bsin 2 x = C, Asin2x + Bcos 2 x = C.

1) 5 sin 2 x + 3 sinx cosx + 6 cos 2 x = 5. ОДЗ: х – любое.
5 sin 2 х + 3 sinx cosx + 6cos 2 х – 5 sin 2 х – 5 cos 2 х = 0
3 sinxcosx + cos 2 х = 0 (1) делить на cos 2 х нельзя, так как теряем корни.
cos 2 х = 0 удовлетворяет уравнению.
cosx ( 3 sinx + cosx) = 0
cosx = 0, 3 sinx + cosx = 0.
х = /2 + k, k Z. tgx = –1/3 , x = –/6 + n, n Z.

Ответ: х = /2 + k, k Z. , x = –/6 + n, n Z

4. Уравнение вида: А(sinx + cosx) + В sin2x + С = 0.

1). 4 + 2sin2x – 5(sinx + cosx) = 0. О.Д.З.: х – любое.
sinx + cosx = t, sin2x = t 2 – 1.
4 + 2t 2 – 2 – 5t = 0, | t | < 2
2 t 2 – 5t + 2 = 0. t 1 = 2, t 2 = Ѕ.
sinx + cosx = Ѕ. cosx = sin(x + /2),
sinx +sin(x + /2) = 1/2,
2sin(x + /4) cos(–/4) = 1/2
sin(x + /4) = 1/22;
x +/4 = (–1) k arcsin(1/2 O 2) + k, k Z.

Ответ: х = (–1) k arcsin(1/22) – /4 + k, k Z.

5. Разложение на множители.

1) cos 2 х – 2 cosx = 4 sinx – sin2x
cosx(cosx – 2) = 2 sinx (2 – cosx),
(cosx – 2)(cosx + 2 sinx) = 0.

1) сosx = 2, корней нет.
2) сosx + 2 sinx = 0
2tgx + 1 = 0

Ответ: x = arctg(1/2) + n, n Z.

III. Проблемы возникающие при решении тригонометрических уравнений

1. Потеря корней: делим на g(х); применяем опасные формулы.

1) Найдите ошибку.

1 – сosx = sinx *sinx/2,
1 – сosx = 2sin 2 х/2 формула.
2 sin 2 х/2 = 2 sinx/2* сosx/2* sinx /2 разделим на 2 sin 2 х/2,
1 = сosx/2
х/2 = 2 n, x = 4n, n " Z.
Потеряли корни sinx/2 = 0, х = 2k, k Z.

Правильное решение: 2sin 2 х/2(1 – сosx /2) = 0.

sin 2 х/2 = 0
x = 2k, k Z.
1 – сosx /2 = 0
x = 4p n, n Z.

2. Посторонние корни: освобождаемся от знаменателя; возводим в четную степень.

1). (sin4x – sin2x – сos3x + 2sinx – 1) : (2sin2x – 3) = 0. О.Д.З.: sin2x 3 / 2.

2сos3х sinx – сos3x + 2sinx – 1 = 0
(сos3x + 1)(2sinx – 1) = 0

1). сos3x + 1 = 0
х = /3 + 2n/3, n Z.
2). 2sinx – 1 = 0
x = (–1) k /6 + k, k Z.

I. х = /3 + 2n/3
1. n = 0
sin 2 /3 = 3 / 2
не удовлетворяют. О.Д.З.

2. n = 1
sin 2= 0
удовлетворяют О.Д.З.

3. n = 2
sin 2/ 3 = –3 / 2
удовлетворяют О.Д.З.

II. x = (–1) k /6 + k, k Z
1. k = 0
sin 2/6 = 3 / 2
не удовлетворяют О.Д.З.
2. k = 1
sin 2*5/6 = –3 / 2
удовлетворяют О.Д.З.

Ответ: х = + 2k, x = 5/3 + 2k, x = 5/6 + 2k, k Z. t = 5 sin3x = 0