Биографии Характеристики Анализ

Пригожин и стенгерс. Реферат: Рецензия на книгу Порядок из хаоса

Discontinuity , 1894-1912.- Oxford : Clarendon Press , N. Y .: Oxford University Press , 1978) ОБЫЕМ ЙЪСЭОЩЕ БТЗХНЕОФЩ, УЧЙДЕФЕМШУФЧХА-ЭЙЕ П ФПН, ЮФП рМБОЛ РТЙДЕТЦЙЧБМУС УФБФЙУФЙЮЕУЛПК ФТБЛФПЧЛЙ ОЕПВ-ТБФЙНПУФЙ, РТЕДМПЦЕООПК вПМЯГНБОПН.

7 Mehra J., Rechenberg H. The Historical Development of Quantum Theory. Vol. 1-4. - N. Y.: Springer, 1982.

8 пФОПУЙФЕМШОП ЛПОГЕРФХБМШОЩИ ПУОПЧ ОЕДБЧОП РТЕДМПЦЕООЩИ ЬЛУРЕТЙНЕОФБМШОЩИ РТПЧЕТПЛ ЗЙРПФЕЪЩ П УЛТЩФЩИ РЕТЕНЕООЩИ Ч ЛЧБО-ФПЧПК НЕИБОЙЛЕ УН.: d " Espagnat ч. Conceptual Foundations of Quantum Mechanics . 2nd aug. ed.-Reading, Mass.: Benjamin, 1976. уН . ФБЛЦЕ d"Espagnat B. The Quantum Theory and Reality, Scien-tific American, 1979, vol. 241, p. 128-140.

9 пФОПУЙФЕМШОП РТЙОГЙРБ ДПРПМОЙФЕМШОПУФЙ УН ., ОБРТЙНЕТ : d"Es ТБ gnat ч . Conceptual Foundations of Quantum Mechanics. 2nd aug. ed.-Reading, Mass.: Benjamin, 1976; Jammer M. The Philo-sophy of Quantum Mechanics.-N. Y.-John Wiley and Sons, 1974; Petersen A. Quantum Mechanics and Philosophica Tradition.- Cambridge, Mass.: MIT Press, 1968; George у ., Prigogine I. Coherence and Randomness in Quantum Theory. Physica, 1979, vol. 99A, p. 369-382.

10 Rosenfeld L. The Measuring Process in Quantum Mecha-nics. Supplement of the Progress of Theoretical Physics, 1965, p. 222.

11 пФОПУЙФЕМШОП ЛЧБОФПЧПНЕИБОЙЮЕУЛЙИ РБТБДПЛУПЧ, ЛПФПТЩЕ У РПМОЩН ПУОПЧБОЙЕН НПЦОП ОБЪЧБФШ ЛПЫНБТБНЙ ЛМБУУЙЮЕУЛПЗП ТБЪХ-НБ, РПУЛПМШЛХ ЧУЕ ПОЙ: Й ЛПЫЛБ ыТЕДЙОЗЕТБ, Й "РТЙСФЕМШ" чЙЗОЕТБ, Й НОПЦЕУФЧЕООЩЕ НЙТЩ ьЧЕТЕФФБ - РТЙЪЧБОЩ ПЦЙЧЙФШ ЙДЕА-жЕОЙЛУ ЪБНЛОХФПК ПВЯЕЛФЙЧОПК ФЕПТЙЙ ОБ ЬФПФ ТБЪ Ч ЧЙДЕ ХТБЧОЕОЙС ыТЕДЙОЗЕТБ. уН. ЛОЙЗЙ Д"ьУРБОШЙ Й дЦЕННЕТБ, ХЛБЪБООЩЕ Ч РТЙНЕЮБ-ОЙЙ 9 Л ЬФПК ЗМБЧЕ.

12 Misr Б ч ., Prigogine I., Courbage M. Lyapunov Va-riable; Entropy and Measurement in Quantum Mechanics. 1979, vol. 76, p. 4768-4772; Prigogine I., George C. The. Second Law as a Selection Prin-ciple: The Microscopic Theory of Dissipative Processes in Quantum Systems. Proceedings of the National Academy of Sciences, 1983, vol. 80, p. 4590--4594.

l3 Minkowski H. Space and Time. The Principles of Relativi-ty.-N. Y.: Dower Publications, 1923. [тХУУЛЙК РЕТЕЧПД: MЙОЛПЧУЛЙК з. рТПУФТБОУФЧП Й ЧТЕНС.-ч УВ.: рТЙОГЙР ПФОПУЙФЕМШОПУФЙ. з. б. мПТЕОГ, б. рХБОЛБТЕ, б. ьКОЫФЕКО, з. нЙОЛПЧУЛЙК.- M .-м.: пофй, 1936, У. 181.]

14 уБИБТПЧ б. д. рЙУШНБ Ч цХТОБМ ЬЛУРЕТЙНЕОФБМШОПК Й ФЕПТЕФЙЮЕУЛПК ЖЙЪЙЛЙ, 1967, Ф. 5, ЧЩР. I, У, 32-35.

зМБЧБ 8

1 љ Lewis G. N. The Symmetry of Time in Physics. Science, 1930, vol. 71, p. 570.

2 Eddingt П n A. S. The Nature of the Physical World. - N. Y.: Macmillan, 1948, p. 74.

3 Gardner M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds.-N. Y.: Charles Scribner"s Sons, 1979, p. 243. [тХУУЛЙК РЕТЕЧПД: зБТДОЕТ M. ьФПФ РТБЧЩК, МЕЧЩК НЙТ. - M.: нЙТ, 1967. уЕТЙС "ч НЙТЕ ОБХЛЙ Й ФЕИОЙЛЙ".]

4 Planck M. Treatise on Thermodynamics.-N. Y.: Dover Pub-


lications , 1945, p . 106. [тХУУЛЙК РЕТЕЧПД: рМБОЛ M. мЕЛГЙЙ РП ФЕТ-НПДЙОБНЙЛЕ нБЛУБ рМБОЛБ.-урВ., 1900, У. 91-92,]

5 чЩУЛБЪЩЧБОЙЕ вЕТОБ РТЙЧЕДЕОП Ч ТБВПФЕ: Denbigh л. How Subjective Is Entropy ? Chemistry in Britain. 1981, vol. 17, p. 168- 185.

6 уН ., ОБРТЙНЕТ : лБУ M. Probability and Related Topics in Phy-sical Sciences. - L.: Interscience Publishers, 1959. [тХУУЛЙК РЕТЕЧПД: л Б Г M. чЕТПСФОПУФШ Й УНЕЦОЩЕ ЧПРТПУЩ Ч ЖЙЪЙЛЕ. - M.: нЙТ, 1965.]

7 Gibbs J. W. Elementary Principles in Statistical Mechanics. - N. T: Dover Publications,љ 1960, Ch. XII.љљ [тХУУЛЙК РЕТЕЧПД: зЙВВУ д Ц. ч. пУОПЧОЩЕ РТЙОГЙРЩ УФБФЙУФЙЮЕУЛПК НЕИБОЙЛЙ, ТБЪ-ТБВПФБООЩЕ УП УРЕГЙБМШОЩН РТЙНЕОЕОЙЕН Л ТБГЙПОБМШОПНХ ПВПУОПЧБ-ОЙА ФЕТНПДЙОБНЙЛЙ. зМ. XII. п ДЧЙЦЕОЙЙ УЙУФЕН Й БОУБНВМЕК УЙУФЕН Ч ФЕЮЕОЙЕ ВПМШЫЙИ РТПНЕЦХФЛПЧ ЧТЕНЕОЙ.-ч ЛО.: зЙВВУ дЦ. ч. фЕТНПДЙОБНЙЛБ.љ уФБФЙУФЙЮЕУЛБС НЕИБОЙЛБ.-M.:љ оБХЛБ,љ 1982, У. 463. уЕТЙС "лМБУУЙЛЙ ЕУФЕУФЧПЪОБОЙС".]

8 оБРТЙНЕТ, у. чБФБОБВЕ РТПЧПДЙФ ТЕЪЛПЕ ТБЪМЙЮЙЕ НЕЦДХ НЙ-ТПН УПЪЕТГБЕНЩН Й НЙТПН, Ч ЛПФПТПН НЩ ДЕКУФЧХЕН ЛБЛ БЛФЙЧОЩЕ БЗЕОФЩ. рП ХФЧЕТЦДЕОЙА чБФБОБВЕ, ОЕРТПФЙЧПТЕЮЙЧПЕ ПВЯСУОЕОЙЕ ЧПЪТБУФБОЙС ЬОФТПРЙЙ ОЕЧПЪНПЦОП ЧОЕ УЧСЪЙ У ЧПЪДЕКУФЧЙСНЙ, РТПЙЪ-ЧПДЙНЩНЙ ОБНЙ ОБ НЙТ. оП Ч ДЕКУФЧЙФЕМШОПУФЙ ЧУС ОБЫБ ЖЙЪЙЛБ НП-ЦЕФ ТБУУНБФТЙЧБФШУС ЛБЛ ОБХЛБ П НЙТЕ, ОБ ЛПФПТЩК НЩ ЧПЪДЕКУФЧХ-ЕН, РПЬФПНХ РТПЧПДЙНБС чБФБОБВЕ ДЕНБТЛБГЙПООБС МЙОЙС НЕЦДХ НЙ-ТПН УПЪЕТГБЕНЩН Й НЙТПН ЛБЛ БТЕОПК БЛФЙЧОЩИ ДЕКУФЧЙК ОЕУРПУПВ-ОБ РТПСУОЙФШ ЧЪБЙНПУЧСЪШ НЕЦДХ НЙЛТПУЛПРЙЮЕУЛПК ДЕФЕТНЙОЙУФЙЮЕ-УЛПК УЙННЕФТЙЕК Й НБЛТПУЛПРЙЮЕУЛПК ЧЕТПСФОПУФОПК БУЙННЕФТЙЕК. чПРТПУ РП-РТЕЦОЕНХ ПУФБЕФУС ВЕЪ ПФЧЕФБ. лБЛЙН ПВТБЪПН НЩ НПЦЕН, ОБРТЙНЕТ, РТЙДБФШ УНЩУМ ХФЧЕТЦДЕОЙА П ФПН, ЮФП УПМОГЕ љ ОЕПВТБФЙНП УЗПТБЕФ? уН .: Watanabe S. Time and Probabilistic View of the World.-In.: The Voices of Time. /Ed. J. Fraser.-N. Y.: Braziller, 1966.

9 дЕНПО нБЛУЧЕММБ ЧРЕТЧЩЕ РПСЧЙМУС Ч ТБВПФЕ : Maxwell J. у . Theory of Heat.-L.: Longmans, 1971, Ch. XXII. уН . ФБЛЦЕ ; Daub E. Maxwell"s Demon; Heimann P. Molecular Forces. Statistical Representation and Maxwell"s Demon. - In.: Studies in History and Philosophy of Science, 1970, vol. 1. ьФПФ ФПН ГЕМЙЛПН РПУЧСЭЕО нБЛУЧЕММХ.

10 чП ltzmann L. Populare Schriften.-Braunschweig-Wiesbaden: Vieweg, 1979. [тХУУЛЙК РЕТЕЧПД: вПМШГНБО м. уФБФШЙ Й ТЕЮЙ.-M.: оБХЛБ, 1970, У. 6.] лБЛ РПДЮЕТЛЙЧБМ ьМШЛБОБ (Elkana Y . чП ltzmann " s Scientific Research Program and Its Alternatives .- In .: Interaction Between Science and Philosophy .- Atlantic , Highlands , N. J .: Humanities Press , 1974), ДБТЧЙОПЧУЛБС ЙДЕС ЬЧП-МАГЙЙ ПУПВЕООП ПФЮЕФМЙЧП ЧЩ ТБЦЕОБ ЧП ЧЪЗМСДБИ вПМШГНБОБ ОБ ОБ-ХЮОПЕ ЪОБОЙЕ, Ф. П. Ч ПФУФБЙЧБОЙЙ вПМШГНБОПН НЕИБОЙУФЙЮЕУЛЙИ НП-ДЕМЕК, РПДЧЕТЗОХФЩИ ЬОЕТЗЕФЙУФБНЙ ТЕЪЛПК ЛТЙФЙЛЕ. уН., ОБРТЙНЕТ, МЕЛГЙА "чФПТПК ЪБЛПО НЕИБОЙЮЕУЛПК ФЕПТЙЙ ФЕРМБ", У ЛПФПТПК вПМШГ-НБО ЧЩУФХРЙМ Ч 1886 З. (Boltzmann L . The Second Law of Ther - modynamics .- In .: Theoretical Physics and Philosophical Problems . / Ed . B . McGuinness .- Dordrecht : D . Reidel , 1974. [тХУУЛЙК РЕТЕЧПД: вПМШГНБО м. чФПТПК ЪБЛПО НЕИБОЙЮЕУЛПК ФЕПТЙЙ ФЕРМБ.-ч ЛО.: вПМШГНБО м. уФБФШЙ Й ТЕЮЙ.-M.: оБХЛБ, 1970, У. 3-28.])

11 вПМЕЕ РПДТПВОП ВПМШГНБОПЧУЛБС ЙОФЕТРТЕФБГЙС ЬОФТПРЙЙ ТБУ - УНПФТЕОБ Ч ЛО.: Prigogine I. From Being to Becoming-Time and Complexity in the Physical Sciences. - San Francisco: W. H. Freeman

Наше видение природы претерпевает радикальные изменения в сторону множественности, темпоральности и сложности. Долгое время в западной науке доминировала механическая картина мироздания. Ныне мы сознаем, что живем в плюралистическом мире. Существуют явления, которые представляются нам детерминированными и обратимыми. Таковы, например, движения маятника без трения или Земли вокруг Солнца. Но существуют также и необратимые процессы, которые как бы несут в себе стрелу времени. Например, если слить две такие жидкости, как спирт и вода, то из опыта известно, что со временем они перемешаются. Обратный процесс - спонтанное разделение смеси на чистую воду и чистый спирт - никогда не наблюдается. Следовательно, перемешивание спирта и воды - необратимый процесс. Вся химия, по существу, представляет собой нескончаемый перечень таких необратимых процессов.

Ясно, что, помимо детерминированных процессов, некоторые фундаментальные явления, такие, например, как биологическая эволюция или эволюция человеческих культур, должны содержать некий вероятностный элемент. Даже ученый, глубоко убежденный в правильности детерминистических описаний, вряд ли осмелится утверждать, что в момент Большого взрыва, т.е. возникновения известной нам Вселенной, дата выхода в свет нашей книги была начертана на скрижалях законов природы. Классическая физика рассматривала фундаментальные процессы как детерминированные и обратимые. Процессы, связанные со случайностью или необратимостью, считались досадными исключениями из общего правила. Ныне мы видим, сколь важную роль играют повсюду необратимые процессы и флуктуации.

Хотя западная наука послужила стимулом к необычайно плодотворному диалогу между человеком и природой, некоторые из последствий влияния естественных наук на общечеловеческую культуру далеко не всегда носили позитивный характер. Например, противопоставление «двух культур» в значительной мере обусловлено конфликтом между вневременным подходом классической науки и ориентированы во времени подходом, доминировавшим в подавляющем большинстве социальных и гуманитарных наук. Но за последние десятилетия в естествознании произошли разительные перемены, столь же неожиданные, как рождение геометрии или грандиозная картина мироздания, нарисованная в «Математических началах натуральной философии» Ньютона. Мы все глубже осознаем, что на всех уровнях - от элементарных частиц до космологии - случайность и необратимость играют важную роль, значение которой возрастает по мере расширения наших знаний. Наука вновь открывает для себя время. Описанию этой концептуальной революции и посвящена наша книга.


Революция, о которой идет речь, происходит на всех уровнях: на уровне элементарных частиц, в космологии, на уровне так называемой макроскопической физики, охватывающей физику и химию атомов или молекул, рассматриваемых либо индивидуально, либо глобально, как это делается, например, при изучении жидкостей или газов. Возможно, что именно на макроскопическом уровне концептуальный переворот в естествознании прослеживается наиболее отчетливо. Классическая динамика и современная химия переживают в настоящее время период коренных перемен. Если бы несколько лет назад мы спросили физика, какие явления позволяет объяснить его наука и какие проблемы остаются открытыми, он, вероятно, ответил бы, что мы еще не достигли адекватного понимания элементарных частиц или космологической эволюции, но располагаем вполне удовлетворительными знаниями о процессах, протекающих в масштабах, промежуточных между субмикроскопическим и космологическим уровнями. Ныне меньшинство исследователей, к которому принадлежат авторы этой книги и которое с каждым днем все возрастает, не разделяют подобного оптимизма: мы лишь начинаем понимать уровень природы, на котором живем, и именно этому уровню в нашей книге уделено основное внимание.

Для правильной оценки происходящего ныне концептуального перевооружения физики необходимо рассмотреть этот процесс в надлежащей исторической перспективе. История науки - отнюдь не линейная развертка серии последовательных приближений к некоторой глубокой истине. История науки изобилует противоречиями, неожиданными поворотами. Значительную часть нашей книги мы посвятили схеме исторического развития западной науки, начиная с Ньютона, т.е. с событий трехсотлетней давности. Историю науки мы стремились вписать в историю мысли, с тем чтобы интегрировать ее с эволюцией западной культуры на протяжении последних трех столетий. Только так мы можем по достоинству оценить неповторимость того момента, в который нам выпало жить.

В доставшемся нам научном наследии имеются два фундаментальных вопроса, на которые нашим предшественникам не удалось найти ответ. Один из них - вопрос об отношении хаоса и порядка. Знаменитый закон возрастания энтропии описывает мир как непрестанно эволюционирующий от порядка к хаосу. Вместе с тем, как показывает биологическая или социальная эволюция, сложное возникает из простого. Как такое может быть? Каким образом из хаоса может возникнуть структура? В ответе на этот вопрос ныне удалось продвинуться довольно далеко. Теперь нам известно, что неравновесность - поток вещества или энергии - может быть источником порядка.

Но существует и другой, еще более фундаментальный вопрос. Классическая или квантовая физика описывает мир как обратимый, статичный. В их описании нет места эволюции ни к порядку, ни к хаосу. Информация, извлекаемая из динамики, остается постоянной во времени. Налицо явное противоречие между статической картиной динамики и эволюционной парадигмой термодинамики. Что такое необратимость? Что такое энтропия? Вряд ли найдутся другие вопросы, которые бы столь часто обсуждались в ходе развития науки. Лишь теперь мы начинаем достигать той степени понимания и того уровня знаний, которые позволяют в той или иной мере ответить на эти вопросы. Порядок и хаос - сложные понятия. Единицы, используемые в статическом описании, которое дает динамика, отличаются от единиц, которые понадобились для создания эволюционной парадигмы, выражаемой ростом энтропии. Переход от одних единиц к другим приводит к новому понятию материи. Материя становится «активной»: она порождает необратимые процессы, а необратимые процессы организуют материю. <...>

От каких предпосылок классической науки удалось избавиться современной науке? Как правило, от тех, которые были сосредоточены вокруг основополагающего тезиса, согласно которому на определенном уровне мир устроен просто и подчиняется обратимым во времени фундаментальным законам. Подобная точка зрения представляется нам сегодня чрезмерным упрощением. Разделять ее означает уподобляться тем, кто видит в зданиях лишь нагромождение кирпича. Но из одних и тех же кирпичей можно построить и фабричный корпус, и дворец, и храм. Лишь рассматривая здание как единое целое, мы обретаем способность воспринимать его как продукт эпохи, культуры, общества, стиля. Существует и еще одна вполне очевидная проблема: поскольку окружающий нас мир никем не построен, перед нами возникает необходимость дать такое описание его мельчайших «кирпичиков» (т.е. микроскопической структуры мира), которое объясняло бы процесс самосборки.

Предпринятый классической наукой поиск истины сам по себе может служить великолепным примером той раздвоенности, которая отчетливо прослеживается на протяжении всей истории западноевропейской мысли. Традиционно лишь неизменный мир идей считался, если воспользоваться выражением Платона, «освещенным солнцем умопостигаемого». В том же смысле научную рациональность было принято усматривать лишь в вечных и неизменных законах. Все же временное и преходящее рассматривалось как иллюзия. Ныне подобные взгляды считаются ошибочными. Мы обнаружили, что в природе существенную роль играет далеко не иллюзорная, а вполне реальная необратимость, лежащая в основе большинства процессов самоорганизации. Обратимость и жесткий детерминизм в окружающем нас мире применимы только в простых предельных случаях. Необратимость и случайность отныне рассматриваются не как исключение, а как общее правило. <...>

В наши дни основной акцент научных исследований переместился с субстанции на отношение, связь, время.

Столь резкое изменение перспективы отнюдь не является результатом принятия произвольного решения. В физике нас вынуждают к нему новые непредвиденные открытия. Кто бы мог ожидать, что многие (если даже не все) элементарные частицы окажутся нестабильными? Кто бы мог ожидать, что с экспериментальным подтверждением гипотезы расширяющейся Вселенной перед нами откроется возможность проследить историю окружающего нас мира как единого целого?

К концу XX в. мы научились глубже понимать смысл двух великих революций в естествознании, оказавших решающее воздействие на формирование современной физики: создания квантовой механики и теории относительности. Обе революции начались с попыток исправить классическую механику путем введения в нее вновь найденных универсальных постоянных. Ныне ситуация изменилась. Квантовая механика дала нам теоретическую основу для описания нескончаемых превращений одних частиц в другие. Аналогичным образом общая теория относительности стала тем фундаментом, опираясь на который мы можем проследить тепловую историю Вселенной на ее ранних стадиях.

По своему характеру наша Вселенная плюралистична, комплексна. Структуры могут исчезать, но могут и возникать. Одни процессы при существующем уровне знаний допускают описание с помощью детерминированных уравнений, другие требуют привлечения вероятностных соображений.

Как можно преодолеть явное противоречие между детерминированным и случайным? Ведь мы живем в едином мире. Как будет показано в дальнейшем, мы лишь теперь начинаем по достоинству оценивать значение всего круга проблем, связанных с необходимостью и случайностью. Кроме того, мы придаем совершенно иное, а иногда и прямо противоположное, чем классическая физика, значение различным наблюдаемым и описываемым нами явлениям. Мы уже упоминали о том, что по существовавшей ранее традиции фундаментальные процессы было принято считать детерминированными и обратимыми, а процессы, так или иначе связанные со случайностью или необратимостью, трактовать как исключения из общего правила. Ныне мы повсюду видим, сколь важную роль играют необратимые процессы, флуктуации. Модели, рассмотрением которых занималась классическая физика, соответствуют, как мы сейчас понимаем, лишь предельным ситуациям. Их можно создать искусственно, поместив систему в ящик и подождав, пока она не придет в состояние равновесия.

Искусственное может быть детерминированным и обратимым. Естественное же непременно содержит элементы случайности и необратимости. Это замечание приводит нас к новому взгляду на роль материи во Вселенной. Материя - более не пассивная субстанция, описываемая в рамках механистической картины мира, ей также свойственна спонтанная активность. Отличие нового взгляда на мир от традиционного столь глубоко, что, как уже упоминалось в, предисловии, мы можем с полным основанием говорить о новом диалоге человека с природой. <...>

Два потомка теории теплоты по прямой линии - наука о превращении энергии из одной формы в другую и теория тепловых машин - совместными усилиями привели к созданию первой «неклассической» науки - термодинамики. Ни один из вкладов в сокровищницу науки, внесенных термодинамикой, не может сравниться по новизне со знаменитым вторым началом термодинамики, с появлением которого в физику впервые вошла «стрела времени». Введение односторонне направленного времени было составной частью более широкого движения западноевропейской мысли. XIX век по праву может быть назван веком эволюции: биология, геология и социология стали уделять в XIX в. все большее внимание изучению процессов возникновения новых структурных элементов, увеличения сложности. Что же касается термодинамики, то в основе ее лежит различие между двумя типами процессов: обратимыми процессами, не зависящими от направления времени, и необратимыми процессами, зависящими от направления времени. С примерами обратимых и необратимых процессов мы познакомимся в дальнейшем. Понятие энтропии для того и было введено, чтобы отличать обратимые процессы от необратимых: энтропия возрастает только в результате необратимых процессов.

На протяжении XIX в. в центре внимания находилось исследование конечного состояния термодинамической эволюции. Термодинамика XIX в. была равновесной термодинамикой. На неравновесные процессы смотрели как на второстепенные детали, возмущения, мелкие несущественные подробности, не заслуживающие специального изучения. В настоящее время ситуации полностью изменилась. Ныне мы знаем, что вдали от равновесия могут спонтанно возникать новые типы структур. В сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса, к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие данной системы с окружающей средой. Эти новые структуры мы назвали диссипативными структурами, стремясь подчеркнуть конструктивную роль диссипативных процессов в их образовании.

В нашей книге приведены некоторые из методов, разработанных в последние годы для описания того, как возникают и эволюционируют диссипативные структуры. При изложении их мы впервые встретимся с такими ключевыми словами, как «нелинейность», «неустойчивость», «флуктуация», проходящими через всю книгу, как лейтмотив. Эта триада начала проникать в наши взгляды на мир и за пределами физики и химии.

При обсуждении противоположности между естественными и гуманитарными науками мы процитировали слова Исайи Берлина. Специфичное и уникальное Берлин противопоставлял повторяющемуся и общему. Замечательная особенность рассматриваемых нами процессов заключается в том, что при переходе от равновесных условий к сильно неравновесным мы переходим от повторяющегося и общего к уникальному и специфичному. Действительно, законы равновесия обладают высокой общностью: они универсальны. Что же касается поведения материи вблизи состояния равновесия, то ему свойственна «повторяемость». В то же время вдали от равновесия начинают действовать различные механизмы, соответствующие возможности возникновения диссипативных структур различных типов. Например, вдали от равновесия мы можем наблюдать возникновение химических часов - химических реакций с характерным когерентным (согласованным) периодическим изменением концентрации реагентов. Вдали от равновесия наблюдаются также процессы самоорганизации, приводящие к образованию неоднородных структур - неравновесных кристаллов.

Следует особо подчеркнуть, что такое поведение сильно неравновесных систем довольно неожиданно. Действительно, каждый из нас интуитивно представляет себе, что химическая реакция протекает примерно следующим образом: молекулы «плавают» в пространстве, сталкиваются и, перестраиваясь в результате столкновения, превращаются в новые молекулы. Хаотическое поведение молекул можно уподобить картине, которую рисуют атомисты, описывая движение пляшущих в воздухе пылинок. Но в случае химических часов мы сталкиваемся с химической реакцией, протекающей совсем не так, как нам подсказывает интуиция. Несколько упрощая ситуацию, можно утверждать, что в случае химических часов все молекулы изменяют свое химическое тождество одновременно, через правильные промежутки времени. Если представить себе, что молекулы исходного вещества и продукта реакции окрашены соответственно в синий и красный цвета, то мы увидели бы, как изменяется их цвет в ритме химических часов.

Ясно, что такую периодическую реакцию невозможно описать, исходя из интуитивных представлений о хаотическом поведении молекул. Возник порядок нового, ранее неизвестного типа. В данном случае уместно говорить о новой когерентности, о механизме «коммуникации» между молекулами. Но связь такого типа может возникать только в сильно неравновесных условиях. Интересно отметить, что подобная связь широко распространена в мире живого. Существование ее можно принять за самую основу определения биологической системы.

Необходимо также добавить, что тип диссипативной структуры в значительной степени зависит от условий ее образования. Существенную роль в отборе механизма самоорганизации могут играть внешние поля, например гравитационное поле Земли или магнитное поле.

Мы начинаем понимать, каким образом, исходя из химии, можно построить сложные структуры, сложные формы, в том числе и такие, которые способны стать предшественниками живого. В сильно неравновесных явлениях достоверно установлено весьма важное и неожиданное свойство материи: впредь физика с полным основанием может описывать структуры как формы адаптации системы к внешним условиям. Со своего рода механизмом предбиологической адаптации мы встречаемся в простейших химических системах. На несколько антропоморфном языке можно сказать, что в состоянии равновесия материя «слепа», тогда как в сильно неравновесных условиях она обретает способность воспринимать различия во внешнем мире (например, слабые гравитационные и электрические поля) и «учитывать» их в своем функционировании.

Разумеется, проблема происхождения жизни по-прежнему остается весьма трудной, и мы не ожидаем в ближайшем будущем сколько-нибудь простого ее решения. Тем не менее при нашем подходе жизнь перестает противостоять «обычным» законам физики, бороться против них, чтобы избежать предуготованной ей судьбы - гибели. Наоборот, жизнь предстает перед нами как своеобразное проявление тех самых условий, в которых находится наша биосфера, в том числе нелинейности химических реакций и сильно неравновесных условий, налагаемых на биосферу солнечной радиацией.

Мы подробно обсуждаем понятия, позволяющие описывать образование диссипативных структур, например понятия теории бифуркаций. Следует подчеркнуть, что вблизи точек бифуркации в системах наблюдаются значительные флуктуации. Такие системы как бы «колеблются» перед выбором одного из нескольких путей эволюции, и знаменитый закон больших чисел, если понимать его как обычно, перестает действовать. Небольшая флуктуация может послужить началом эволюции в совершенно новом направлении, которое резко изменит все поведение макроскопической системы. Неизбежно напрашивается аналогия с социальными явлениями и даже с историей. Далекие от мысли противопоставлять случайность и необходимость, мы считаем, что оба аспекта играют существенную роль в описании нелинейных сильно неравновесных систем.

Резюмируя, можно сказать, что в двух первых частях нашей книги мы рассматриваем два противоборствующих взгляда на физический мир: статический подход классической динамики и эволюционный взгляд, основанный на использовании понятия энтропии. Конфронтация между столь противоположными подходами неизбежна. Ее долго сдерживал традиционный взгляд на необратимость как на иллюзию, приближение. Время в лишенную времени Вселенную ввел человек. Для нас неприемлемо такое решение проблемы необратимости, при котором необратимость низводится до иллюзии или является следствием тех или иных приближений, поскольку, как мы теперь знаем, необратимость может быть источником порядка, когерентности, организации.

Конфронтация вневременного подхода классической механики и эволюционного подхода стала неизбежной. Острому столкновению этих двух противоположных подходов к описанию мира посвящена третья часть нашей книги. В ней мы подробно рассматриваем традиционные попытки решения проблем необратимости, предпринятые сначала в классической, а затем и квантовой механике. Особую роль при этом сыграли пионерские работы Больцмана и Гиббса. Тем не менее мы можем с полным основанием утверждать, что проблема необратимости во многом осталась нерешенной. <...>

Ныне мы можем с большей точностью судить об истоках понятия времени в природе, и это обстоятельство приводит к далеко идущим последствиям. Необратимость вводится в макроскопический мир вторым началом термодинамики - законом неубывания энтропии. Теперь мы понимаем второе начало термодинамики и на микроскопическом уровне. Как будет показано в дальнейшем, второе начало термодинамики выполняет функции правила отбора - ограничения начальных условий, распространяющиеся в последующие моменты времени по законам динамики. Тем самым второе начало вводит в наше описание природы новый, несводимый к чему-либо элемент. Второе начало термодинамики не противоречит динамике, но не может быть выведено из нее.

Уже Больцман понимал, что между вероятностью и необратимостью должна существовать тесная связь. Различие между прошлым и будущим и, следовательно, необратимость могут входить в описание системы только в том случае, если система ведет себя достаточно случайным образом. Наш анализ подтверждает эту точку зрения. Действительно, что такое стрела времени в детерминистическом описании природы? В чем ее смысл? Если будущее каким-то образом содержится в настоящем, в котором заключено и прошлое, то что, собственно, означает стрела времени? Стрела времени является проявлением того факта, что будущее не задано, т.е. того, что, по словам французского поэта Поля Валери, «время есть конструкция».

Наш повседневный жизненный опыт показывает, что между временем и пространством существует коренное различие. Мы можем передвигаться из одной точки пространства в другую, но не в силах повернуть время вспять. Мы не можем переставить прошлое и будущее. Как мы увидим в дальнейшем, это ощущение невозможности обратить время приобретает теперь точный научный смысл. Допустимые («разрешенные») состояния отделены от состояний, запрещенных вторым началом термодинамики, бесконечно высоким энтропийным барьером. В физике имеется немало других барьеров. Одним из них является скорость света. По современным представлениям, сигналы не могут распространяться быстрее скорости света. Существование этого барьера весьма важно: не будь его, причинность рассыпалась бы в прах. Аналогичным образом энтропийный барьер является предпосылкой, позволяющей придать точный физический смысл связи. Представьте себе, что бы случилось, если бы наше будущее стало бы прошлым каких-то других людей! <...>

Но, возможно, наиболее важный прогресс заключается в том, что проблема структуры, порядка предстает теперь перед нами в иной перспективе. Как будет показано в гл. 8, с точки зрения механики, классической или квантовой, не может быть эволюции с однонаправленным временем. «Информация» в том виде, а каком она поддается определению в терминах динамики, остается постоянной по времени. Это звучит парадоксально. Если мы смешаем две жидкости, то никакой «эволюции» при этом не произойдет, хотя разделить их, не прибегая к помощи какого-нибудь внешнего устройства, не представляется возможным. Наоборот, закон неубывания энтропии описывает перемешивание двух жидкостей как эволюция к «хаосу», или «беспорядку», - к наиболее вероятному состоянию. Теперь мы уже располагаем всем необходимым для того, чтобы доказать взаимную непротиворечивость обоих описаний: говоря об информации или порядке, необходимо всякий раз переопределять рассматриваемые нами единицы. Важный новый факт состоит в том, что теперь мы можем установить точные правила перехода от единиц одного типа к единицам другого типа. Иначе говоря, нам удалось получить микроскопическую формулировку эволюционной парадигмы, выражаемой вторым началом термодинамики. Этот вывод представляется нам важным, поскольку эволюционная парадигма охватывает всю химию, а также существенные части биологии и социальных наук. Истина открылась нам недавно. Процесс пересмотра основных понятий, происходящий в настоящее время в физике, еще далек от завершения. Наша цель состоит вовсе не в том, чтобы осветить признанные достижения науки, ее стабильные и достоверно установленные результаты. Мы хотим привлечь внимание читателя к новым понятиям, рожденным в ходе научной деятельности, ее перспективам и новым проблемам. Мы отчетливо сознаем, что находимся лишь в самом начале нового этапа научных исследований. <...>

Мы считаем, что находимся на пути к новому синтезу, новой концепции природы. Возможно, когда-нибудь нам удастся слить воедино западную традицию, придающую первостепенное значение экспериментированию и количественным формулировкам, и такую традицию, как китайская, с ее представлениями о спонтанно изменяющемся самоорганизующемся мире. В начале введения мы привели слова Жака Моно об одиночестве человека во Вселенной. Вывод, к которому он приходит, гласит:

«Древний союз [человека и природы] разрушен. Человек, наконец, сознает свое одиночество в равнодушной бескрайности Вселенной, из которой он возник по воле случая».

Моно, по-видимому, прав. Древний союз разрушен до основания. Но мы усматриваем свое предназначение не в том, чтобы оплакивать былое, а в том, чтобы в необычайном разнообразии современных естественных наук попытаться найти путеводную нить, ведущую к какой-то единой картине мира. Каждый великий период в истории естествознания приводит к своей модели природы. Для классической науки такой моделью были часы, для XIX века - периода промышленной революции - паровой двигатель. Что станет символом для нас? Наш идеал, по-видимому, наиболее полно выражает скульптура - от искусства Древней Индии или Центральной Америки доколумбовой эпохи до современного искусства. В некоторых наиболее совершенных образцах скульптуры, например в фигуре пляшущего Шивы или в миниатюрных моделях храмов Герреро, отчетливо ощутим поиск трудноуловимого перехода от покоя к движению, от времени остановившегося к времени текущему. Мы убеждены в том, что именно эта конфронтация определяет неповторимое своеобразие нашего времени. <...>

Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероятность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании термодинамической эволюции, в состоянии равновесия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и когерентность.

Здесь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуации или микроскопический уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «порядок из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в соответствии с пионерскими трудами Больцмана. <...>

Ныне наша уверенность «в рациональности» природы оказалась поколебленной отчасти в результате бурного роста естествознания в наше время. Как было отмечено в «Предисловии», наше видение природы претерпело коренные изменения. Ныне мы учитываем такие аспекты изменения, как множественность, зависимость от времени и сложность. Некоторые из сдвигов, происшедших в наших взглядах на мир, описаны в этой книге.

Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях - от элементарных частиц до биологии и экологии - процессы, сопровождающиеся нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени.

На наших глазах возникает новое единство: необратимость есть источник порядка на всех уровнях. Необратимость есть тот механизм, который создает порядок из хаоса.

Пригожин И., Стенгерс И. Порядок из хаоса. Новый диалог человека с природой. М., 1986. С. 34-37, 47-50, 53-61, 65-66, 357, 363.

Как-то раньше проходил мимо книги "Порядок из хаоса" Ильи Пригожина. Вчера вот почитал - просто восторг! Пригожин с позиций физики пишет о той же эпигенетике, о той же адаптивности, что и Уоддингтон, Шмальгаузен! Приятно иметь "за спиной" такого человека:)
Ниже несколько интересных цитат(нумерация по изданию 1986 года "Прогресс"):

с.194
У истоков нелинейной термодинамики лежит нечто совершенно удивительное, факт, который на первый взгляд легко принять за неудачу: несмотря на все попытки, обобщение теоремы о минимуме производства энтропии для систем, в которых потоки уже не являются более линейными функциями сил, оказалось невозможным. Вдали от равновесия система по-прежнему может эволюционировать к некоторому стационарному состоянию, но это состояние, вообще говоря, уже не определяется с помощью надлежаще выбранного потенциала (аналогичного производству энтропии для слабо неравновесных состояний). Отсутствие потенциальной функции ставит перед нами вопрос: что можно сказать относительно устойчивости состояний, к которым эволюционирует система? Действительно, до тех пор пока состояние-аттрактор определяется минимумом потенциала (например, производство энтропии), его устойчивость гарантирована. Правда, флуктуация может вывести системы из этого минимума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в котором системы, эволюционируя, переходят в статичное состояние, установленное для них раз и навсегда.

с.195
Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение - «клинамен». Возникающий вихрь дает начало миру, всем вещам в природе. «Клинамен», спонтанное непредсказуемое отклонение, нередко подвергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: «клинамен» представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современные специалисты по гидродинамике проверяют устойчивость течения жидкости, вводя возмущение, выражающее влияние молекулярного хаоса, который накладывается на среднее течение. Не так уж далеко мы ушли от «клинамена» Лукреция!

с.198
Таким образом, взаимодействие системы с внешним миром, ее погружение в неравновесные условия может стать исходным пунктом в формировании новых динамических состояний - диссипативных структур. Диссипативная структура отвечает некоторой форме супермолекулярной организации. Хотя параметры, описывающие кристаллические структуры, могут быть выведены из свойств образующих их молекул, и в частности из радиуса действия сил взаимного притяжения и отталкивания, ячейки Бенара, как и все диссипативные структуры, по существу, отражают глобальную ситуацию в порождающей их неравновесной системе. Описывающие их пара­метры макроскопические - порядка не 10-8 см (как расстояния между молекулами в кристалле), а нескольких сантиметров. Временные масштабы также другие: они соответствуют не молекулярным масштабам (например, периодам колебаний отдельных молекул, т.е. порядка 10-15 с), а макроскопическим, т.е. секундам, минутам или часам.

с.209
С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое . Образующие их молекулы - итог предшествующей эволюции; они были отобраны для участия в автокаталитических механизмах, призванных породить весьма специфические формы процессов организации.

с.216-218
При некотором значении В мы достигаем порога устойчивости термодинамической ветви. Обычно это критическое значение называется точкой бифуркации. Рассмотрим некоторые типичные бифуркационные диаграммы. В точке бифуркации В термодинамическая ветвь становится неустойчивой относительно флуктуации. При критическом значении Lс управляющего параметра L система может находиться в трех различных стационарных состояниях: С, Е и D. Два из них устойчивы, третье неустойчиво. Очень важно подчеркнуть, что поведение таких систем зависит от их предыстории. Начав с малых значений управляющего параметра L и медленно увеличивая их, мы с большой вероятностью опишем траекторию ABC. Наоборот, начав с больших значений концентрации X и поддерживая постоянным значение управляющего параметра L, мы с высокой вероятностью придем в точку D. Таким образом, конечное состояние зависит от предыстории системы. До сих пор история использовалась при интерпретации биологических и социальных явлений. Совершенно неожиданно выяснилось, что предыстория может играть роль и в простых химических процессах.

с.219
Можно было бы ожидать, что при многократном повторении эксперимента при переходе через точку бифуркации система в среднем в половине случаев окажется в состоянии с максимумом концентрации справа, а в половине случаев - в состоянии с максимумом концентрации слева. Возникает другой интересный вопрос. В окружающем нас мире некоторые простые фундаментальные симметрии нарушены

с.222
Важно отметить, что в зависимости от химического процесса, ответственного за бифуркацию, описанный выше механизм может обладать необычайной чувствительностью. Как уже упоминалось, вещество обретает способность воспринимать» различия, неощутимые в равновесных условиях. Столь высокая чувствительность наводит на мысль о простейших организмах, например о бактериях, способных, как известно, реагировать на электрические или магнитные поля. В более общем плане это означает, что в сильно неравновесной химии возможна «адаптация» химических процессов к внешним условиям. Этим сильно неравновесная область разительно отличается от равновесной, где для перехода от одной структуры к другой требуются сильные возмущения или изменения граничных условий.

с.223-224
В таких положениях случайная флуктуация во внешнем потоке, часто называемая шумом, - отнюдь не досадная помеха: она порождает качественно новые типы режимов, для осуществления которых при детерминистических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в любой «естественной системе».

с.230
Мы могли бы считать, что в основе главного механизма эволюции лежит игра бифуркаций как механизмов зондирования и отбора химических взаимодействий, стабилизирующих ту или иную траекторию. Такую идею выдвинул около сорока лет назад биолог Уоддингтон. Для описания стабилизированных путей развития он ввел специальное понятие – креод . По замыслу Уоддингтона, креод должен был соответствовать возможным путям развития, возникающим под влиянием двойного императива – гибкости и надежности.

с.240
Дальнодействующие корреляции организуют систему еще до того, как происходит макроскопическая бифуркация. Мы снова возвращаемся к одной из главных идей нашей книги: к неравновесности как источнику порядка. В данном случае ситуация особенно ясна. В равновесном состоянии молекулы ведут себя независимо: каждая из них игнорирует остальные. Такие независимые частицы можно было бы назвать гипнонами («сомнамбулами»). Каждая из них может быть сколь угодно сложной, но при этом «не замечать» присутствия остальных молекул. Переход в неравновесное состояние пробуждает гипноны и устанавливает когерентность, совершенно чуждую их поведению в равновесных условиях.

Авторы книги «Порядок из хаоса» показывают, что в машинный век традиционная наука уделяет основное внимание устойчивости, порядку, однородности и равновесию. Она изучает главным образом замкнутые системы и линейные соотношения, в которых малый сигнал на входе вызывает малый отклик на выходе. Пригожинская парадигма особенно интересна тем, что она акцентирует внимание на аспектах реальности, наиболее характерных для современной стадии ускоренных социальных изменений: разупорядоченности, неустойчивости, разнообразии, неравновесности, нелинейных соотношениях, в которых малый сигнал па входе может вызвать сколь угодно сильный отклик на выходе.

Работы Пригожина, образуют новую, всеобъемлющую теорию. В сильно упрощенном виде суть этой теории сводится к следующему. Некоторые части Вселенной действительно могут действовать как механизмы. Таковы замкнутые системы, но они в лучшем случае составляют лишь малую долю физической Вселенной. Большинство же систем, представляющих для нас интерес, открыты - они обмениваются энергией или веществом (можно было бы добавить: и информацией) с окружающей средой. К числу открытых систем, без сомнения, принадлежат биологические и социальные системы, а это означает, что любая попытка понять их в рамках механистической модели заведомо обречена на провал.

На мой взгляд книга Пригожина может быть интересна менеджерам, как еще один кирпичик формирования системного взгляда на организации (см. также Джеймс Глейк. Хаос. Создание новой науки).

Пригожим И., Стенгерс И. Порядок из хаоса: Новый диалог человека с природой. - М.: Прогресс, 1986. - 432 с.

Если воспользоваться терминологией Пригожина, то можно сказать, что все системы содержат подсистемы, которые непрестанно флуктуируют. Иногда отдельная флуктуация или комбинация флуктуаций может стать (в результате положительной обратной связи) настолько сильной, что существовавшая прежде организация не выдерживает и разрушается. В этот переломный момент (в точке бифуркации) принципиально невозможно предсказать, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и более высокий уровень упорядоченности

Факты, обнаруженные и понятые в результате изучения сильно неравновесных состояний и нелинейных процессов, в сочетании с достаточно сложными системами, наделенными обратными связями, привели к созданию совершенно нового подхода, позволяющего установить связь фундаментальных наук с «периферийными» науками о жизни и, возможно, даже понять некоторые социальные процессы. (Факты, о которых идет речь, имеют не меньшее, если не большее, значение для социальных, экономических или политических реальностей. Такие слова, как «революция», «экономический кризис», «технологический сдвиг» и «сдвиг парадигмы», приобретают новые оттенки, когда мы начинаем мыслить о соответствующих понятиях в терминах флуктуации, положительных обратных связей, диссипативных структур, бифуркаций и прочих элементов концептуального лексикона школы Пригожина.)

Подчеркивая, что необратимое время не аберрация, а характерная особенность большей части Вселенной, Пригожин и Стенгерс подрывают самые основы классической динамики. Для авторов выбор между обратимостью и необратимостью не является выбором одной из двух равноправных альтернатив. Обратимость (по крайней мере если речь идет о достаточно больших промежутках времени) присуща замкнутым системам, необратимость - всей остальной части Вселенной.

В доставшемся нам научном наследии имеются два фундаментальных вопроса, на которые нашим предшественникам не удалось найти ответ. Один из них - вопрос об отношении хаоса и порядка. Знамени 1-й закон возрастания энтропии описывает мир как непрестанно эволюционирующий от порядка к хаосу. Вместе с тем, как показывает биологическая или социальная эволюция, сложное возникает из простого. Каким образом из хаоса может возникнуть структура? Неравновесность - поток вещества или энергии - может быть источником порядка. Но существует и другой, еще более фундаментальный вопрос. Классическая или квантовая физика описывает мир как обратимый, статичный. Налицо явное противоречие между статической картиной динамики и эволюционной парадигмой термодинамики. Что такое необратимость? Что такое энтропия?

ВВЕДЕНИЕ. ВЫЗОВ НАУКЕ

От каких предпосылок классической науки удалось избавиться современной науке? Как правило, от тех, которые были сосредоточены вокруг основополагающего тезиса, согласно которому на определенном уровне мир устроен просто и подчиняется обратимым во времени фундаментальным законам. Подобная точка зрения представляется нам сегодня чрезмерным упрощением. Поскольку окружающий нас мир никем не построен, перед нами возникает необходимость дать такое описание его мельчайших «кирпичиков» (т.е. микроскопической структуры мира), которое объясняло бы процесс самосборки.

Мы обнаружили, что в природе существенную роль играет далеко не иллюзорная, а вполне реальная необратимость, лежащая в основе большинства процессов самоорганизации. Обратимость и жесткий детерминизм в окружающем нас мире применимы только в простых предельных случаях. Необратимость и случайность отныне рассматриваются не как исключение, а как общее правило.

По своему характеру наша Вселенная плюралистична, комплексна. Структуры могут исчезать, но могут и возникать. Одни процессы при существующем уровне знаний допускают описание с помощью детерминированных уравнений, другие требуют привлечения вероятностных соображений. По существовавшей ранее традиции фундаментальные процессы было принято считать детерминированными и обратимыми, а процессы, так или иначе связанные со случайностью или необратимостью, трактовать как исключения из общего правила. Ныне мы повсюду видим, сколь важную роль играют необратимые процессы, флуктуации. Модели, рассмотрением которых занималась классическая физика, соответствуют, как мы сейчас понимаем, лишь предельным ситуациям. Их можно создать искусственно, поместив систему в ящик и подождав, пока она не придет в состояние равновесия. Искусственное может быть детерминированным и обратимым. Естественное же непременно содержит элементы случайности и необратимости. Это замечание приводит нас к новому взгляду на роль материи во Вселенной. Материя - более не пассивная субстанция, описываемая в рамках механистической картины мира, ей также свойственна спонтанная активность.

Ни один из вкладов в сокровищницу науки, внесенных термодинамикой, не может сравниться по новизне со знаменитым вторым началом термодинамики, с появлением которого в физику впервые вошла «стрела времени». Понятие энтропии для того и было введено, чтобы отличать обратимые процессы от необратимых: энтропия возрастает только в результате необратимых процессов. Замечательная особенность рассматриваемых нами процессов заключается в том, что при переходе от равновесных условий к сильно неравновесным мы переходим от повторяющегося и общего к уникальному и специфичному.

В двух первых частях нашей книги мы рассматриваем два противоборствующих взгляда на физический мир: статический подход классической динамики и эволюционный взгляд, основанный на использовании понятия энтропии. Конфронтация вневременного подхода классической механики и эволюционного подхода стала неизбежной. Острому столкновению этих двух противоположных подходов к описанию мира посвящена третья часть нашей книги.

Имеется ли в структуре динамических систем нечто специфическое, позволяющее им «отличать» прошлое от будущего? Какова необходимая для этого минимальная сложность? Уже Больцман понимал, что между вероятностью и необратимостью должна существовать тесная связь. Различие между прошлым и будущим и, следовательно, необратимость могут входить в описание системы только в том случае, если система ведет себя достаточно случайным образом. Стрела времени является проявлением того факта, что будущее не задано.

Илья Романович Пригожин - бельгийской физико-химик, основатель брюссельской школы исследователей в области физической химии и статистической механики, основоположник общей теории диссипативных систем. Его научное творчество тесно связана с философией, с производством инновационных идей на грани науки и философии. К ним относятся, например, новое осмысление идеи времени, пересмотр роли и места науки в культуре, а также самой парадигмальной природы науки. Обогащая методологию науки новой парадигмой, проецируя его на современный изменчивый мир с присущей ему темпоральністю, нестабильностью, неровно-важностью, Г. Пригожин сделал важный вклад в философское осмысление радикальных изменений, происходящих в современной науке и культуре.

Порядок из хаоса: Новый диалог "ЧЕЛОВЕКА С ПРИРОДОЙ"

Наше видение природы претерпевает радикальные изменения в сторону разнообразия, темпоральності и сложности. Долгое время в западной науке доминировала механическая картина мироздания. Сейчас мы осознаем, что живем в плюралистическом мире. Существуют явления, которые представляются нам детерминированными и обратимыми. Такие, например, движение маятника без трения или Земли вокруг Солнца. Но существуют также и необратимые процессы, которые как бы несут в себе "стрела времени". Например, если слить две такие жидкости, как спирт и вода, то из опыта известно, что со временем, они перемешиваются. Обратный процесс - спонтанное разделение смеси на чистую воду и чистый спирт-никогда не наблюдается. В связи с этим, смешивания спирта и воды - необратимый процесс. Вся химия, по существу, составляет нескончаемый перечень таких необратимых процессов.

Понятно, что, помимо детерминированных процессов, некоторые фундаментальные явления, такие, например, как биологическая эволюция или эволюция человеческих культур, должны содержать некий вероятностный элемент. Даже ученый, глубоко убежденный в правильности детерминированных описаний, вряд ли осмелится утверждать, что в момент Большого взрыва, т. е. возникновения известной нам Вселенной, дата выхода в свет нашей книги была начертана на скрижалях законов природы. Классическая физика рассматривала фундаментальные процессы как детерминированные и обратимые. Процессы, связанные со случайностью или необратимостью, считались досадными исключениями из общего правила. Сейчас мы видим, насколько важную роль играют повсюду необратимые процессы и флюктуации.

Хотя западная наука была стимулом к необычайно творческого диалога между человеком и природой, некоторые последствия влияния естественных наук на общечеловеческую культуру далеко не всегда носили позитивный характер. Например, противопоставление "двух культур" в значительной мере обусловлено конфликтом между вневременным подходом классической науки, который доминировал в подавляющем большинстве социальных и гуманитарных наук. Но за последние десятилетия в естествознании произошли значительные перемены, столь же неожиданные, как рождение геометрии или грандиозная картина мироздания, нарисованная в "Математических началах натуральной философии" И. Ньютона. Мы все глубже осознаем, что на всех уровнях - от элементарных частиц до космологии - случайность и необратимость играют важную роль, значение которой возрастает по мере расширения наших знаний. Наука вновь открывает для себя время. Описания этой концептуальной революции и посвящена наша книга.

Революция, о которой идет речь, происходит на всех уровнях: на уровне элементарных частиц, в космологии, на уровне так называемой макроскопической физики, охватывающей физику и химию атомов или молекул, рассматриваемых либо индивидуально, либо глобально, как это делается, например, при изучении жидкостей или газов. Возможно, что именно на макроскопическом уровне концептуальный переворот в естествознании прослеживается наиболее отчетливо. Классическая динамика и современная химия подвергаются в наше время период качественных изменений. Если бы несколько лет назад мы спросили физика, какие явления позволяет объяснить его наука и какие проблемы остаются открытыми, он, вероятно, ответил бы, что мы еще не достигли адекватного понимания элементарных частиц или космологической эволюции, но распоряжаемся достаточно удовлетворительными знаниями о процессах, которые проходят в масштабах, промежуточных между субмікроспічними и космологическими уровнями. Ныне меньшинство исследователей, к которым принадлежат авторы этой книги и которых с каждым днем становится все больше, не разделяют подобного оптимизма: мы лишь начинаем понимать уровень природы, на котором живем, и именно этому уровню в нашей книге уделено основное внимание.

Для правильной оценки концептуального перевооружения физики, которое происходит, необходимо рассмотреть этот процесс в надлежащей исторической перспективе. История науки - это отнюдь не линейная развертка серии последовательных приближений к некоторой последовательной истины. История науки богата на противоречия, неожиданные повороты. Значительную часть нашей книги мы посвятили схеме исторического развития западной науки, начиная с И. Ньютона, то есть с событий трехвековой давности. Историю науки мы стремились вписать в историю мысли, с тем чтобы интегрировать ее с эволюцией западной культуры на протяжении последних трех веков. Только так мы можем за положительными качествами оценить неповторимость того момента, в который нам выпало жить.

В научном наследстве, которое нам досталось, есть два фундаментальных вопроса, на которые нашим предшественникам не удалось найти ответ. Один из них - вопрос об отношении хаоса и порядка. Известный закон возрастания энтропии описывает мир как непрестанно эволюционирует от порядка к хаосу. Вместе с тем, как показывает биологическая или социальная эволюция, сложное возникает из простого. Как такое может быть? Каким образом из хаоса может возникнуть структура? В ответе на этот вопрос сейчас удалось пройти достаточно далеко. Теперь нам известно, что нерівноваженість - поток вещества или энергии - может быть источником порядка.

Но есть и другое, еще более фундаментальное вопросы. Классическая или квантовая физика описывает мир как обратимый во времени, статический.

В их описании нет места эволюции ни к порядку, ни к хаосу.

Информация, которая изымается из динамики, остается постоянной во времени. Налицо явное противоречие между статической картиной динамики и эволюционной парадигмой термодинамики. Что такое необратимость? Что такое энтропия? Вряд ли найдутся другие вопросы, которые бы так же часто обсуждались в ходе развития науки. Лишь теперь мы начинаем достигать той степени понимания и того уровня знаний, которые позволяют в той или иной мере ответить на эти вопросы. Порядок и хаос - сложные понятия. Единицы, используемые в статистическом описании, который дает динамика, отличаются от единиц, которые требуются для создания эволюционной парадигмы, что характеризуется ростом энтропии. Переход от одних единиц к другим приводит к новому пониманию материи. Материя становится "активной", она порождает необратимые процессы, а они в свою очередь, организуют материю.

От мысли классической науки удалось избавиться современной науке? Как правило, от тех, что были сосредоточены вокруг базисной тезиса, согласно которому на определенном уровне мир устроен просто и подчиняется обратимым во времени фундаментальным законам. Похожая позиция в настоящее время является очень примитивной. Разделять такую позицию означает уподобляться тем, кто видит в зданиях лишь нагромождение кирпича. Но с той же кирпичей можно построить и фабричный корпус, и дворец, и храм. Лишь рассматривая здание как единое целое, мы можем воспринимать его как продукт эпохи, культуры, общества, стиля. Есть еще одна вполне очевидная проблема: поскольку мир, который нас окружает, никем не создан, перед нами возникает необходимость дать такое описание его мельчайших "кирпичиков" (т. е. микроскопической структуры мира), который бы объяснил процесс самосозидания.

Применен классической наукой поиск истины сам по себе не может быть прекрасным примером той раздвоенности, которая четко прослеживается на протяжении всей истории западноевропейской мысли. Традиционно неизменный мир идей считался, если воспользоваться выражением Платона, "просветленным солнцем умодосяжним". В том самом смысле научную рациональность было принято усматривать лишь в вечных и неизменных законах. Все временное и преходящее рассматривалось как иллюзия. Ныне подобные взгляды считаются ошибочными. Мы выяснили, что в природе существенную роль играет далеко не иллюзорная, а вполне реальная необратимость, лежащая в основе большинства процессов самоорганизации. Обратимость и жесткий детерминизм, в мире что нас окружает, применяются только в простых предельных случаях. Необратимость и случайность отныне рассматриваются не как исключение, а как общее правило.

В наши дни основной акцент научных исследований переместился с субстанции на отношение, связь, время.

Такая резкая смена перспективы абсолютно не является результатом принятия необоснованного решения. В физике нас принуждают к нему непредсказуемые открытия. Кто же мог ожидать, что многие (если даже не все) элементарные частицы окажутся нестабильными? Кто бы мог подумать, что с экспериментальным подтверждением гипотезы о Вселенной, которая расширяется, у нас возникнет возможность прослеживать историю мира, что нас окружает, как единого целого?

До конца XX века. мы научились глубже понимать смысл двух великих революций в естествознании, которые оказывают решающее влияние на формирование современной физики: создание квантовой механики и теории относительности.

Обе революции начались с попыток исправить классическую механику путем введения в нее только что изобретенных универсальных постоянных. Ныне ситуация изменилась. Квантовая механика дала нам теоретическую основу для описания бесконечных преобразований одних частиц в другие. Аналогично общая теория относительности стала тем фундаментом, опираясь на который мы можем проследить тепловую историю Вселенной на ее ранних стадиях.

По своему характеру наша Вселенная плюралистический, комплексный. Структуры могут исчезать, но могут и возникать. Одни процессы на определенном уровне знаний допускают описание с помощью детерминированных уравнений, другие требуют применения вероятных соображений.

Как можно преодолеть явное противоречие между детерминированным и случайным? Ведь мы живем в едином мире. Как будет показано далее, мы только теперь начинаем заслуженно оценивать значение всего ряда проблем, связанных с необходимостью и случайностью. Кроме того, мы предоставляем совершенно другого, а иногда вовсе противоположному, чем классическая физика, значение разным наблюдением и описанным нами явлениям. Мы уже упоминали о том, что по традиции, которая существовала ранее, фундаментальные процессы было принято считать детерминированными и обратимыми, а процессы, так или иначе связанные со случайностью или необратимостью, трактовать как исключения из общего правила. Сейчас мы повсюду видим, насколько важную роль играют необратимые процессы, флуктуации. Модели, рассмотрением которых занималась классическая физика, соответствуют, как мы теперь понимаем, лишь предельным ситуациям. их можно создавать искусственно, поместив систему в ящик и дождавшись, пока она не достигнет состояния равновесия.

Искусственное может быть детерминированным и обратимым. Естественное непременно содержит элементы случайности и необратимости. Это замечание приводит нас к новому взгляду на роль материи во Вселенной. Материя - не пассивная субстанция, описываемая в рамках механистической картины мира, ей также свойственна спонтанная активность. Отличие нового взгляда на мир от традиционного такая глубокая, что, как уже упоминалось в предисловии, мы можем с полным основанием говорить о новом диалоге человека с природой.

Два потомки теории теплоты по прямой линии - наука о превращении энергии из одной формы в другую и теория тепловых машин - совместными усилиями привели к созданию первой "неклассической науки" - термодинамики. Ни один из вкладов в сокровищницу науки, внесенных термодинамикой, не может сравниться по новизне со знаменитым вторым началом термодинамики, с появлением которого в физику впервые вошла "стрела времени". Введение одностороннего направленного времени было частью более широкого движения западноевропейской мысли. XIX ст. по праву может быть назван веком эволюции: биология, геология и социология уделять все большее внимание изучению процессов возникновения новых структурных элементов, увеличения тяжести. В отношении термодинамики, то в ее основе лежит различие между двумя типами процессов: обратимыми процессами, не зависящими от направления времени, и необратимыми процессами, зависимыми от направления времени. С примерами обратимых и необратимых процессов мы ознакомимся в дальнейшем. Понятие энтропии для того и было введено, чтобы отличать обратимые процессы от необратимых: энтропия возрастает только в результате необратимых процессов.

в Течение XIX века. в центре внимания было исследование конечного состояния термодинамической эволюции. Термодинамика XIX века. была равновесной термодинамикой. На неравновесные процессы смотрели как на второстепенные детали, возмущения, мелкие несущественные подробности, не заслуживающие неспеціальне изучения. В настоящее время ситуация полностью изменилась. Сейчас мы знаем, что вдали от равновесия могут спонтанно возникать новые типы структур. В сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса, к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие системы с окружающей средой. Эти новые структуры мы назвали диссипативными, стремясь подчеркнуть конструктивную роль диссипативных процессов в их образовании.

В нашей книге приведены некоторые из методов, разработанных в последние годы для описания того, как возникают и эволюционируют диссипативные структуры. При изложении их мы впервые встретимся с такими ключевыми словами, как "нелинейность", "неустойчивость" "флуктуация", что проходят через всю книгу, как лейтмотив. Эта триада стала проникать в наши взгляды на мир и за пределами физики и химии.

При обсуждении противоположности между естественными и гуманитарными науками мы процитировали слова Исайи Берлина. Специфическое и уникальное Берлин противопоставлял том, что повторяется, и общем. Замечательная особенность рассматриваемых нами процессов заключается в том, что при переходе от равновесных условий к сильно неравновесным мы переходим от того, что повторяется, и общего к уникальному и специфическому.

Действительно, законы равновесия имеют большую общность: они универсальны. Что же касается поведения материи вблизи состояния равновесия, то ему свойственна "повторяемость". В то же время вдали от равновесия начинают действовать различные механизмы, соответствующие возможности возникновения диссипативных структур различных типов. Например, вдали от равновесия мы можем наблюдать возникновение химического часов - химических реакций с характерной когерентною периодическим изменением концентрации реагентов. Вдали от равновесия наблюдаются также процессы самоорганизации, приводящие к образованию неоднородных структур - неравновесных кристаллов.

Следует особо подчеркнуть, что такое поведение сильно неравновесных систем довольно неожиданная. Действительно, каждый из нас интуитивно представляет себе, что химическая реакция протекает примерно так: молекулы "плавают" в пространстве, сталкиваются и, перестраиваясь в результате столкновения, превращаются в новые молекулы. Хаотическое поведение молекул можно уподобить картине, которую рисуют атомісти, описывая движение пылинок, танцующих в воздухе. Но в случае химического часов мы сталкиваемся с химической реакцией, которая протекает совсем не так, как нам подсказывает интуиция. Несколько упрощая ситуацию, можно утверждать, что в случае химического часов все молекулы изменяют свое химическое тождество одновременно, через правильные промежутки времени. Если представить себе, что молекулы исходного вещества и продукта реакции окрашены соответственно в синий и красный цвета, то мы увидели бы, как изменяется их цвет в ритме химического часов.

Понятно, что такую периодическую реакцию невозможно описать, ввиду интуитивные представления о хаотической поведение молекул. Возник порядок нового, ранее неизвестного плетня. В этом случае уместно говорить о новой когерентность, механизм "коммуникации" между молекулами. Но связь такого типа может возникать только в сильно неравновесных условиях. Интересно отметить, что подобная связь очень распространен в мире живого. Его существование можно принять за саму основу определения биологической системы.

Необходимо также добавить, что тип дисипативної структуры в значительной мере зависит от условий ее образования. Существенную роль в отборе механизма самоорганизации могут играть внешние поля, например, гравитационное поле Земли или магнитное поле.

Мы начинаем понимать, каким образом, исходя из химии, можно построить сложные структуры, сложные формы, в том числе такие, которые способны стать предшественниками живого. В сильно неравновесных явлениях достоверно установлено весьма важное и неожиданное свойство материи: впредь физика с оправданной основанием может описывать структуры как формы адаптации системы к внешним условиям. Со своего рода механизмом передбіологічної адаптации мы встречаемся в простейших химических системах. Антропоморфной языке можно сказать, что в состоянии равновесия материя "слепая", тогда как в сильно неравновесных условиях она обретает способность воспринимать различия во внешнем мире (например, слабые гравитационные и электрические поля) и "учитывать" их в своем функционировании.

Разумеется, проблема возникновения жизни и теперь остается весьма сложной, и мы не ожидаем в недалеком будущем какого-нибудь простого ее решения. Однако при нашем подходе жизнь перестает противостоять "обычным" законам физики, бороться против них, чтобы избежать предполагаемой судьбы - гибели. Наоборот, жизнь предстает перед нами как своеобразное проявление тех самых условий, в которых находится наша биосфера, в том числе нелинейности химических реакций и сильно неравновесных условий, налагаемых на биосферу солнечной радиацией.

Мы подробно обсуждаем понятия, что даст возможность описывать образование диссипативных структур, например понятия теории бифуркаций. Нужно отметить, что вблизи точек бифуркации в системах наблюдаются значительные флуктуации. Такие системы как будто "колеблющихся" перед выбором одного из нескольких путей эволюции, и знаменитый закон больших чисел, если понимать его как обычно, перестает действовать. Небольшая флуктуация может послужить началом эволюции в совершенно новом направлении, которое резко изменит все поведение макроскопической системы. Неуклонно напрашивается аналогия с социальными явлениями и даже с историей. Далеки от мысли сравнивать случайность и необходимость, мы считаем, что оба аспекта играют важную роль в описании нелинейных сильно неравновесных систем.

Резюмируя, можно сказать, что в двух первых частях нашей книги мы рассматриваем два противоположных взгляда на физический мир: статистический подход классической динамики и эволюционный взгляд, основанный на использовании понятия энтропии. Конфронтации между такими противоположными подходами не избежать. ее долго сдерживал традиционный взгляд на оборачиваемость как на иллюзию сближения. Время в оставленный без времени Вселенную ввел человек. Для нас неприемлемо такое решение проблемы обратимости, при котором необратимость приближается к иллюзии или является следствием тех или иных приближений, поскольку, как мы теперь знаем, необратимость может быть источником порядка, когерентности, организации.

Конфронтация частичного подхода классической механики и эволюционного подхода стала неизбежной. Остром столкновение этих двух противоположных подходов к описанию мира посвящена третья часть нашей книги. В ней мы подробно рассматриваем традиционные попытки решения проблем необратимости, примененные сначала в классической, а затем и квантовой механике. Особую роль при этом сыграли пионерские работы Больцмана и Гиббса. Однако мы можем с полным основанием утверждать, что проблема необратимости под многими углами зрения осталась нерешенной.

Ныне мы можем с большей точностью судить об истоках понятия времени в природе, и это обстоятельство приводит к далеко идущим последствиям. Необратимость вводится в макроскопический мир вторым началом термодинамики - законом неспадання энтропии. Теперь мы понимаем второе начало термодинамики и на микроскопическом уровне. Как будет показано далее, второе начало термодинамики выполняет функции правила отбора - ограничения начальных условий, распространяющиеся в последующие моменты времени по законам динамики. Тем самым второе начало вводит в наше описание природы новый, который не сводится к чему-нибудь элемент. Второе начало термодинамики не противоречит динамике, но не может быть выведено из нее.

Уже Больцман понимал, что между вероятностью и необратимостью должен существовать тесная связь. Различие между прошлым и будущим и, следовательно, необратимость могут входить в описание системы только в том случае, если система ведет себя достаточно випадно. Наш анализ подтверждает эту мысль. Действительно, что такое "стрела" времени в детермінічному описании природы? В чем ее значение? Если будущее как-то содержится в настоящем, в котором вложенное и прошлое, то что, собственно, означает "стрела" времени? "Стрела" времени является проявлением того факта, что будущее не задано, т. е. того, что, по словам французского поэта Поля Валери, "время является конструкцией".

Наш повседневный жизненный опыт показывает, что между временем и пространством есть коренное отличие. Мы можем передвигаться из одной точки пространства в другую, но не в состоянии повернуть время вспять. Мы не можем переставить прошлое и будущее. Как мы увидим в дальнейшем, это ощущение невозможности обратить время приобретает теперь точного научного значения. Допустимые состояния отделены от состояний, за вторым законом термодинамики, бесконечно широким ентропийним (барьером). В физике есть много других барьеров. Одним из них является скорость света. По современным представлениям, сигналы не могут распространяться быстрее скорости света. Существование этого барьера весьма важно: если бы его не было, причинность рассыпалась бы в прах. Аналогично энтропий-ный барьер является предпосылкой, позволяющей дать точный физический смысл (содержание) связи. Представьте себе, что случилось бы, если бы наше будущее стало прошлым каких-то других людей! <...>

Но, возможно, самый важный прогресс заключается в том, что проблема строения, порядка возникает теперь перед нами в иной перспективе. "Информация" в том виде, в котором она поддается определению в терминах динамики, остается постоянной по времени. Это звучит парадоксально. Если мы смешаем две жидкости, то никакой "эволюции" при этом не произойдет, хотя разделить их, не прибегая к помощи какого-либо внешнего устройства, не представляется возможным. Наоборот, закон неспадання энтропии описывает перемешивание двух жидкостей как эволюцию к "хаоса", или "беспорядок", - до наиболее вероятного состояния. Теперь мы имеем все необходимое для того, чтобы доказать взаимную непротиворечивость обоих описаний: говоря об информации или порядок, необходимо каждый раз переопределять единицы, которые мы определяем. Важный новый факт заключается в том, что теперь мы можем установить точные правила перехода от единиц одного типа к единицам другого типа. Иначе говоря, нам удалось получить микроскопическое формулировку эволюционной парадигмы, выражаемой вторым началом термодинамики. Этот вывод представляется нам важным, ведь эволюционная парадигма охватывает всю химию, а также существенные части биологии и социальных наук. Истина открылась нам недавно. Процесс пересмотра основных понятий, что происходит сейчас в физике, еще далек от завершения. Наша цель заключается вовсе не в том, чтобы осветить признанные достижения науки, ее стабильные и достоверно установленные результаты. Мы хотим привлечь внимание читателя к новых понятий, которые возникли в ходе научной деятельности, ее перспектив и новых проблем. Мы отчетливо осознаем, что находимся лишь в самом начале нового этапа научных исследований.

Мы считаем, что находимся на пути к новому синтезу, новой концепции природы. Возможно, когда-нибудь нам удастся слить воедино западную традицию, которая придает первостепенное значение експериментації и количественным формулировкам, и такую традицию, как китайская, с ее представлениями о спонтанно изменяющийся мир. В начале вступления мы привели слова Жака Моно о одиночестве человека во Вселенной. Вывод, к которому он приходит, гласит: "Древний союз [человека и природы] разрушен. Человек наконец сознает свое одиночество в равнодушной бездне Вселенной, из которой она возникла по воле случая".

Моно, очевидно, прав. Древний союз разрушен полностью. Но мы усматриваем свое предназначение не в том, чтобы плакать по прошлому, а в том, чтобы в невероятном разнообразии современных естественных наук попытаться найти путеводную нить, ведущую к какой-то единой картины мира. Для классической науки такой моделью были часы, для XIX века. - периода промышленной революции - паровой двигатель. Что станет символом для нас? Наш идеал, пожалуй, наиболее полно выражает скульптора - от искусства древней Индии или Центральной Америки до Колумбової суток, до современного искусства. В некоторых наиболее совершенных образцах скульптуры, например в фигуре танцующего Шивы или в миниатюрных моделях храмов Герреро, отчетливо чувствуется поиск трудноуловимого перехода от покоя к движению, от времени остановившегося к времени текущему. Мы уверены в том, что именно эта конфронтация определяет неповторимое своеобразие нашего времени. <...>

Связав ентротопію с динамической системой, мы тем самым возвращаемся к концепции Больцмана: возможность (вероятность) достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании тердинамічної эволюции, в состоянии равновесия ведут себя хаотично. В отличие от этого в слабо неравновесных условиях возникают корреляция и когерентность.

Теперь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравенство. Неравенство, то есть то, что порождает "порядок из хаоса". Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Только в крайних случаях, например, в розрідженних газах, оно обретает простого содержания в соответствии с пионерских работ Больцмана.

Сейчас наша уверенность в "рациональности" природы частично подвергается сомнению в результате быстрого роста естествознания в наше время. Как было отмечено в "Предисловие", наше видение природы претерпело существенных изменений. Ныне мы учитываем такие изменения, как множественность, зависимость от времени и сложность. Некоторые изменения, произошедшие в наших взглядах на мир, описанные в этой книге.

Мы искали общие, всеохватывающие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, подвергаются различным преобразованиям. Занимаясь поиском симметрии, мы с удивлением заметили на всех уровнях - от элементарных частиц до биологии и экологии - процессы, сопровождаются нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени.

На наших глазах возникает новое единство: необратимость есть источником порядка на всех уровнях. Необратимость является тем механизмом, который создает порядок из хаоса.