Биографии Характеристики Анализ

Принцип германа эйлера даламбера для материальной точки. Принцип даламбера теоретической механики

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Найдем сначала выражение принципа для одной материальной точки. Пусть на материальную точку с массой действует система активных сил, равнодействующую которых обозначим и реакция связи N (если точка является несвободной). Под действием всех этих сил точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением а.

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки.

Тогда оказывается, что движение точки обладает следующим свойством: если в любой момент времени к действующим на точку активным силам и реакции связи присоединить силу инерции, то полученная система сил будет уравновешенной, т. е.

Это положение выражает принцип Даламбера для материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает Перенося здесь величину та в правую часть равенства и учитывая обозначение (84), придем к соотношению (85). Наоборот, перенося в уравнении (85) величину в другую часть равенства и учитывая обозначение (84), получим выражение второго закона Ньютона.

Рассмотрим теперь механическую систему, состоящую из материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил (в которые входят и активные силы, и реакции связей) точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением Введя для этой точки силу инерции получим согласно равенству (85), что

т. е. что образуют уравновешенную систему сил. Повторяя такие рассуждения для каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы кроме действующих на нее внешних и внутренних сил присоединить соответствующие силы инерции, то полученная система сил будет уравновешенной и к ней можно применять все уравнения статики.

Математически принцип Даламбера для системы выражается векторными равенствами вида (85), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в § 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. § 141).

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причем, как показано в § 120, это справедливо для сил, действующих не только на твердое тело но и на любую изменяемую механическую систему.

Тогда на основании принципа Даламбера должно быть:

Введем обозначения:

Величины представляют собою главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств (86):

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.

Уравнениями (88) особенно удобно пользоваться при изучении движения твердого тела или системы твердых тел. Для полного изучения движения любой изменяемой системы этих уравнений будет недостаточно, так же как недостаточно уравнений статики для изучения равновесия любой механической системы (см. § 120).

В проекциях на координатные оси равенства (88) дают уравнения, аналогичные соответствующим уравнениям статики (см. § 16, 30). Чтобы пользоваться этими уравнениями при решении задач, надо знать выражения главного вектора и главного момента сил инерций.

В заключение следует подчеркнуть, что при изучении движения по отношению к инерциальной системе отсчета, которое здесь и рассматривается, силы инерции вводятся только тогда, когда для решения задач применяется принцип Даламбера

Принцип Даламбера применяется при решении первой основной задачи динамики несвободной точки, когда известны движение точки и действующие на неё активные силы, а отыскивается возникающая реакция связи.

Запишем основное уравнение динамики несвободной точки в инерциальной системе отсчёта:

Перепишем уравнение в виде:

.

Обозначив , получим

, (11.27)

где вектор называется Даламберовой силой инерции .

Формулировка принципа: В каждый момент движения несвободной материальной точки активная сила и реакция связи уравновешиваются Даламберовой силой инерции .

Проектируя векторное уравнение (11.27) на какие-либо координатные оси, мы получим соответствующие уравнения равновесия, пользуясь которыми можно находить неизвестные реакции.

Спроектируем уравнение (11.27) на естественные оси:

(11.28)

где называется центробежной силой инерции, всегда направленной в отрицательную сторону главной нормали; .

Замечания:

1). В действительности к точке помимо сил и каких-либо других физических сил не приложено и три силы не составляют уравновешенную систему сил. В этом смысле Даламберова сила инерции является фиктивной силой, условно прикладываемой к точке.

2). Принцип Даламбера следует рассматривать как удобный методический прием, позволяющий задачу динамики свести к задаче статики.

Пример 1. Определим реакцию связи, действующую на лётчика при выходе самолёта, движущегося в вертикальной плоскости, из пикирующего полёта (рис.11.5).

На лётчика действует сила тяжести и реакция сидения . Применим принцип Даламбера, присоединив к этим силам Даламберову силу инерции:

(11.29)

Запишем уравнение (11.29) в проекциях на нормаль :

(11.30)

где r - радиус окружности при выходе самолёта на горизонтальный полёт,

Максимальная скорость самолёта в этот момент.

Из уравнения (11.30)

(11.31)

Пример 2. Определим теперь ту же реакцию, действующую на лётчика в момент выхода из режима набора высоты (рис.11.6).

Относительное движение материальной точки

Если системы отсчета движутся относительно инерциальной системы отсчета не поступательно, либо неравномерно или криволинейно движутся начала их координат, то такие системы отсчета являются неинерциальными . В этих системах отсчета аксиомы А 1 и А 2 не соблюдаются, но из этого не следует, что в динамике исследуются лишь движения, происходящие в инерциальных системах отсчета. Рассмотрим движение материальной точки в неинерциальной системе координат, если известны силы, действующие на материальную точку, и задано движение неинерциальной системы отсчета относительно инерциальной системы отсчета. В дальнейшем инерциальная система отсчета будет называться неподвижной, а неинерциальная – подвижной системой отсчета. Пусть - равнодействующая активных сил, действующих на точку, а - равнодействующая реакции связей; - неподвижная система координат; - подвижная система координат.

Рассмотрим движение материальной точки М (рис. 11.7), не связанной жестко с подвижной системой координат, а движущейся по отношению к ней. Это движение точки в кинематике называли относительным, движение точки относительно неподвижной системы координат – абсолютным, движение подвижной системы координат – переносным.


Основной закон динамики для абсолютного движения точки М будет иметь вид

(11.33)

где - абсолютное ускорение точки.

На основании теоремы сложения ускорений кинематики (теоремы Кориолиса) абсолютное ускорение складывается из относительного, переносного и кориолисова ускорений

. (11.34)

Подставляя (11.34) в (11.33), получим

и после переноса и ввода обозначений

(11.35)

где ; вектор называют переносной силой инерции; - кориолисовой силой инерции.

Равенство (11.35) выражает закон относительного движения точки. Следовательно, движение точки в неинерциальной системе отсчета можно рассматривать как движение в инерциальной системе, если к числу действующих на точку активных сил и реакций связей добавить переносную и кориолисову силы инерции.

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.


Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причём по принципу отвердевания это справедливо для сил, действующих не только на твёрдое тело, но и на любую изменяемую систе6му. Тогда на основании принципа Даламбера должно быть.

Принцип Даламбера позволяет сформулировать задачи динамики механических систем как задачи статики. При этом динамическим дифференциальным уравнениям движения придают вид уравнений равновесия. Такой метод называют методом кинетостатики .

Принцип Даламбера для материальной точки: «В каждый момент времени движения материальной точки, фактически действующие на нее активные силы, реакции связей и условно приложенная к точке сила инерции образуют уравновешенную систему сил »

Силой инерции точки называют векторную величину, имеющую размерность силы, равную по модулю произведению массы точки на ее ускорение и направленную противоположно вектору ускорения

. (3.38)

Рассматривая механическую систему как совокупность материальных точек, на каждую из которых действуют, согласно принципу Даламбера, уравновешенные системы сил, имеем следствия из этого принципа применительно к системе. Главный вектор и главный момент относительно любого центра приложенных к системе внешних сил и сил инерции всех ее точек равны нулю:

(3.39)

Здесь внешними силами являются активные силы и реакции связей.

Главный вектор сил инерции механической системы равен произведению массы системы на ускорение ее центра масс и направлен в сторону, противоположную этому ускорению

. (3.40)

Главный момент сил инерции системы относительно произвольного центра О равен взятой с обратным знаком производной по времени от кинетического момента ее относительно того же центра

. (3.41)

Для твердого тела, вращающегося вокруг неподвижной оси Oz , найдем главный момент сил инерции относительно этой оси

. (3.42)

3.8. Элементы аналитической механики

В разделе «Аналитическая механика» рассматривают общие принципы и аналитические методы решения задач механики материальных систем.

3.8.1.Возможные перемещения системы. Классификация

некоторых связей

Возможными перемещениями точек
механической системы называют любые воображаемые, бесконечно малые их перемещения, допускаемые наложенными на систему связями, в фиксированный момент времени. По определению, числом степеней свободы механической системы называют число ее независимых возможных перемещений.

Связи, наложенные на систему, называют идеальными , если сумма элементарных работ их реакций на любом из возможных перемещений точек системы равна нулю

. (3. 43)

Связи, для которых налагаемые ими ограничения сохраняются при любом положении системы, называют удерживающими . Связи, не изменяющиеся во времени, в уравнения которых явно не входит время, называют стационарными . Связи, ограничивающие только перемещения точек системы, называют геометрическими , а ограничивающие скорости – кинематическими . В дальнейшем будем рассматривать только геометрические связи и те кинематические, которые могут быть путем интегрирования сведены к геометрическим.

3.8.2. Принцип возможных перемещений

Для равновесия механической системы с удерживающими идеальными и стационарными связями необходимо и достаточно, чтобы

сумма элементарных работ всех активных сил, действующих на нее, на любых возможных перемещениях системы была равна нулю

. (3.44)

В проекциях на оси координат:

. (3.45)

Принцип возможных перемещений позволяет установить в общей форме условия равновесия любой механической системы, не рассматривая равновесие отдельных ее частей. При этом учитываются только действующие на систему активные силы. Неизвестные реакции идеальных связей в эти условия не входят. Вместе с тем данный принцип позволяет определять неизвестные реакции идеальных связей путем отбрасывания этих связей и введения их реакций в число активных сил. При отбрасывании связей, реакции которых необходимо определить, система приобретает дополнительно соответствующее число степеней свободы.

Пример 1 . Найти зависимость между силами идомкрата, если известно, что при каждом повороте рукояткиАВ = l , винт С выдвигается на величину h (рис. 3.3).

Решение

Возможные перемещения механизма – это поворот рукоятки  и перемещение груза h . Условие равенства нулю элементарных работ сил:

Pl  – Q h = 0;

Тогда
. Так какh 0, то

3.8.3. Общее вариационное уравнение динамики

Рассмотрим движение системы, состоящей из n точек. На нее действуют активные силы и реакции связей .(k = 1,…,n ) Если к действующим силам добавить силы инерции точек
, то, согласно принципу Даламбера, полученная система сил будет находиться в равновесии и, следовательно, справедливо выражение, записанное на основе принципа возможных перемещений (3.44):


. (3.46)

Если все связи идеальные, то 2-я сумма равна нулю и в проекциях на оси координат равенство (3.46) будет выглядеть следующим образом:

Последнее равенство представляет собой общее вариационное уравнение динамики в проекциях на оси координат, которое позволяет составить дифференциальные уравнения движения механической системы.

Общее вариационное уравнение динамики – это математическое выражение принципа Даламбера-Лагранжа : «При движении системы, подчиненной стационарным, идеальным, удерживающим связям, в каждый данный момент времени сумма элементарных работ всех активных сил, приложенных к системе, и сил инерции на любом возможном перемещении системы равна нулю ».

Пример 2 . Для механической системы (рис. 3.4), состоящей из трех тел определить ускорение груза 1 и натяжение троса 1-2, если: m 1 = 5m ; m 2 = 4m ; m 3 = 8m ; r 2 = 0,5R 2 ; радиус инерции блока 2 i = 1,5r 2 . Каток 3 представляет собой сплошной однородный диск.

Решение

Изобразим силы, которые совершают элементарную работу на возможном перемещении s груза 1:

Запишем возможные перемещения всех тел через возможное перемещение груза 1:

Выразим линейные и угловые ускорения всех тел через искомое ускорение груза 1 (отношения такие же, как и в случае возможных перемещений):

.

Общее вариационное уравнение для данной задачи имеет вид:

Подставляя полученные ранее выражения для активных сил, сил инерции и возможных перемещений, после несложных преобразований получим

Так как s  0, следовательно, равно нулю выражение в скобках, содержащее ускорение а 1 , откуда a 1 = 5g /8,25 = 0,606g .

Для определения натяжения троса, удерживающего груз, освободим груз от троса, заменив действие его искомой реакцией . Под действием заданных сил ,и приложенной к грузу силы инерции
он находится в равновесии. Следовательно, к рассматриваемому грузу (точке) применим принцип Даламбера, т.е. запишем, что
. Отсюда
.

3.8.4. Уравнение Лагранжа 2-го рода

Обобщенные координаты и обобщенные скорости . Любые независимые между собой параметры, однозначно определяющие положение механической системы в пространстве, называют обобщенными координатами . Эти координаты, обозначаемые q 1 ,....q i , могут иметь любую размерность. В частности, обобщенные координаты могут быть перемещениями или углами поворота.

Для рассматриваемых систем число обобщенных координат равно числу степеней свободы. Положение каждой точки системы является однозначной функцией обобщенных координат

Таким образом, движение системы в обобщенных координатах определяется следующими зависимостями:

Первые производные от обобщенных координат называют обобщенными скоростями :
.

Обобщенные силы. Выражение для элементарной работы силы на возможном перемещении
имеет вид:

.

Для элементарной работы системы сил запишем

Используя полученные зависимости, это выражение можно записать в виде:

,

где обобщенная сила, соответствующая i -й обобщенной координате,


. (3.49)

Таким образом, обобщенной силой, соответствующей i -й обобщенной координате, является коэффициент при вариации этой координаты в выражении суммы элементарных работ активных сил на возможном перемещении системы. Для вычисления обобщенной силы необходимо сообщить системе возможное перемещение, при котором изменяется только обобщенная координата q i . Коэффициент при
и будет искомой обобщенной силой.

Уравнения движения системы в обобщенных координатах . Пусть дана механическая система с s степенями свободы. Зная действующие на нее силы, необходимо, составить дифференциальные уравнения движения в обобщенных координатах
. Применим процедуру составления дифференциальных уравнений движения системы – уравнений Лагранжа 2-го рода – по аналогии вывода этих уравнений для свободной материальной точки. Исходя из 2-го закона Ньютона, запишем

Получим аналог этим уравнениям, используя запись для кинетической энергии материальной точки,

Частная производная от кинетической энергии по проекции скорости на ось
равна проекции количества движения на эту ось, т.е.

Чтобы получить необходимые уравнения, вычислим производные по времени:

Полученная система уравнений является уравнениями Лагранжа 2-го рода для материальной точки.

Для механической системы уравнения Лагранжа 2-го рода представим в виде уравнений, в которых вместо проекций активных сил P x , P y , P z используют обобщенные силы Q 1 , Q 2 ,...,Q i и учитывают в общем случае зависимость кинетической энергии от обобщенных координат.

Уравнения Лагранжа 2-го рода для механической системы имеют вид:

. (3.50)

Их можно использовать для изучения движения любой механической системы с геометрическими, идеальными и удерживающими связями.

Пример 3 . Для механической системы (рис. 3.5), данные для которой приведены в предыдущем примере, составить дифференциальное уравнение движения, используя уравнение Лагранжа 2-го рода,

Решение

Механическая система имеет одну степень свободы. За обобщенную координату примем линейное перемещение груза q 1 = s ; обобщенная скорость – . С учетом этого запишем уравнение Лагранжа 2-го рода

.

Составим выражение для кинетической энергии системы

.

Выразим все угловые и линейные скорости через обобщенную скорость:

Теперь получим

Вычислим обобщенную силу, составив выражение элементарной работы на возможном перемещении s всех действующих сил. Без учета сил трения работу в системе производит только сила тяжести груза 1
Запишем обобщенную силу при s , как коэффициент в элементарной работе Q 1 = 5mg . Далее найдем

Окончательно дифференциальное уравнение движения системы будет иметь вид:

Если рассматривать систему, которая состоит из нескольких материальных точек, выделяя одну определенную точку с известной массой, то под действием приложенных к ней внешних и внутренних сил она получает некоторое ускорение по отношению к инерциальной системе отсчета. Среди таких сил могут быть как активные силы, так и реакции связи.

Сила инерции точки - это векторная величина, которая равна по модулю произведению массы точки на ее ускорение. Данную величину иногда упоминают как даламберовскую силу инерции, она направлена противоположно ускорению. В этом случае обнаруживается следующее свойство движущейся точки: если в каждый момент времени прибавить силу инерции к фактически действующим на точку силам, то полученная система сил будет уравновешена. Так можно сформулировать принцип Даламбера для одной материальной точки. Данное утверждение полностью соответствует второму закону Ньютона.

Принципы Даламбера для системы

Если повторить все рассуждения для каждой точки в системе, они приводят к следующему выводу, который выражает принцип Даламбера, сформулированный для системы: если в любой момент времени приложить к каждой из точек в системе, помимо фактически действующих внешних и внутренних сил, то данная система будет находиться в равновесии, поэтому к ней можно применять все уравнения, которые используются в статике.

Если применять принцип Даламбера для решения задач динамики, то уравнения движения системы можно составить в форме известных нам уравнений равновесия. Данный принцип значительно упрощает расчеты и делает подход к решению задач единым.

Применение принципа Даламбера

Следует учитывать, что на движущуюся точку в механической системе действуют только внешние и внутренние силы, которые возникают как результат взаимодействия точек между собой, а также с телами, не входящими в данную систему. Точки движутся с определенными ускорениями под действием всех этих сил. Силы инерции не действуют на движущиеся точки, в противном случае они бы двигались без ускорения или были в покое.

Силы инерции вводятся лишь для того, чтобы составить уравнения динамики при помощи более простых и удобных методов статики. Учитывается также, что геометрическая сумма внутренних сил и сумма их моментов равна нулю. Использование уравнений, которые вытекают из принципа Даламбера, делает процесс решения задач проще, так как данные уравнения уже не содержат внутренних сил.