Биографии Характеристики Анализ

Разница потенциалов между двумя точками. Разность потенциалов


A = - (W2 - W1) = - (j 2 - j 1)q = - D j q,

Разность потенциалов характеризует работу поля по перемещению единичного положительного заряда (1 Кл) из начальной точки в конечную.

рис 4

рис. 5 Единица разности потенциалов

ЭКВИПОТЕНЦИА́ЛЬНАЯ ПОВЕ́РХНОСТЬ, поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение j= const. На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала.

Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля.

Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям поля, а вектор напряженности электрического поля Е всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как?j = 0.

Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.

17. Потенциал электростатического поля точечного заряда.

Тело, которое находится в потенциальном поле сил (а электростатическое поле, как уже известно, является потенциальным), обладает потенциальной энергией, за счет которой силы поля совершают работу. Как известно из классической механики, работа консервативных сил совершается за счет убыли потенциальной энергии. Значит работу сил электростатического поля можно считать как разность потенциальных энергий, которыми обладает точечный электрический заряд Q0 в начальной и конечной точках поля заряда Q:

откуда мы видим, что потенциальная энергия заряда Q0 в поле заряда Q равна

Она, как и в классической механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при перенесении заряда в бесконечность (r→∞) потенциальная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, который находится в поле заряда Q на расстоянии r от него, равна

Для зарядов одинакового знака Q0Q>0 потенциальная энергия их взаимодействия (в данном случае - отталкивания) положительна, для разноименных зарядов Q0Q<0 и потенциальная энергия их взаимодействия (в данном случае - притяжения) отрицательна.

Если поле создается системой n точечных электрических зарядов Q1, Q2, ..., Qn, то работа электростатических сил, которая совершается над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, который находится в этом поле, равна сумме потенциальных энергий Ui, каждого из зарядов:

(3)

Из формул (2) и (3) следует, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, которая называется потенциалом:

Потенциал φ в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Из формул (4) и (2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен

Работа, которую совершают силы электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (1), (4), (5)), может быть выражена как

т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, которая совершается силами поля, при перемещении единичного положительного электрического заряда из точки 1 в точку 2.

Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть выражена как

(7)

Приравняв (6) и (7), придем к формуле для разности потенциалов:

(8)

где интегрирование можно производить вдоль любой линии, которая соединяет начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.

Если перемещать заряд Q0 из произвольной точки за далеко пределы поля, т. е. в бесконечность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (6), A∞=Q0φ, откуда

Значит, потенциал - физическая величина, которая определяется работой по перемещению единичного положительного электрического заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, которую совершают внешние силы (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (4) видно, что единица потенциала - вольт (В): 1 В равен потенциалу такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная ранее единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н м/(Кл м)=1 Дж/(Кл м)=1 В/м.

Из формул (3) и (4) следует, что если поле создается несколькими зарядами, то потенциал данного поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

18. Связь напряженности и потенциала электростатического поля.

Будем искать, каким образом связаны напряженность электростатического поля, которая является его силовой характеристикой, и потенциал, который есть его энергетическая характеристика поля.

Работа по перемещению единичного точечного положительного электрического заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены достаточно близко друг к другу и x2-x1=dx, равна Exdx. Та же работа равна φ1-φ2=dφ. Приравняв обе формулы, запишем

где символ частной производной подчеркивает, что дифференцирование осуществляется только по х. Повторив эти рассуждения для осей у и z, найдем вектор Е:

где i, j, k - единичные векторы координатных осей х, у, z.

Из определения градиента следует, что

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус говорит о том, что вектор напряженности Е поля направлен в сторону уменьшения потенциала.

19. Потенциал электростатического поля системы зарядов. Принцип суперпозиции. Потенциал поля точечного диполя.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi (i = 1, 2, ... , n). Энергия взаимодействия всех n зарядов определится соотношением

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q - физическая величина, определяющая интенсивность электромагнитного взаимодействия.

[q] = l Кл (Кулон).

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл - элементарный или минимально возможный заряд (заряд электрона), N - число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

q 1 + q 2 + … + q n = const.

Точечный электрический заряд - заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Закон Кулона

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

Коэффициент пропорциональности

где - электрическая постоянная.

где 12 - сила, действующая со стороны второго заряда на первый, а 21 - со стороны первого на второй.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля - материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Напряженность электрического поля в данной точке - это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью:

Напряженность поля на расстоянии r от заряда Q равна

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью однородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние вдоль совершает работу

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Потенциал - отношение потенциальной энергии заряда в поле к величине этого заряда:

Потенциал однородного поля равен

где d - расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна .

Поэтому работа поля по перемещению заряда из точки с потенциалом φ 1 в точку с потенциалом φ 2 составляет:

Величина называется разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками - это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

[U]=1Дж/Кл=1В

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью на расстояние Δ d поле совершает работу

Так как по определению, то получаем:

Отсюда и напряженность электрического поля равна

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Тогда , то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

[E]=1 B/м

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников - отношение заряда одного из них к разности потенциалов между ними:

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

КОНДЕНСАТОРЫ

Конденсатор - два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды, и обратно пропорциональна расстоянию между пластинами d :

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Плотность энергии электрического поля

где V = Sd - объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

а напряжение на его обкладках U=Ed

получаем:

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Разность потенциалов

Известно, что одно тело можно нагреть больше, а другое меньше. Степень нагрева тела называется его температурой. Подобно этому, одно тело можно наэлектризовать больше другого. Степень электризации тела характеризует величину, называемую электрическим потенциалом или просто потенциалом тела.

Что значит наэлектризовать тело? Это значит сообщить ему электрический заряд , т. е. прибавить к нему некоторое количество электронов, если мы тело заряжаем отрицательно, или отнять их от него, если мы тело заряжаем положительно. В том и другом случае тело будет обладать определенной степенью электризации, т. е. тем или иным потенциалом, причем тело, заряженное положительно, обладает положительным потенциалом, а тело, заряженное отрицательно, - отрицательным потенциалом.

Разность уровней электрических зарядов двух тел принято называть разностью электрических потенциалов или просто разностью потенциалов .

Следует иметь в виду, что если два одинаковых тела заряжены одноименными зарядами, но одно больше, чем другое, то между ними также будет существовать разность потенциалов.

Кроме того, разность потенциалов существует между двумя такими телами, одно из которых заряжено, а другое не имеет заряда. Так, например, если какое-либо тело, изолированное от земли, имеет некоторый потенциал, то разность потенциалов между ним и землей (потенциал которой принято считать равным нулю) численно равна потенциалу этого тела.

Итак, если два тела заряжены таким образом, что потенциалы их неодинаковы, между ними неизбежно существует разность потенциалов.

Всем известное явление электризации расчески при трении ее о волосы есть не что иное, как создание разности потенциалов между расческой и волосами человека.

Действительно, при трении расчески о волосы часть электронов переходит на расческу, заряжая ее отрицательно, волосы же, потеряв часть электронов, заряжаются в той же степени, что и расческа, но положительно. Созданная таким образом разность потенциалов может быть сведена к нулю прикосновением расчески к волосам. Этот обратный переход электронов легко обнаруживается на слух, если наэлектризованную расческу приблизить к уху. Характерное потрескивание будет свидетельствовать о происходящем разряде.

Говоря выше о разности потенциалов, мы имели в виду два заряженных тела, однако разность потенциалов можно получить и между различными частями (точками) одного и того же тела.

Так, например, рассмотрим, что произойдет в , если под действием какой-либо внешней силы нам удастся свободные электроны, находящиеся в проволоке, переместить к одному концу ее. Очевидно, на другом конце проволоки получится недостаток электронов, и тогда между концами проволоки возникнет разность потенциалов.

Стоит нам прекратить действие внешней силы, как электроны тотчас же, в силу притяжения разноименных зарядов, устремятся к концу проволоки, заряженному положительно, т. е. к месту, где их недостает, и в проволоке вновь наступит электрическое равновесие.

Электродвижущая сила и напряжение

Д ля поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника.

Такими источниками энергии служат так называемые источники электрического тока , обладающие определенной электродвижущей силой , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е . Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой "В", а в международном обозначении - буквой "V".

Итак, чтобы получить непрерывное течение , нужна электродвижущая сила, т. е. нужен источник электрического тока.

Первым таким источником тока был так называемый "вольтов столб", который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока .

В настоящее время химические источники тока - гальванические элементы и аккумуляторы - широко применяются в электротехнике и электроэнергетике.

Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы .

Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д.

Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что ЭДС создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время.

Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом.

Соответственно этому один полюс источника тока называется положительным (+), другой - отрицательным (-).

Источники тока служат для питания электрическим током различных приборов - . Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U.

Единицей измерения напряжения, так же как и ЭДС, служит вольт.

Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U - 12 В.

Для измерения или напряжения применяется прибор, называемый вольтметром.

Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь, то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока.

ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах.

Во многих случаях для того, чтобы правильно уяснить суть вопроса, касающегося электротехники, необходимо точно знать, что такое разность потенциалов.

Определение разности потенциалов

Общее понятие состоит в электрическом напряжении, образованном между двумя точками, и представляющем собой работу электрического поля, которую необходимо совершить для перемещения из одной точки в другую положительного единичного заряда.

Таким образом, в равномерном и бесконечном электрическом поле положительный заряд под воздействием этого поля будет перемещен на бесконечное расстояние в направлении, одинаковым с электрическим полем. Потенциал конкретной точки поля представляет собой работу, производимую электрическим полем при перемещении из этой точки положительного заряда в точку, удаленную бесконечно. При перемещении заряда в обратном направлении, внешними силами производится работа, направленная на преодоление электрической силы поля.

Разность потенциалов на практике

Разность потенциалов, существующая в двух различных точках поля, получила понятие напряжения, измеряемого в вольтах. В однородном электрическом поле очень хорошо просматривается зависимость между электрическим напряжением и напряженностью электрического поля.

Точки с одинаковым потенциалом, расположенные вокруг заряженной поверхности проводника, полностью зависят от формы этой поверхности. При этом разность потенциалов для отдельных точек, лежащих на одной и той же поверхности имеет нулевое значение. Такая поверхность , где каждая точка обладает одинаковым потенциалом носит название эквипотенциальной поверхности.

Когда происходит приближение к заряженному телу, происходит быстрое увеличение потенциала, а расположение эквипотенциальных поверхностей становится более тесным относительно друг друга. При удалении от заряженных тел, расположение эквипотенциальных поверхностей становится более редким. Расположение электрических силовых линий всегда перпендикулярно с эквипотенциальной поверхностью в каждой точке.

В заряженном проводнике все точки на его поверхности обладают одинаковым потенциалом. То же значение имеется и во внутренних точках проводника.

Проводники, имеющие различные потенциалы, соединенные между собой с помощью металлической проволоки. На ее концах появляется напряжение или разность потенциалов, поэтому вдоль всей проволоки наблюдается действие электрического поля. Свободные электроны начинают двигаться в направлении увеличения потенциала, что вызывает появление электрического тока.

Падение потенциала вдоль проводника

Понятие энергии исключительно полезно для решения задач механики. Прежде всего энергия сохраняется и поэтому служит важной характеристикой явлений природы. Используя представления об энергии, многие задачи удается решить, не имея детальных сведений о силах или в случае, когда применение законов Ньютона потребовало бы сложных вычислений.

Энергетическим подходом можно воспользоваться и при изучении электрических явлений, и здесь он оказывается чрезвычайно полезным: позволяет не только обобщить закон сохранения энергии, но и в новом аспекте увидеть электрические явления, а также служит средством более просто находить решения, чем путем рассмотрения сил и электрических полей.

Потенциальную энергию можно определить лишь для консервативных сил; работа такой силы по перемещению частицы между двумя точками не зависит от выбранного пути.
Легко видеть, что электростатическая сила является консервативной: сила, с которой один точечный заряд действует на другой, определяется законом Кулона: F = kQ 1 Q 2 /r 2 ; здесь та же обратно пропорциональная зависимость от квадрата расстояния, что и в законе всемирного тяготения: F = Gm 1 m 2 /r 2 . Такие силы консервативны. Сила, действующая на выбранный заряд со стороны любого распределения зарядов, может быть записана в виде суммы кулоновских сил; следовательно, и сила, создаваемая произвольным распределением зарядов, консервативна. А это позволяет ввести потенциальную энергию электростатического поля.

Разность потенциальных энергий точечного заряда q в двух различных точках электрического поля можно определить как работу, совершаемую внешними силами по перемещению заряда (против действия электрической силы) из одной точки в другую. Это равносильно определению изменения потенциальной энергии заряда в поле как взятой с обратным знаком работы, совершаемой самим полем по перемещению заряда из одной точки в другую.

Рассмотрим для примера электрическое поле между двумя пластинами с равным по величине и противоположным по знаку зарядом. Пусть размеры пластин велики по сравнению с расстоянием между ними, и поэтому поле между пластинами можно считать однородным (рис. 24.1).
Поместим в точку а вблизи положительно заряженной пластины точечный положительный заряд q . Электрическая сила, действующая на заряд, будет стремиться переместить его к отрицательной пластине (в точку b ), совершая работу по переносу заряда. Под действием силы заряд приобретет ускорение и его кинетическая энергия возрастет; при этом потенциальная энергия уменьшится на величину работы, совершенной электрической силой по перемещению заряда из точки a в точку b . Согласно закону сохранения энергии, потенциальная энергия заряда в электрическом поле перейдет в кинетическую энергию, но полная энергия останется неизменной. Заметим, что положительный заряд q обладает наибольшей потенциальной энергией U вблизи положительной пластины (в этой точке его способность совершать работу над другим телом или системой максимальна). Для отрицательного заряда справедливо обратное: его потенциальная энергия будет максимальна вблизи отрицательной пластины.

Напряженность электрического поля мы определяли как силу, действующую на единичный заряд; аналогично удобно ввести электрический потенциал (или просто потенциал, если это не вызывает недоразумений) как потенциальную энергию единичного заряда. Электрический потенциал обозначается символом V ; итак, если в некоторой точке a точечный заряд q обладает потенциальной энергией U a , то электрический потенциал в этой точке равен V a = U a /q .
Реально мы измеряем только изменение потенциальной энергии. Соответственно фактически можно измерить лишь разность потенциалов между двумя точками (например, точками a и b на рис. 24.1). Если работа электрических сил по перемещению заряда от точки a в точку b есть W ba (а разность потенциальных энергий соответственно равна этой величине с обратным знаком), то для разности потенциалов можно написать

Единицей электрического потенциала (и разности потенциалов) является джоуль на кулон (Дж/Кл); этой единице присвоено наименование вольт (В) в честь Алессандро Вольты (1745-1827) (он известен как изобретатель электрической батареи); 1 В = 1 Дж/Кл. Заметим, что, согласно данному определению, положительно заряженная пластина на рис. 24.1 имеет более высокий потенциал, чем отрицательная. Таким образом, положительно заряженное тело будет стремиться перейти из точки с более высоким потенциалом в точку с более низким потенциалом, отрицательно заряженное тело - наоборот. Разность потенциалов часто называют электрическим напряжением.

Потенциал в данной точке V a зависит от выбора «нуля» потенциала; как и в случае потенциальной энергии, нулевой уровень может выбираться произвольно, поскольку измерить можно лишь изменение потенциальной энергии (разность потенциалов). Часто за нулевой принимают потенциал земли или проводника, соединенного с землей, и остальные значения потенциалов отсчитывают относительно «земли». (Например, говоря, что потенциал в какой-то точке равен 50 В, имеют в виду, что разность потенциалов между этой точкой и землей равна 50 В.) В иных случаях, как мы увидим, удобно считать нулевым потенциал на бесконечности.

Поскольку электрический потенциал определяется как потенциальная энергия единичного заряда, изменение потенциальной энергии заряда q при перемещении его из точки a в точку b равно

Δ U = U b - U a = qV ba

Другими словами, когда заряд q перемещается между точками с разностью потенциалов V ba , его потенциальная энергия изменяется на величину qV ba . Если, например, разность потенциалов между пластинами на рис. 24.1 составляет 6 В, то заряд 1 Кл, перемещенный (внешней силой) из точки b в точку a , увеличит свою потенциальную энергию на (1 Кл) (6 В) = 6 Дж. (Перемещаясь же из a в b , он потеряет потенциальную энергию 6 Дж.) Аналогично энергия заряда 2 Кл увеличится на 12 Дж и т. п. Таким образом, электрический потенциал служит мерой изменения потенциальной энергии электрического заряда в данной ситуации. А поскольку потенциальная энергия - это способность совершать работу, электрический потенциал служит мерой той работы, которую может совершить данный заряд. Количество работы зависит как от разности потенциалов, так и от величины заряда.

Чтобы лучше понять смысл электрического потенциала, проведем аналогию с гравитационным полем. Пусть камень падает с вершины скалы. Чем выше скала, тем большей потенциальной энергией обладает камень и тем больше будет его кинетическая энергия, когда он долетит до подножия скалы. Величина кинетической энергии и соответственно работа, которую может совершить камень, зависят от высоты скалы и от массы камня. Точно так же и в электрическом поле изменение потенциальной энергии (и работа, которую можно совершить) зависит от разности потенциалов (эквивалентной высоте скалы) и заряда (эквивалентного массе).

Используемые на практике источники электроэнергии - батареи, электрогенераторы - создают определенную разность потенциалов. Количество энергии, отбираемой от источника, зависит от величины переносимого заряда.
Рассмотрим, например, автомобильную фару, соединенную с аккумулятором, разность потенциалов на зажимах которого равна 12 В. Количество энергии, преобразуемой фарой в свет (и, конечно, в тепло), пропорционально заряду, протекшему через фару, что в свою очередь зависит от того, как долго включена фара. Если за некоторое время через фару прошел заряд 5,0 Кл, то преобразованная фарой энергия составит (5,0 Кл)*(12,0 В) = 60 Дж. Если оставить фару включенной вдвое дольше, то через нее пройдет заряд 10,0 Кл, и количество преобразованной энергии составит (10,0 Кл)*(12,0 В) = 120 Дж.
Эффекты, обусловленные тем или иным распределением зарядов, можно описать как с помощью напряженности электрического поля, так и через электрический потенциал. Между напряженностью поля и потенциалом существует тесная связь. Рассмотрим вначале эту связь для случая однородного электрического поля, например поля между пластинами на рис. 24.1 с разностью потенциалов V ba . Работа электрического поля по перемещению положительного заряда q из точки a в точку b равна

W = - qV ba

Обратим внимание на то, что величина V ba = V b - V a отрицательна (V ba a выше, чем в точке b (и положителен по отношению к потенциалу в точке b ). Поэтому совершаемая полем работа положительна.
С другой стороны, работа равна произведению силы на перемещение, а сила, действующая на заряд q , есть F = qE , где Е - напряженность однородного электрического поля между пластинами. Таким образом,

W = Fd = qEd

где d - расстояние между точками a и b (вдоль силовой линии). Приравняв эти выражения для работы, получим

- qV ba = qEd

V b - V a = V ba = - Ed (поле E однородно).

Знак минус в правой части указывает просто на то, что V a V b , т.е. потенциал положительной пластины выше, чем отрицательной, как мы уже говорили. Положительные заряды стремятся двигаться из области с высоким потенциалом в область с низким потенциалом. Отсюда можно найти Е :

Е = - V ba /d .

Из последнего равенства видно, что напряженность электрического поля можно измерять как в вольтах на метр (В/м), так и в ньютонах на кулон (Н/Кл). Эти единицы эквивалентны между собой: 1 Н/Кл = 1 Н·м/Кл·м = 1 Дж/Кл·м = 1 В/м.

Чтобы перейти к общему случаю неоднородного электрического поля, вспомним соотношение между силой F и потенциальной энергией U , обусловленной этой силой. Разность потенциальных энергий в двух точках пространства a и b определится формулой

где dl - бесконечно малое перемещение, а интеграл берется вдоль произвольной траектории между точками a и b . В случае электрического поля нас больше интересует разность не потенциальных энергий, а потенциалов:

V ba = V b - V a = (U b - U a)/q

Напряженность электрического поля Е в любой точке пространства определяется отношением силы к заряду: Е = F/q . Подставляя эти два равенства в формулу, получим

Это и есть общее соотношение, связывающее напряженность электрического поля с разностью потенциалов.

Когда поле однородно, например, на рис. 24.1 вдоль траектории, параллельной силовым линиям, от точки a у положительной пластины до точки b у отрицательной пластины (поскольку направления E и dl всюду совпадают) имеем

где d - расстояние вдоль силовой линии между точками a и b . И вновь знак минус в правой части свидетельствует лишь о том, что на рис. 24.1 V a > V b .

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!