Биографии Характеристики Анализ

Сколько километров от земли до мкс. На каком расстоянии находится МКС от Земли: километры до космической станции

Как известно, геостационарные спутники висят неподвижно над землёй над одной и той же точкой. Почему они не падают? На той высоте не действует сила притяжения?

Ответ

Геостационарный искусственный спутник Земли представляет собой аппарат, который движется вокруг планеты в восточном направлении (в том же, в каком вращается сама Земля), по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли.

Таким образом, если смотреть с Земли на геостационарный спутник, мы будем видеть его неподвижно висящим на одном и том же месте. Из-за этой неподвижности и большой высоты около 36 000 км, с которой видна почти половина поверхности Земли, на геостационарную орбиту выводят спутники-ретрансляторы для телевидения, радио и коммуникаций.

Из того, что геостационарный спутник висит постоянно над одной и той же точкой поверхности Земли, некоторые делают неверный вывод, что на геостационарный спутник не действует сила притяжения к Земле, что сила тяготения на определённом расстоянии от Земли исчезает, т. е. они опровергают самого Ньютона. Конечно это не так. Сам запуск спутников на геостационарную орбиту рассчитывается именно по закону всемирного тяготения Ньютона.

Геостационарные спутники, как и все остальные спутники, на самом деле падают на Землю, но не достигают её поверхности. На них действует сила притяжения к Земле (гравитационная сила), направленная к её центру, а в обратном направлении на спутник действует отталкивающая от Земли центробежная сила (сила инерции), которые уравновешивают друг друга - спутник не улетает от Земли и не падает на неё точно так же, как ведро, раскручиваемое на верёвке, остаётся на своей орбите.

Если бы спутник совсем не двигался, то он упал бы на Землю под действием притяжения к ней, но спутники движутся, в том числе и геостационарные (геостационарные - с угловой скоростью равной угловой скорости вращения Земли, т. е. один оборот за сутки, а у спутников нижележащих орбит угловая скорость больше, т. е. за сутки они успевают совершить вокруг Земли несколько оборотов). Линейная скорость, сообщаемая спутнику параллельно поверхности Земли при непосредственном выводе на орбиту сравнительно большая (на низкой околоземной орбите - 8 километров в секунду, на геостационарной орбите - 3 километра в секунду). Если бы не было Земли, то спутник с такой скоростью летел бы по прямой, но наличие Земли заставляет спутник падать на неё под действием силы притяжения, искривляя траекторию по направлению к Земле, но поверхность Земли не плоская, она искривлена. На сколько спутник приближается к поверхности Земли, на столько поверхность Земли уходит из-под спутника и, таким образом, спутник постоянно находится на одной и той же высоте, двигаясь по замкнутой траектории. Спутник всё время падает, но никак не может упасть.

Итак, все искусственные спутники Земли падают на Землю, но - по замкнутой траектории. Спутники находятся в состоянии невесомости, как все падающие тела (если лифт в небоскрёбе сорвётся и начнёт свободно падать, то люди внутри тоже будут находиться в состоянии невесомости). Космонавты внутри МКС находятся в невесомости не потому, что на орбите не действует сила притяжения к Земле (она там почти такая же как и на поверхности Земли), а потому, что МКС свободно падает на Землю - по замкнутой круговой траектории.

Атмосфера нашей планеты защищает нас от ультрафиолетового излучения и от многочисленных метеоритов, приближающихся к Земле. Большинство из них полностью сгорает в плотных слоях атмосферы, так же как и космический мусор, падающий с орбиты. Но это обстоятельство является целой проблемой для космической отрасли, ведь космонавтов нужно не только отправлять на орбиту, но и возвращать обратно. Но астронавты благополучно завершают пребывание на Международной космической станции, возвращаясь в специальных капсулах, которые не сгорают в атмосфере. Сегодня мы посмотрим, почему так происходит.

Космические корабли, так же как и внеземные объекты, страдают от разрушительного воздействия атмосферы. При аэродинамическом сопротивлении газовых слоев атмосферы поверхность любого тела, движущегося со значительной скоростью, нагревается до критических значений. Поэтому конструкторам пришлось приложить немало усилий для решения этой проблемы. Технология защиты космической техники от подобного воздействия получила название абляционной защиты. Она включает в себя поверхностный слой на основе асбестосодержащих соединений, который наносится на внешнюю часть летательного аппарата и частично разрушается, но позволяет сохранить в целости сам космический аппарат.


Возвращение космонавтов с МКС на Землю происходит в специальной капсуле, которая находится на корабле «Союз». После отстыковки от МКС корабль начинает движение к Земле, и на высоте около 140 километров происходит его распад на три части. Приборно-агрегатный и бытовой отсеки корабля «Союз» полностью сгорают в атмосфере, а вот спускаемый аппарат с космонавтами имеет защитный слой и продолжает движение дальше. Примерно на высоте около 8,5 километров происходит выпуск тормозного парашюта, который существенно замедляет скорость и готовит аппарат к приземлению.


Если посмотреть на снимки капсул с космонавтами после их приземления, то можно увидеть, что они почти черного цвета и имеют следы обгорания, как результат пролета сквозь слои атмосферы.

Или почему спутники не падают? Орбита спутника представляет собой хрупкий баланс между инерцией и гравитацией. Сила тяжести непрерывно притягивает спутник к Земле, в то время как инерция спутника стремится поддерживать его движение прямолинейным. Если бы не было силы тяжести, инерция спутника отправила бы его прямо с земной орбиты в открытый космос. Однако в каждой точке орбиты сила тяжести держит спутник на привязи.

Чтобы достичь равновесия между инерцией и силой тяжести, спутник должен иметь строго определенную скорость. Если он летит слишком быстро, инерция преодолевает силу тяжести и спутник покидает орбиту. (Вычисление так называемой второй космической скорости, позволяющей спутнику покидать околоземную орбиту, играет важную роль в запуске межпланетных космических станций.) Если спутник движется слишком медленно, сила тяжести победит в борьбе с инерцией и спутник упадет на Землю. Именно это случилось в 1979 году, когда американская орбитальная станция Скайлэб начала снижаться в результате растущего сопротивления верхних слоев земной атмосферы. Попав в железные клещи гравитации, станция вскоре упала на Землю.

Скорость и расстояние

Поскольку земное притяжение ослабевает с расстоянием, скорость, необходимая для удержания спутника на орбите, изменяется с высотой над уровнем моря. Инженеры могут вычислять, как быстро и как высоко спутник должен вращаться на орбите. Например, геостационарный спутник, расположенный всегда над одной и той же точкой земной поверхности, должен совершать один виток за 24 часа (что соответствует времени одного оборота Земли вокруг своей оси) на высоте 357 километров.

Сила тяжести и инерция

Балансирование спутника между силой тяжести и инерцией может быть сымитировано вращением груза на привязанной к нему веревке. Инерция груза стремится переместить его подальше от центра вращения, в то время как натяжение веревки, выполняющее роль гравитации, удерживает груз на круговой орбите. Если веревку перерезать, груз улетит по прямолинейной траектории перпендикулярно радиусу своей орбиты.

Размеры МКС достаточны для её наблюдения невооружённым глазом с поверхности Земли. Станция наблюдается как весьма яркая звезда, быстро летящая по небу с запада на восток (угловая скорость около 4 градусов в минуту). Однако наблюдать её можно не везде и не всегда, даже если вы делаете это в темное время суток. Поскольку орбита Международной космической станции постоянно меняется (факторы, влияющие на это, мы и рассмотрим ниже), то для уточнения мест на Земле, где в определенный момент времени можно наблюдать МКС, необходимо смотреть этот сайт или сайт Роскосмоса . А происходят эти изменения районов наблюдения вот почему…

Во-первых, МКС может находиться на высоте от 280 до 460 километров. Даже на такой высокой орбите она постоянно испытывает затормаживающее воздействие верхних, очень разряженных слоёв атмосферы Земли. Да-да, и в ближнем Космосе есть частички воздуха! Каждые сутки МКС теряет примерно по 5 см/с своей скорости и около 100 метров высоты. Поэтому периодически приходится поднимать станцию, сжигая топливо космических грузовиков «Прогресс» и других приходящих кораблей. А почему нельзя поднять станцию сразу выше, чтобы избежать этих затрат?

Дело в том, что заложенный при проектировании диапазон и текущее реальное положение орбиты определены несколькими причинами.

Первая: ежедневно наши космонавты, а также астронавты других стран (США, Европа, Канада, Япония и т.д.) получают на этой орбите достаточно высокие дозы радиации. А вот за отметкой в 500 км её уровень резко повышается и она становится просто смертельной

Кстати, так едва не погиб в 1965 году советский экипаж Беляева и Леонова, когда, вопреки расчетам, их космический корабль «Восход-2» забросили на орбиту 495 километров, так что СССР мог вместо героического леоновского выхода в Космос получить двух мертвых космонавтов.

Предел за полугодовое пребывание для космонавтов установлен всего в 1/2 зиверта, при этом на всю космическую карьеру разрешен лишь зиверт (каждый зиверт радиационного излучения увеличивает риск онкологических заболеваний на 5,5 процентов).

На Земле от смертоносных космических лучей люди защищены радиационным поясом магнитосферы нашей планеты и её атмосферой, но в ближнем Космосе защита уже намного слабее. В некоторых частях орбиты (Южно-атлантическая аномалия, например, является таким пятном повышенной радиации) иногда могут проявляться странные эффекты: у человека при закрытых глазах появляются вспышки. Считается, что космические частицы проходят через глазное яблоко. Подобное может не только мешать спать, но и в лишний раз неприятно напоминает о высоком уровне радиации на МКС.

Кроме этого, российские «Союзы» и «Прогрессы», которые сейчас являются основными кораблями смены экипажа и снабжения, сертифицированы на работу на высоте до 460 км. Чем выше находится МКС, тем соответственно меньше груза можно будет доставить. Но, с другой стороны, чем ниже «висит» МКС, тем сильнее она тормозится, то есть больше доставляемого груза должно быть топливом для последующей коррекции орбиты.

Плюс (а вернее, минус) — раньше МКС не выставлялась на высоты даже в 390-400 км , так как на такую орбиту не могли подниматься американские шаттлы. Поэтому станция удерживалась на высотах 330-350 км путём более частой периодической коррекции двигателями. В связи с окончанием программы полёта шаттлов в 2014 году, это ограничение наконец было снято.

Научные задачи могут быть выполнены, таким образом, наиболее идеально на высоте в 400-460 километров. Вот почему средняя высота орбиты МКС в настоящее время составляет примерно 420 км. Естественно, что, чем выше высота, тем большая часть Земли может одновременно наблюдать станцию. Правда, в этом случае будет падать и ее видимая величина!

Наконец, на положение станции влияет и космический мусор: вышедшие из строя ракеты, спутники, их обломки, которые имеют огромную скорость относительно МКС, что делает столкновение с ними разрушительным.

Разгонять МКС могут космические аппараты, расположенные в задней части станции: это грузовики «Прогресс» (в основном) и ATV (реже), при необходимости - служебный модуль «Звезда» и Cygnus (крайне редко). Станцию поднимают часто и незначительно: коррекция происходит примерно раз в месяц маленькими порциями (около 900 секунд работы двигателя), а сам подъем может достигать, к примеру, 100-200 метров.

Некоторые параметры орбиты диктуются не только техническими особенностями, но и политическими реалиями. Космическому аппарату при запуске с Земли возможно придать любую ориентацию, но наиболее экономичным будет использовать скорость, которую даёт вращение Земли. Таким образом, дешевле запускать аппарат на орбиту с наклоном, равным широте. Любые маневры и переход на иной наклон потребуют дополнительного расхода топлива: больше для движения к экватору, меньше при движении к полюсам. Наклон орбиты МКС в 51,6 градуса может показаться странным: аппараты НАСА, запускаемые с мыса Канаверал, традиционно имеют наклонение примерно в 28 градусов. Это потому, что когда в конце девяностых годов обсуждалось местоположение будущей станции МКС, то было принято решение принять российские параметры орбиты. Однако если космодром Байконур находится на широте в приблизительно 46 градусов, почему же тогда обычным для российских запусков является наклонение в 51,6 °?! Дело тут исключительно в том, что к востоку есть соседи (Монголия и Китай), которые, разумеется, не обрадуются, если на них начнет что-то падать из Космоса. А при регулярных запусках ракет это происходило бы постоянно…


Наблюдение станции МКС, летящей по нашему небу яркой звездой, всегда восхищает и радует. Ведь на сегодня она — главное космическое достижение человечества, успешно работающее на протяжении более 20 лет. Будем верить, что Международная космическая станция даст максимально большой позитивный баланс от своего существования. И, конечно, пусть однажды, когда ресурс входящих в нее узлов будет полностью исчерпан, на смену нынешней МКС придет новый аналогичный, еще более совершенный проект международного сотрудничества. Ведь Космос можно осваивать только усилиями всех государств и людей Земли!

Алексей Королёв, историк космонавтики


УЗНАТЬ БОЛЬШЕ ОБ МКС Вы можете также в нашей группе