Биографии Характеристики Анализ

Сообщение на тему мега макро и микромиры. Микро, маго и мега миры

Микромир - это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро- , макро- и мегамиры теснейшим образом взаимосвязаны.

Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро - и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро - и мегаразмеры объектов соотносятся друг с другом как макро/микро~ мега/макро.

В классической физике отсутствовал объективный критерий отличия макро - от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя - это микрообъекты. Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро - и мега - как в размерах, так и моделях физических процессов.

Микромир

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в.Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир - это что-то небольшое. В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:

1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;

2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.

Так как была установлена бессмысленность применения единиц измерения расстояния и веса по отношению к объектам микромира, то, естественно, потребовалось изобрести новые единицы измерения. Так, расстояния между ближайшими звездами и планетами измеряются не в километрах, а в световых годах. Световой год - это такое расстояние, которое солнечный свет проходит за один земной год.

Изучение микромира вместе с изучением мегамира способствовало крушению теории Ньютона. Таким образом, была разрушена механистическая картина мира.

В 1927 г. Нильс Бор вносит еще один свой вклад в развитие науки: он сформулировал принцип дополнительности. Причиной, послужившей для формулировки данного принципа, стала двойственная природа света (так называемый корпускулярно-волновой дуализм света). Сам же Бор утверждал, что появление данного принципа было связано с изучением микромира из макромира. В качестве обоснования этого он приводил следующее:

1) предпринимались попытки объяснить явления микромира посредством понятий, которые были выработаны при изучении макромира;

2) в сознании человека возникали сложности, связанные с разделением бытия на субъект и объект;

3) при наблюдении и описании явлений микромира мы не можем абстрагироваться от явлений, относящихся к макромиру наблюдателя, и средств наблюдения.

Нильс Бор утверждал, что «принцип дополнительности» подходит как для исследования микромира, так и для исследования в других науках (в частности, в психологии).

В заключение данного вопроса стоит сказать, что микромир является основой нашего макромира. Также в науке можно выделить «микромикромир». Или, по-другому, наномир. Наномир, в отличие от микромира, является носителем света, точнее, всего спектра электромагнитных процессов, фундаментом, поддерживающим структуру элементарных частиц, фундаментальных взаимодействий и большинства явлений, известных современной науке.

Таким образом, предметы, окружающие нас, а также само тело человека не являются единым целым. Все это состоит из «частей», т. е. молекул. Молекулы, в свою очередь, также делятся на более мелкие составляющие части - атомы. Атомы тоже, в свою очередь, делятся на еще более мелкие составляющие части, которые именуются элементарными частицами.

Всю эту систему можно представить как дом или здание. Здание не является цельным куском, т. к. оно построено, допустим, с помощью кирпичной кладки, а кирпичная кладка состоит непосредственно из кирпича и раствора цемента. Если же начнет разрушаться кирпич, то, естественно, рухнет и все строение. Так и наша Вселенная - разрушение ее, если это произойдет вообще, также начнется с наномира и микромира.

2. Макромир

Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира (т. е. атомов и молекул). Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека. И, что естественно, человек является самой главной составляющей макромира.

Что же такое человек? Древний античный философ Платон как-то сказал, что человек - это двуногое животное без перьев. В ответ на это его оппоненты принесли ему ощипанного петуха и сказали: вот, Платон, твой человек! Изучение человека как объекта макромира с точки зрения его физических данных неправильно.

Прежде всего отметим, что человек - это целая совокупность различных систем: кровеносной, нервной, мышечной, костной системы и т. д. Но помимо этого, одной из составляющих человека является его энергия, которая тесно связана с физиологией. Причем энергия может рассматриваться в двух смыслах:

1) как движение и способность производить работу;

2) «подвижность» человека, его активность.

Также энергию называют аурой или ци. Энергию (или ауру) можно, как и физическое тело, развивать и укреплять.

Нервная система, мышечная система, другие системы, энергия - еще не все составляющие человека. Самой главной такой «составляющей» является сознание. Что такое сознание? Где оно находится? Можно ли его потрогать, подержать в руках, посмотреть на него?

До сих пор на эти вопросы ответов нет, да и, скорее всего, не будет. Сознание - это нематериальный объект. Сознание нельзя взять и отделить от человека - оно неотделимо.

Но вместе с этим можно попытаться выделить ингредиенты, которые составляют человеческое сознание:

1) интеллект;

2) подсознание;

3) сверхсознание.

Интеллект - это мыслительная и умственная способность человека. Психологи утверждают, что главной функцией интеллекта является память. Действительно, мы не можем себе представить, что же было бы с нами, если бы памяти у нас не было вообще. Просыпаясь каждое утро, человек бы начинал соображать: кто я? Что я здесь делаю? Кто меня окружает? и т. д.

К подсознанию относятся все наши «рабочие» навыки. Навыки складываются из многократно повторяемых и однообразных действий. Для того чтобы проиллюстрировать, что такое навыки, достаточно вспомнить, что мы умеем писать и читать. Видя какой-то текст, мы не думаем: а это что за буква, а это что за знак? Мы просто складываем буквы в слова, а слова в предложения.

Сверхсознание. К сверхсознанию относится прежде всего душа человека.

Душа - это также нематериальный объект (ее нельзя ни увидеть, ни подержать в руках). Совсем недавно было заявлено, что ученые узнали, сколько весит душа. Некоторые ученые утверждают, что в момент смерти человека его вес немного уменьшается, т. е. отлетает душа человека. Но данное утверждение необоснованно, так как какой разумный врач положит умирающего на весы и будет сидеть и ждать, когда же больной умрет? В клятве Гиппократа, которую дает каждый начинающий врач, говорится о том, чтобы не навредить человеку. Врач будет не сидеть, а спасать человеческую жизнь. И вообще узнать вес души нереально, так как нематериальные объекты не имеют никакого веса.

Человеческая душа - это религиозная ценность. Все мировые религии направлены на то, чтобы дать людям возможность спасти свою душу после смерти (т. е. жить вечно после физической смерти бренной оболочки души - тела человека). Борьбу за душу всегда ведут Добро и Зло. Например, в христианстве это Бог и Сатана.

3. Мегамир

Если микромир - это мир тех объектов, которые не подходят под единицы измерения человека, макромир - это мир объектов, которые сопоставимы с единицами измерения человека, то мегамир - это мир объектов, которые несоизмеримо больше человека.

Проще говоря, вся наша Вселенная - это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.

Исследование мегамира тесно связано с космологией и космогонией.

Наука космология является очень молодой. Она родилась сравнительно недавно - в начале XX в. Можно выделить две главные причины рождения космологии. И, что интересно, обе причины связаны с развитием физики:

1) Альберт Эйнштейн создает свою релятивистскую физику;

2) М. Планк создает квантовую физику.

Квантовая физика изменила взгляды человечества на структуру пространства-времени и структуру физических взаимодействий.

Также очень важную роль сыграла теория А. А. Фридмана о расширяющейся Вселенной. Эта теория очень недолго оставалась недоказанной: только в 1929 г. ее доказал Э. Хаббл. Вернее, он не доказывал теорию, а обнаружил то, что Вселенная действительно расширяется. Причем следует отметить, что в то время причины расширения Вселенной установлены не были. Они были установлены гораздо позже, в наши дни. Они были установлены тогда, когда к ранней Вселенной применили результаты, полученные посредством изучения элементарных частиц в современной физике.

Космогония. Космогония - это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:

1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;

2) звездная космогония.

Во 2-й половине XX в. в космогонии Солнечной системы утвердилась точка зрения, согласно которой Солнце и вся Солнечная система образовались из газо-пылевого состояния. Впервые такое мнение было высказано Иммануилом Кантом. В середине XVIII в. Кант написал научную статью, которая называлась: «Космогония, или попытка объяснить происхождение мироздания, образование небесных тел и причины их движения общими законами развития материи в соответствии с теорией Ньютона». Молодой ученый захотел написать эту работу, потому что он узнал: Прусская академия наук предложила конкурс на аналогичную тему. Но Кант не смог собраться с духом и издать свой труд. Спустя какое-то время он пишет вторую статью, которая называлась: «Вопрос о том, стареет ли Земля с физической точки зрения». Первая статья была написана в сложное время: Иммануил Кант уехал из родного Кенигсберга, пытаясь подработать домашним учителем. Не получив ничего ценного (кроме своих познаний), Кант возвращается домой и в 1754 г. издает эту статью. Обе работы позже были объединены в единый трактат, который был посвящен проблемам космологии.

Теорию Канта о происхождении Солнечной системы в дальнейшем стал развивать Лаплас. Француз подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности, учел основные характерные черты Солнечной системы.

Краткое описание

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни. Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Вложенные файлы: 1 файл

Кафедра экономики и естественнонаучных дисциплин

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

Основы современного естествознания

Тема “Проблема взаимосвязи микро- и мега- миров”

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Современная наука выделяет в мире три структурных уровня.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны и существовать по отдельности не могут.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 -18 см., за время - порядка 10 -22 с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир.

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. В 1895 г. Дж. Томсон открыл электрон - отрицательно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее – нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).

Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет. Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему галактик.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” :

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны;

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Заключение.

Список использованной литературы

1. Карпенков С.Х. Концепции современного естествознания. М.: 1997

2. Кудрявцев П.С. Курс истории физики. - М.: Просвещение, 1974. - С.

3. Учебное пособие «Концепции современного естествознания»

Микро-, макро- и мегамиры.


Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Современная наука выделяет в мире три структурных уровня.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно­сти до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.


Микромир.

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен­тов. В 1895 г. Дж. Томсон открыл электрон - отрица­тельно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее – нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).

Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.


Макромир.


В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы. Формирование научных взглядов на строение материи относится к XVI в., когда Г.Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы - научно-теоре­тического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.

Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X. К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии» .

После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.


Мегамир.


Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высо­кого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет. Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему га­лактик.

Современные космологические модели Вселенной основы­ваются на общей теории относительности А. Эйнштейна, со­гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свой­ства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” :

Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;

Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны;

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой кос­мологией. В этой модели описывается эволюция Вселенной, начиная с момента 10 -45 с после начала расширения. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10 -50 см

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. За период инфляционной стадии продолжительностью 10 -34 . Вселенная раздулась от невообразимо малых квантовых размеров 10 -33 до невообразимо больших 10 1000000 см, что на много порядков превосходит размер наблюдаемой Вселенной - 10 28 см. Весь этот первоначаль­ный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осве­тившего космос.

Этап отделения вещества от излучения: оставшееся после аннигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от веще­ства излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и экспериментально обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур - атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека.

Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10 -30 с, далее между этими моделями принципиальных расхождений в понимании этапов космической эволюции нет.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.

Звезды. На современном этапе эволюции Вселенной веще­ство в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы. Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселен­ной, до сотен тысяч - самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами. На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды. Звезды не существуют изолированно, а образуют системы.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спут­ников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вра­щаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.

Издавна люди пытались найти объяснение многообразию и причудливости мира. Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно, в конечном счете, материалистическим или идеалистическим.

Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.

Список использованной литературы


1. Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естествознания», М.: МГУК, 2000.

2. Горелов А.А. «Концепции современного естествознания », М.: Высшее образование, 2006.

3. Козлов Ф.В. Справочник по радиационной безопасности.- М.: Энергоатом – издат, 1991.

4. Криксунов Е.А., Пасечник В.В., Сидорин А.П., Экология, М., Издательский дом "Дрофа", 1995.

5. Поннамперума С. «Происхождение жизни», М., Мир, 1999 г.

6. Сивинцев Ю.В. Радиация и человек. - М.: Знание, 1987.

7. Хотунцев Ю.М. Экология и экологическая безопасность. - М.: АСADEMA, 2002.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

ПЛАН
Введение………………………………………………………… ……… 3
Взаимосвязь микро-, макро- и мегамиров…………………………….. 4
Представление о классической физике, о поле и веществе, как видах материи ……………………………………………………………………………… ……………………………….. 5
Корпускулярно-волновой дуализм ………………………..…………………………………….. 7
Структура атома с точки зрения современной физики ……………………………..….….. 8
Элементарные частицы и их свойства ………………. 11
Модели Вселенной, разработанные в современной космологии ………………………………… 12
Основные этапы эволюции Вселенной с точки зрения современной науки ……. 15
Заключение ………………………………………………….……... 17
Список использованной литературы ………………………………………………………….….. 19

1. ВВЕДЕНИЕ
Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями.
Материя (лат. Materia - вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».
Слово «материя» многозначно. В быту им пользуются для обозначения той или иной ткани. Современная астрономия сообщает, что видимая Вселенная насчитывает сотни тысяч звезд, звездных туманностей и других небесных тел. У всех предметов и явлений, несмотря на их разнообразие, есть общая черта: все они существуют вне сознания человека и независимо от него, т.е. являются материальными. Люди открывают все новые и новые свойства природных тел и процессов, производят бесконечное множество несуществующих в природе вещей, следовательно, материя, неисчерпаема.
Материя и ее атрибуты несотворимы и неуничтожимы, существуют вечно и бесконечно разнообразны по форме своих проявлений. Все явления в мире обусловлены естественными материальными связями и взаимодействиями, причинными отношениями и законами природы. В этом смысле в мире нет ничего сверхъестественного и противостоящего материи. Человеческая психика и сознание тоже определяются материальными процессами в мозгу человека и являются высшей формой отражения внешнего мира.

2. ВЗАИМОСВЯЗЬ МИКРО-, МАКРО- И МЕГАМИРОВ
Микромир - это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с.
Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.
Мегамир - это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.
На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 -18 см., за время - порядка 10 -22 с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.
С увеличением размеров объектов уменьшается энергия взаимодействия. Если принять энергию гравитационного взаимодействия за единицу, то электромагнитное взаимодействие в атоме будет в 10 39 больше, а взаимодействие между нуклонами - составляющими ядро частицами - в 10 41 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.
Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.
Говоря о структурности - внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.

3. ПРЕДСТАВЛЕНИЕ О КЛАССИЧЕСКОЙ ФИЗИКЕ, О ПОЛЕ И ВЕЩЕСТВЕ КАК ВИДАХ МАТЕРИИ
Материя - фундаментальное понятие, связанное с любыми объектами, существующими в природе, о которых мы можем судить благодаря нашим ощущениям. Физика описывает материю как нечто, существующее в пространстве и во времени (в пространстве-времени) - представление, идущее от Ньютона (пространство - вместилище вещей, время - событий); либо как нечто, само задающее свойства пространства и времени - представление, идущее от Лейбница и, в дальнейшем, нашедшее выражение в Общей Теории Относительности Эйнштейна. Изменения во времени, происходящие с различными формами материи, составляют физические явления.
Материя существует в двух видах - вещество и поле. Они строго разделены и их превращение друг в друга невозможно. Главным является поле, а значит основным свойством материи является непрерывность в противовес дискретности (концепция континуального непрерывного строения материи).
Вещество. Классическое вещество может находиться в одном из трех агрегатных состояний: газообразном, жидком или твердом. Кроме того, выделяют высокоионизованное состояние вещества (чаще газообразного, но, в широком смысле, любого агрегатного состояния), называемое плазмой.
В химическом отношении все вещества подразделяют на простые и сложные (химические соединения), а также на неорганические и органические вещества.
Поле в физике -- одна из форм материи, характеризующая все точки пространства (или, шире, пространства-времени) и обладающая бесконечным числом степеней свободы. Каждой точке пространства при этом присваивается определённая физическая величина. Эта величина, как правило, меняется при переходе от одной точки к другой. В зависимости от математического вида этой величины выделяют скалярные, векторные, тензорные и спинорные поля.
Также поля делятся в зависимости от своей природы на электромагнитные, гравитационные, магнитное, электрическое и поля ядерных сил. Проявляются поля в виде взаимодействия (переносимого с конечной скоростью) тел (при этом сила взаимодействия определяется различными характеристиками тел: массой для гравитационного поля, зарядом для электромагнитного и т. д.), которые в квантовой физике объясняются передачей специфичных для каждого типа поля частиц (фотонов для электромагнитного, гипотетических гравитонов для гравитационного и т. д.). Долгое время считалось, что поле является только наглядным теоретическим объяснением таких явлений, как световые волны, пока в 1887 Генрих Рудольф Герц не доказал существование электромагнитного поля экспериментально.

4. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ
В СОВРЕМЕННОЙ ФИЗИКЕ
Корпускулярно-волновой дуализм - свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других - как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц - фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/1, где р - длина электромагнитной волны, а h - постоянная Планка. Эта формула сама по себе - свидетельство дуализма. В ней слева - импульс отдельной частицы (фотона), а справа - длина волны фотона.
Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/1 (р - импульс электрона, а h - его длина волны де Бройля).
Корпускулярно-волновой дуализм лежит в основе квантовой физики.

5. СТРУКТУРА АТОМА
С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ ФИЗИКИ
Гипотеза об атомах как неделимых частицах вещества была возрождена в естествознании и прежде всего в физике и химии для объяснения таких эмпирических законов, как законы Бойля -- Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и различных химических законов. В самом деле, закон Бойля -- Мариотта утверждает, что объем газа обратно пропорционален его давлению, но не объясняет почему. Аналогично этому при нагревании тела его размеры увеличиваются, но эмпирический закон теплового расширения не объясняет причину такого расширения.
Очевидно, что для такого объяснения необходимо выйти за рамки наблюдаемых зависимостей, которые выражаются в эмпирических законах, и обратиться к теоретическим гипотезам и законам. В отличие от эмпирических законов они содержат понятия и величины, относящиеся к ненаблюдаемым объектам. Именно такими объектами являются атомы, а также образованные из них молекулы. С помощью атомов и молекул в кинетической теории вещества убедительно объясняются все перечисленные и другие известные эмпирические законы. В химии атом обычно определяют как наименьшую часть или единицу химического элемента.
Однако попытка сведения всех многообразных и сложных свойств и закономерностей тел и явлений окружающего мира к более простым вряд ли могла считаться успешной, хотя бы потому, что на каждом уровне познания раскрывались новые границы и находились новые неделимые последние частицы материи. Вплоть до конца прошлого века такой частицей считался атом, но крупнейшие открытия в физике привели к отказу от такой точки зрения. Среди этих открытий следует отметить, во-первых, обнаружение явлений естественной радиоактивности таких химических элементов, как радий и уран. Оказалось, что эти элементы в естественных условиях испускают специфические радиоактивные лучи и в результате превращаются в другие химические элементы, а в конечном итоге - свинец. Отсюда непосредственно следовало, что атомы вовсе не являются неизменными, неделимыми и последними кирпичиками мироздания. Вскоре после радиоактивности была открыта мельчайшая частица электричества -- электрон. В 1913 г. Э. Резерфорд, исследуя рассеяние ?- частиц атомами тяжелых элементов, показал, что основная часть массы атома сосредоточена в его центральной части -- ядре, так как вдали от него ? - частицы проходят беспрепятственно. Основываясь на этих экспериментах, он предложил планетарную модель атома, согласно которой вокруг массивного ядра вращаются по своим орбитам отрицательно заряженные электроны.
Впоследствии эта модель была значительно модифицирована. Оказалось, что электроны не могут вращаться по любым орбитам, а только по стационарным, ибо в противном случае они бы непрерывно излучали энергию и упали бы на ядро, и атом самопроизвольно разрушился. Ничего подобного, однако, не наблюдается, так как атомы являются весьма устойчивыми образованиями. Все эти и связанные с ними революционные открытия невозможно было понять и объяснить с точки зрения старой, классической физики.
После того, когда физики установили, что атом не является последним кирпичиком мироздания и сам он построен из более простых, элементарных частиц, идея поиска таких частиц заняла главное место в их исследованиях. По-прежнему мысль физиков была устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных, фундаментальных частиц, которые впоследствии были названы элементарными. Наиболее известными элементарными частицами являются электрон, фотон, пи-мезоны, мюоны, тяжелые лептоны и нейтрино. Позже были открыты частицы с весьма экзотическими названиями: странные частицы, мезоны со скрытым "очарованием ", "очарованные " частицы, ипсилион -частицы, разнообразные резонансные частицы и многие другие. Общее их число превышает 350. Поэтому вряд ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков, из которых, по предположению, построены все известные элементарные частицы.
Одна из характерных особенностей элементарных частиц состоит в том, что они имеют крайне незначительные массы и размеры. Масса большинства из них -- порядка массы протона, т. е. 1,6 х 10 -24г, а размеры порядка 10 -16 см. Другое их свойство заключается в способности рождаться и уничтожаться, т. е. испускаться и поглощаться при взаимодействии с другими частицами. Например, превращения пары электрон и позитрон в два фотона: е - + е + -> 2?
Подобные же взаимопревращения происходят и с другими элементарными частицами.

Рис. 2. Структура атома

6. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИХ СВОЙСТВА
В соответствии с достижениями квантовой физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности.
Развитие физики микромира показало неисчерпаемость свойств элементарных частиц и их взаимодействий. Все частицы, имеющие достаточно большую энергию, способны к взаимопревращениям, но при соблюдении ряда законов сохранения. Число известных элементарных частиц постоянно растет и превышает уже 300 разновидностей, включая неустойчивые резонансные состояния. Важнейшим свойством частицы является ее масса покоя. По этому свойству частицы делятся на 4 группы:
1. Легкие частицы - лептоны (фотон, электрон, позитрон). Фотоны не имеют массы покоя.
2. Частицы средней массы - мезоны (мю-мезон, пи-мезон).
3. Тяжелые частицы - барионы. К ним относятся нуклоны - составные части ядра: протоны и нейтроны. Протон - самый легкий барион.
4. Сверхтяжелые - гипероны. Устойчивых разновидностей немного: фотоны (кванты электромагнитного излучения); гравитоны (гипотетические кванты гравитационного поля); электроны; позитроны (античастицы электронов); протоны и антипротоны; нейтроны; нейтрино - самая загадочная из всех элементарных частиц.
Нейтрино играет большую роль в космических процессах во всей эволюции материи во Вселенной. Время их жизни практически бесконечно. По подсчетам ученых, нейтрино уносят значительную долю излучаемой звездами энергии. Наше Солнце теряет за счет излучения нейтрино примерно 7% энергии, на каждый квадратный сантиметр Земли перпендикулярно солнечным лучам ежесекундно падает примерно 300 миллионов нейтрино. Дальнейшая судьба этого излучения неизвестна, но, очевидно, нейтрино должно вновь включиться в круговорот материи в природе.
Особенностью элементарных частиц является то, что большинство из них могут возникать при столкновении с другими частицами достаточно высокой энергии: протон большой энергии превращается в нейтрон с испусканием пи-мезона. При этом элементарные частицы распадаются на другие: нейтрон - на электрон, протон и антинейтрино, а нейтральный пи-мезон - на два фотона. Пи-мезоны, таким образом, являются квантами ядерного поля, объединяющими нуклоны и ядра.
В ходе развития науки открываются все новые свойства элементарных частиц. Взаимная обусловленность свойств частиц свидетельствует о сложной их природе, наличии многогранных связей и отношений.
У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрических зарядов и магнитных моментов: антипротоны, антинейтроны и т.д. Из античастиц могут быть образованы устойчивые атомные ядра и антивещество, подчиняющееся тем же законам движения, что и обычное вещество. В больших количествах антивещество в космосе не обнаружено, поэтому существование «антимира», т.е. галактик из антивещества является проблематичным.
Таким образом, с каждым новым открытием строение микромира уточняется и оказывается все более сложным. Чем глубже мы уходим в него, тем больше новых свойств обнаруживает наука.

7. МОДЕЛИ ВСЕЛЕННОЙ,
РАЗРАБОТАННЫЕ В СОВРЕМЕННОЙ КОСМОЛОГИИ
Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном в 1917 г. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.
Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.
В том же 1917 г. голландский астроном В. де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае "пустой" Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга и растворить всю систему. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.
В 1922 г. российский математик и геофизик Л.А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы.
Решение уравнений А.А. Фридмана, допускает три возможности.:
если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния;
если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется;
если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния.
По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.
Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных галактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.
В 1929 г. американский астроном Э.П.Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,- система галактик расширяется.
Но то, что в настоящее время Вселенная расширяется, еще не позволяет однозначно решить вопрос в пользу той или иной модели.

8. ОСНОВНЫЕ ЭТАПЫ ЭВОЛЮЦИИ ВСЕЛЕННОЙ
С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ НАУКИ
В качестве одного из наиболее вероятных сценариев эволюции Вселенной, в рамках которого удается решить большинство космологических проблем, современная космология рассматривает сценарий, включающий инфляционную стадию. Инфляция в переводе с латинского - вздутие. Инфляционная стадия предполагает процесс вздутия Вселенной. Основная идея инфляционной теории состоит в том, что и расширение Вселенной и весь последующий ход эволюционного развития рассматриваются из состояния, когда вся материя была представлена только физическим вакуумом. Однако в физическом смысле вакуум не есть пустота, в нем постоянно происходят процессы рождения и уничтожения всевозможных частиц, квантов, полей.
Модель Большого взрыва. Считается, что после того как 15 млрд. лет назад произошел Большой взрыв, началось постепенное охлаждение и расширение Вселенной. Причины Большого взрыва и перехода к расширению во всех моделях Вселенной считаются неясными и выходящими за рамки компетенции любой физической современной теории. Но если взрыв был, то дальше картина выглядит следующим образом:
1. Через 10 -43 с от начала расширения началось рождение частиц и античастиц.
2. Через 10 -6 с - возникновение протонов и антипротонов и их аннигиляция. Количество протонов на одну стомиллионную часть (10 -8) превышало количество антипротонов, в результате чего после аннигиляции возникло и сохранилось то вещество, из которого возникли все галактики, звезды и планеты. Если бы число протонов было бы равно числу антипротонов, то вещество полностью перешло бы в излучение и невозможно было бы наблюдение Космоса и Земли.
3. Через 1 с после начала расширения стали рождаться и аннигилировать электронно-позитронные пары.
4. Через 1 мин начались ядерный синтез и образование ядер дейтерия и гелия. На долю последних пришлось примерно 30% от массы оставшихся протонов. Образование более тяжелых элементов в рамках этой теории объяснить не удалось, так как не хватило времени для их синтеза в процессе расширения. Эти элементы образуются в последующей эволюции звезд в результате термоядерных реакций в их недрах, а тяжелые элементы синтезируются при взрыве сверхновых и затем выбрасываются в космическое пространство, где они со временем концентрируются в газово-пылевые облака, из которых образуются звезды второго поколения типа Солнца и планеты вокруг них.
Через 300 тыс. лет после Большого взрыва произошло отделение излучения от вещества, Вселенная стала прозрачной, в последующие миллиарды лет стали формироваться галактики, первичные звезды в шаровых скоплениях и звезды второго поколения в спиральных рукавах галактик.

9. ЗАКЛЮЧЕНИЕ
Издавна люди пытались найти объяснение многообразию и причудливости мира.
Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д.
В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.
Исходным пунктом всякого системного исследования является представление о целостности, изучаемой системы. Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.
В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.
В неживой природе в качестве структурных уровней организации материи выделяют элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и планетные системы, звезды и звездные системы - галактики, системы галактик - метагалактику.
В живой природе к структурным уровням организации материи относят системы доклеточного уровня - нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; надорганизменные структуры, включающие виды, популяции и биоценозы, и, наконец, биосферу как всю массу живого вещества.
Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.
Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной /С.Вайнберг. -М.: Наука, 1981
    Дорфман Я.Г. Всемирная история физики с начала XIX века до середины XX века 8Я.Г.Дорфман. -М.: Наука, 1979
    Мэрион Дж.Б. Физика и физический мир /Дж.Б.Мэрион. -М.: Мир, 1975
    Хорошавина С.Г. Концепции современного естествознания: курс лекций / Изд. 4-е. - Ростов н/Д: Феникс, 2005
    Шкловский И.С. Звезды, их рождение, жизнь и смерть /И.С.Шкловский. -М.: Наука, 1977
и т.д.................