Биографии Характеристики Анализ

Созревание (процессинг РНК). Процессинг, сплайсинг

Процессинг РНК (посттранскрипционные модификации РНК) - совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК и малые ядерные РНК.

Сплайсинг (от англ. splice - сращивать или склеивать концы чего-либо) - процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании информационной РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие аминокислотную последовательность участки - экзоны. Таким образом незрелая пре-мРНК превращается в зрелую мРНК, с которой считываются (транслируются) белки клетки. Большинство генов прокариот, кодирующих белки, не имеют интронов, поэтому у них сплайсинг пре-мРНК встречается редко. У представителей эукариот, бактерий и архей встречается также сплайсинг транспортных РНК (тРНК) и других некодирующих РНК.

Процессинг и сплайсинг способны объединять структуры, удаленные друг от друга, в один ген, поэтому они имеют огромное эволюционное значение. Подобные процессы упрощают видообразование. Белки имеют блочную структуру. Например, фермент – ДНК-полимераза. Он представляет собой непрерывную полипептидную цепь. Он состоит из собственной ДНК-полимеразы и эндонуклеазы, которая расщепляет молекулу ДНК с конца. Фермент состоит из 2 доменов, которые образуют 2 независимые компактные частицы, связанные полипептидным мостиком. На границе между 2мя генами ферментов находится интрон. Когда-то домены были раздельными генами, а затем – сблизились.

Нарушения подобной структуры гена приводит к генным болезням. Нарушение строения интрона фенотипически незаметно, нарушение в экзонной последовательности приводят к мутации (мутации глобиновых генов).

Биосинтез белка - сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы иРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путём присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.



Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин

Матричная, или информационная, РНК (мРНК, или иРНК). Транскрипция. Для того чтобы синтезировать белки с заданными свойствами, к месту их построения поступает "инструкция" о порядке включения аминокислот в пептидную цепь. Эта инструкция заключена в нуклеотидной последовательности матричных, или информационных РНК (мРНК, иРНК), синтезируемых на соответствующих участках ДНК. Процесс синтеза мРНК называют транскрипцией.

В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК, пройденные ею одноцепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции мРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов мРНК, шифрующие аминокислоты, называют кодонами. Последовательность кодонов мРНК шифрует последовательность аминокислот в пептидной цепи. Кодонам мРНК соответствуют определенные аминокислоты (табл.1).



Транспортная РНК (тРНК). Трансляция. Важная роль в процессе использования наследственной информации клеткой принадлежит транспортной РНК (тРНК). Доставляя необходимые аминокислоты к месту сборки пептидных цепей, тРНК выполняет функцию трансляционного посредника.

В ней выделяют четыре главные части, выполняющие различные функции. Акцепторный "стебель" образуется двумя комплементарно соединенными концевыми частями тРНК. Он состоит из семи пар оснований.3"-конец этого стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей - антикодоновая - состоит из пяти пар нуклеотидов и содержит в центре своей петли антикодон. Антикодон - это три нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида.

В целом различные виды тРНК характеризуются определенным постоянством нуклеотидной последовательности, которая чаще всего состоит из 76 нуклеотидов. Варьирование их числа связано главным образом с изменением количества нуклеотидов в дополнительной петле. Комплементарные участки, поддерживающие структуру тРНК, как правило, консервативны. Первичная структура тРНК, определяемая последовательностью нуклеотидов, формирует вторичную структуру тРНК, имеющую форму листа клевера. В свою очередь, вторичная структура обусловливает трехмерную третичную структуру, для которой характерно образование двух перпендикулярно расположенных двойных спиралей (рис.27). Одна из них образована акцепторной и ТψС-ветвями, другая - антикодоновой и D-ветвями.

На конце одной из двойных спиралей располагается транспортируемая аминокислота, на конце другой - антикодон. Эти участки оказываются максимально удаленными друг от друга. Стабильность третичной структуры тРНК поддерживается благодаря возникновению дополнительных водородных связей между основаниями полинуклеотидной цепи, находящимися в разных ее участках, но пространственно сближенных в третичной структуре.

Различные виды тРНК имеют сходную третичную структуру, хотя и с некоторыми вариациями.

Одной из особенностей тРНК является наличие в ней необычных оснований, возникающих вследствие химической модификации уже после включения нормального основания в полинуклеотидную цепь. Эти измененные основания обусловливают большое структурное многообразие тРНК при общем плане их строения.

14..Рибосомный цикл синтеза белка (инициация, элонгация, терминация). Посттрансляционные преобразования белков.

Рибосомный цикл синтеза белка. Процесс взаимодействия мРНК и тРНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах. Последние представляют собой сложные комплексы рРНК и разнообразных белков, в которых первые образуют каркас. Рибосомные РНК являются не только структурным компонентом рибосом, но и обеспечивают связывание их с определенной нуклеотидной последовательностью мРНК. Этим устанавливаются начало и рамка считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы и тРНК. Многочисленные белки, входящие в состав рибосом наряду с рРНК, выполняют как структурную, так и ферментативную роль.

Рибосомы про - и эукариот очень сходны по структуре и функциям. Они состоят из двух субчастиц: большой и малой. У эукариот малая субчастица образована одной молекулой рРНК и 33 молекулами разных белков. Большая субчастица объединяет три молекулы рРНК и около 40 белков. Прокариотические рибосомы и рибосомы митохондрий и пластид содержат меньше компонентов.

В рибосомах имеется две бороздки. Одна из них удерживает растущую полипептидную цепь, другая - мРНК. Кроме того, в рибосомах выделяют два участка, связывающих тРНК. В аминоацильном, А-участке размещается аминоацил-тРНК, несущая определенную аминокислоту. В пептидильном, П-участке располагается обычно тРНК, которая нагружена цепочкой аминокислот, соединенных пептидными связями. Образование А- и П-участков обеспечивается обеими субчастицами рибосомы.

В каждый момент рибосома экранирует сегмент мРНК протяженностью около 30 нуклеотидов. При этом обеспечивается взаимодействие только двух тРНК с двумя расположенными рядом кодонами мРНК (рис. 3.31).

Трансляция информации на «язык» аминокислот выражается в постепенном наращивании пептидной цепи в соответствии с инструкцией, заключенной в мРНК. Этот процесс протекает на рибосомах, которые обеспечивают последовательность расшифровки информации с помощью тРНК. В ходе трансляции можно выделить три фазы: инициацию, элонгацию и терминацию синтеза пептидной цепи.

Фаза инициации, или начало синтеза пептида, заключается в объединении двух находящихся до этого порознь в цитоплазме субчастиц рибосомы на определенном участке мРНК и присоединении к ней первой аминоацил-тРНК. Этим задается также рамка считывания информации, заключенной в мРНК (рис. 3.32).

В молекуле любой мРНК вблизи ее 5"-конца имеется участок, комплементарный рРНК малой субчастицы рибосомы и специфически узнаваемый ею. Рядом с ним располагается инициирующий стартовый кодон АУТ, шифрующий аминокислоту метионин. Малая субчастица рибосомы соединяется с мРНК таким образом, что стартовый кодон АУТ располагается в области, соответствующей П-участку. При этом только инициирующая тРНК, несущая метионин, способна занять место в недостроенном П-участке малой субчастицы и комплементарно соединиться со стартовым кодоном. После описанного события происходит объединение большой и малой субчастиц рибосомы с образованием ее пептидильного и аминоацильного участков (рис. 3.32).

К концу фазы инициации П-участок занят аминоацил-тРНК, связанной с метионином, тогда как в А-участке рибосомы располагается следующий за стартовым кодон.

Описанные процессы инициации трансляции катализируются особыми белками - факторами инициации, которые подвижно связаны с малой субчастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома - мРНК - инициирующая аминоацил-тРНК эти факторы отделяются от рибосомы.

Фаза элонгации, или удлинения пептида, включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А-участке, комплементарное взаимодействие между антикодоном и кодоном.

Благодаря особенностям трехмерной организации тРНК. (см. разд. 3.4.3.1) при соединении ее антикодона с кодоном мРНК. транспортируемая ею аминокислота располагается в А-участке, поблизости от ранее включенной аминокислоты, находящейся в П-участке. Между двумя аминокислотами образуется пептидная связь, катализуемая особыми белками, входящими в состав рибосомы. В результате предыдущая аминокислота теряет связь со своей тРНК и присоединяется к аминоацил-тРНК, расположенной в А-участке. Находящаяся в этот момент в П-участке тРНК высвобождается и уходит в цитоплазму (рис. 3.33).

Перемещение тРНК, нагруженной пептидной цепочкой, из А-участка в П-участок сопровождается продвижением рибосомы по мРНК на шаг, соответствующий одному кодону. Теперь следующий кодон приходит в контакт с А-участком, где он будет специфически «опознан» соответствующей аминоацил-тРНК, которая разместит здесь свою аминокислоту. Такая последовательность событий повторяется до тех пор, пока в А-участок рибосомы не поступит кодон-терминатор, для которого не существует соответствующей тРНК.

Сборка пептидной цепи осуществляется с достаточно большой скоростью, зависящей от температуры. У бактерий при 37 °С она выражается в добавлении к подипептиду от 12 до 17 аминокислот в 1 с. В эукариотических клетках эта скорость ниже и выражается в добавлении двух аминокислот в 1 с.

Фаза терминации, или завершения синтеза полипептида, связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ или У ГА), когда тот входит в зону А-участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода, и ее карбоксильный конец отделяется от тРНК. В результате завершенная пептидная цепь теряет связь с рибосомой, которая распадается на две субчастицы (рис. 3.34).

Посттрансляционные преобразования белков. Синтезированные в ходе трансляции пептидные цепи на основе своей первичной структуры приобретают вторичную и третичную, а многие-и четвертичную организацию, образуемую несколькими пептидными цепями. В зависимости от функций, выполняемых белками, их аминокислотные последовательности могут претерпевать различные преобразования, формируя функционально активные молекулы белка.

Многие мембранные белки синтезируются в виде пре-белков, имеющих на N-конце лидерную последовательность, которая обеспечивает him узнавание мембраны. Эта последовательность отщепляется при созревании и встраивании белка в мембрану. Секреторные белки также имеют на N-конце лидерную последовательность, которая обеспечивает их транспорт через мембрану.

Некоторые белки сразу после трансляции несут дополнительные аминокислотные про-последовательности, определяющие стабильность предшественников активных белков. При созревании белка они удаляются, обеспечивая переход неактивного пробелка в активный белок. Например, инсулин вначале синтезируется как пре-проинсулин. Во время секреции пре-последовательность отщепляется, а затем проинсулин подвергается модификации, при которой из него удаляется часть цепи и он превращается в зрелый инсулин.

I - РНК-полимераза связывается с ДНК и начинает синтезировать мРНК в направлении 5" → 3";

II - по мере продвижения РНК-полимеразы к 5"-концу мРНК прикрепляются рибосомы, начинающие синтез белка;

III - группа рибосом следует за РНК-полимеразой, на 5"-конце мРНК начинается ее деградация;

IV -процесс деградации протекает медленнее, чем транскрипция и трансляция;

V - после окончания транскрипции мРНК освобождается от ДНК, на ней продолжается трансляция и деградация на 5"-конце

Формируя третичную и четвертичную организацию в ходе посттрансляционных преобразований, белки приобретают способность активно функционировать, включаясь в определенные клеточные структуры и осуществляя ферментативные и другие функции.

Рассмотренные особенности реализации генетической информации в про - и эукариотических клетках обнаруживают принципиальное сходство этих процессов. Следовательно, механизм экспрессии генов, связанный с транскрипцией и последующей трансляцией информации, которая зашифрована с помощью биологического кода, сложился в целом еще до того, как были сформированы эти два типа клеточной организации. Дивергентная эволюция геномов про - и эукариот привела к возникновению различий в организации их наследственного материала, что не могло не отразиться и на механизмах его экспресии.

Постоянное совершенствование наших знаний об организации и функционировании материала наследственности и изменчивости обусловливает эволюцию представлений о гене как функциональной единице этого материала.

Взаимосвязь между геном и признаком. Пример. Гипотеза «один ген - один фермент», ее современная трактовка.

Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах (рис. 3.42). «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п. н. и 5 интронов. Короткая форма гена состоит из 3300 п. н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются.

После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка - РНК-матуразы (рис. 3.43). Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга - удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.

У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 (рис. 3.44) видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D

В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген - один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид - один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.

Один ген один фермент.

В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований – у микроскопического грибка Neurospora crassa.. Ими были получены мутации, у которых; отсутствовала активность того-или иного фермента метаболизма. А это приводило к тому, что мутантный гриб бьл не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж. Бидлом и Э. Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.

Методы. селекции так называемых "биохимических мутаций", приводящих к нарушениям действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др.. В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что "один ген кодирует один фермент". И хотя это представление отлично практике приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) - оно не является окончательным. Один ген - это не только один фермент.

  • Задание 1. Ознакомиться с внешним видом и ультраструктурой эукариотных клеток.
  • Классификация нуклеотидных последовательностей в геноме эукариот (уникальные и повторяющиеся последовательности).
  • Клетка - элементарная, генетическая и структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.
  • Лекция № 11. Антигены, основные свойства. Антигены гистосовместимости. Процессинг антигенов.
  • Органоиды эукариотической клетки, их функции и гипотезы происхождения.
  • Принцип регуляции генной активности у прокариот (модель оперона) и эукариот.
  • Энхансеры.

    Усиливающие транскрипцию при взаимодействии со специфическими белками. Энхансеры это не непрерывная – прерывающиеся последовательности ДНК. Они организованы в модули (М1, М2, М3, М4). Одинаковые модули могут встречаться в разных энхансерах, но для каждого энхансера набор модулей уникален. Модуль это короткая последовательность, состоящая не более чем из 2х витков спирали – примерно 20 нуклеотидных пар. Модули ориентированы перед, за и даже внутри гена. Таким образом М1, М2, М3 и М4 это один энхансер состоящий из 4х модулей. Каждый из них узнаётся своими белками, а они в свою очередь взаимодействуют друг с другом. Если в клетке присутствуют все соответствующие белки, то участку ДНК придаётся определённая конформация и начинается синтез мРНК.

    Актуализация. Все соматические клетки многоклеточного эукариотического организма имеют одинаковый набор генов. Все гены в них работают на фоновом уровне и не имеют фенотипического проявления, а экспрессируются лишь те, у которых все энхансерные модули узнаны своими белками и эти белки взаимодействуют друг с другом.

    Сайленсоры. Это последовательности ослабляющие транскрипцию при взаимодействии с белками. При соответствующем наборе белков экспрессия отдельных генов может быть подавлена.

    Некоторые реперссированые (не экспрессирующиеся) гены активируются каскадом событий, запускаемым повышением температуры или синтезом гормона. Гормон, поступив в кровоток, связывается с рецепторами, проникает в клетку, взаимодействует с клеточными белками, изменяет их конформацию, такой белок проникает в ядро, связывается с регуляторным элементом, происходит инициация транскрипции соответствующих генов. Есть белки, которые взаимодействуя с регуляторными элементами блокируют транскрипцию. Например: белок NRSF блокирует транскрипцию соответствующих генов, в нейронах этот белок не синтезируется и как следствие идёт активная транскрипция.

    Процессинг РНК у эукариот.

    Посттарнскрипционному Ему подвергаются все РНК. Процессинг рРНК и тРНК принципиально не отличается от прокариот.

    Процессинг мРНК эукариот

    1. Кэпирование. Все 100% синтезированных мРНК. Кэп – метилированый гуанозинтрифосфат присоединенный в необычной позиции (5’ к 5‘)и две метилированые рибозы.



    Функции: узнавание кэп-связывающих белков, защита от действии экзонуклеаз

    По мере образования про-мРНК (до 30 нуклеотидов) к 5» концу несущему обязательно пурин (аденин, гуанозин) присоединяется гуанин, который затем метилируется. Участие – гуанинтрансферазы.

    2. Полиаденилирование. Только 95% всех мРНК и именно эти 95% вступают в этап сплайсинга. Другие 5% не подвергаются сплайсингу и эта матричная РНК в которой зашифрованы альфа и бета интерфероны и белки гистоны.

    После завершения синтеза мРНА, полиаденидированию предшествует разрезание специфической эндо кулеазо). Ближе 3» концу про-мРНК, а именно через 20 нуклеотидов после специфической последовательности (ААУАА) синтез безматричный. у каждого вида мРНК полиАхвост определённой длины, покрыт полиАсвязывающими белками. Врея жизни мРНК коррелирует с длиной полиАхвоста.

    3. Сплайсингу подвергаются 95% мРНК. Ф. Шарп, 1978 год. Копии вырезанных интронов гидролизуются до нуклеотидов. Осуществляется матюразами. Иногда в сплайсинге участвует sРНК. Правила: 1. фланкированы GT-AG, 2. Нуерация остаётся, но может быть вместе с интронами вырезан экзон.



    Цис-сплайсинг (внутримолекулярный сплайсинг) осуществляется в ядре. На первом этапе происходит сборка комплекса сплайсинга. Далее происходит расщепление в 5»сайте сплайсинга, в ходе реакции накапливается два продукта – правильно лигированые экзоны и свободный целый интрон в виде структуры типа «лассо». Множество ядерных факторов белков и рибонуклеопротеидных комплексов - Малые ядерные рибонуклеопротеиды. Этот комплекс, который катализирует сплайсинг, называют сплайсингосомой. Она состоит из интрона, связанного минимум с 5ю мя рнп и некоторыми вспомогательными белками. Сплайсингосомы образуются путём спаривания молекул РНК, присоединением белков к РНК и связыванием этих белков друг с другом. Конечным продуктом такого сплайсинга является вырезание интрона и сшивание фланкирующих его экзонов.

    Транс-сплайсинг это пример межмолекулярного сплайсинга. Показан для всех мРНК у трипаносомы и продемонстрирована в опятах ин витро. В ходе него происходит лигирование двух экзонов находящихся в разных молекулах РНК с одновременным удалением фланкирующих их интронов.

    Альтернативный сплайсинг обнаружен от дрозофилы до человека и вирусов и показан он для генов, кодирующих белки, участвующие в формировнаии цитоскелета, мышечных сокращений, сборке мемебранных рецепторов, пептидных гормонов, в промежуточном метаболизме и транспозиции ДНК. В сплайсингосоме этот процесс тоже идёт, связан с ферментами занимающимися полиаденилированием. Таким образом мРНК на всём пути следования до завершения трансляции, защищена от нуклеаз с помощью связанных с ней белков (информоферы). Комплекс мРНК с информоферами с ифнормосомы, плюс сРНК. В составе информосом мРНК живёт от нескольких минут до нескольких дней.

    4. Редактирование

    Сплайсинг тРНК.

    Интроны в генах тРНК локализованы через один нуклеотид после антикодона ближе к 3»концу тРНК. От 14 до 60 нуклеотидов. Механизм сплайсинга тРНК лучше всего изучен у дрожжей, а так же в опытах с другими низшими эукариотами и растениями. Задача вырезания интрона в антикодоновой петле реализуется за счёт участия:

    Эндонуклеаз (узнать интрон и расщепить про-тРНК в обоих сайтах сплайсинга с образованием свободных 3» и 5»концов экзонов)

    Полифункциональный белок (катализирующий все реакции кроме последней – фосфатазной)

    2»фосфатаза (удаляет монофосфат с 2»конца 5»концевого экзона)

    Лигаза (сшивает)

    Сплайсинг рРНК.

    Гены ядерных рРНК низших эукариот содержат особые интроны, которые претерпевают уникальный механизм сплайсинга. Это интроны группы I, их нет в генах позвоночных. Общие свойства: сами катализируют свой сплайсинг (автосплайсинг), информация для сплайсинга содержится в коротких внутренних последовательностях внутри интрона(эти последовательности обеспечивают укладку молекулы с образованием характерной пространственной структуры), этот сплайсинг инициируется свободным гуанозином (экзогенным) или любым из его 5»фосфорилированых производных, конечными продуктами являются зрелая рРНК линейная РНК и кор-интроны (кольцевые)

    Автоспласинг 1982 г., на инфузория, Томас Чек

    Этот процесс чувствителен к ионам магния. Этот сплайсинг показывает что каталитической активностью облажают не только белки но и про-рРНК. Самосплайсинг интронов 1 группы осуществляется последовательно реакций транс-этерификации, где процессы фосфодиэфирного обмена не сопровождаются гидролизом.

    Сплайсинг интронов группы 2 мало распространены, обнаружены в 2х митохондриальных генах дрожжей: ген одной из субъединиц цитохромоксидазы и ген цитохрома Б. так же подвергаются самосплайсингу, но инициация сплайсинга и дёт при участии эндогенного гуанозина, то есть гуанозина находящегося в самом интроне. Высвобожденные интроны – подобны лассо, где 5»концевой фосфат РНК интрона соединён фосфодиэфирной связью с 2»гидроксильной группы внутреннего нуклеотида.

    Регуляция экспрессии генов у эукариот

    Сразу после синтеза первичные транскрипты РНК по разным причинам еще не имеют активности, являются "незрелыми" и в дальнейшем претерпевают ряд изменений, которые называются процессинг . У эукариот процессингу подвергаются все виды пре-РНК, у прокариот – только предшественники рРНК и тРНК.

    Процессинг предшественника матричной РНК

    При транскрипции участков ДНК, несущих информацию о белках, образуются гетерогенные ядерные РНК, по размеру намного превосходящие мРНК. Дело в том, что из-за мозаичной структуры генов эти гетерогенные РНК включают в себя информативные (экзоны ) и неинформативные (интроны ) участки.

    1. Сплайсинг (англ. splice – склеивать встык) – особый процесс, в котором при участии малых ядерных РНК происходит удаление интронов и сохранение экзонов.

    Последовательность событий сплайсинга

    2. Кэпирование (англ. cap – шапка) – происходит еще во время транскрипции. Процесс состоит в присоединении к 5"-трифосфату концевого нуклеотида пре-мРНК 5"-углерода N 7 -метил-гуанозина.

    "Кэп" необходим для защиты молекулы РНК от экзонуклеаз, работающих с 5"-конца, а также для связывания мРНК с рибосомой и для начала трансляции.

    3. Полиаденилирование – при помощи полиаденилат-полимеразы с использованием молекул АТФ происходит присоединение к 3"-концу РНК от 100 до 200 адениловых нуклеотидов, формирующих полиадениловый фрагмент – поли(А)-хвост. Поли(А)-хвост необходим для защиты молекулы РНК от экзонуклеаз, работающих с 3"-конца.

    Схематичное представление матричной РНК после процессинга

    Процессинг предшественника рибосомальной РНК

    Предшественники рРНК являются более крупными молекулами по сравнению со зрелыми рРНК. Их созревание сводится к разрезанию прерибосомной РНК на более мелкие формы, которые уже непосредственно участвуют в формировании рибосомы. У эукариот существуют четыре типа рРНК – 5S-, 5,8S-, 18S- и 28S-рРНК . При этом 5S-рРНК синтезируется отдельно, а большая прерибосомная 45S-РНК расщепляется специфичными нуклеазами с образованием 5,8S-рРНК, 18S-рРНК и 28S-рРНК.

    У прокариот молекулы рибосомальной РНК совсем иные по своим свойствам (5S-, 16S-, 23S-рРНК), что является основой изобретения и использования ряда антибиотиков в медицине.

    Процессинг предшественника транспортной РНК

    1. Модификация нуклеотидов в молекуле путем дезаминирования, метилирования, восстановления.
    Например, образование псевдоуридина и дигидроуридина.

    Строение модифицированных уридиловых нуклеотидов

    2. Формирование антикодоновой петли происходит путем сплайсинга

    Это совокупность процессов обеспечивающих превращение синтезированной РНК (РНК-транскрипта) в функционально активные РНК (зрелые РНК), которые могут быть использованы при синтезе белков. Сами РНК-транскрипты функционально не активные. Процесс характерен для эукариот.

    В результате процессинга изменяется структура и химическая организация РНК. РНК-транскрипт до образования зрелой РНК носит название про-иРНК (или в зависимости от вида РНК – про-тРНК, про-рРНК), т.е. предшественница РНК. Практически все РНК-транскрипты эукариот и прокариот(за исключением иРНК прокариот) подвергаются процессингу. Превращение РНК-транскрипта в зрелую РНК начинается в ядре, когда синтез РНК ещё не закончен и она не отделилась от ДНК. В зависимости от механизмов различают несколько этапов созревания РНК.

      Взаимодействие про-иРНК с белком.

      Метилирование про-иРНК.

      Кэпирование 5’-конца.

      Полиаденилирование.

      Сплайсинг.

    Графическая последовательность этапов изображена на рисунке 58. Следует отметить, что в живых организмах все вышеперечисленные процессы идут параллельно друг другу.

    а. Взаимодействие про-иРНК с белком.

    У бактерий ещё до окончания транскрипции 5 ’ конец транскрипта сразу же соединяется с рибосомой и иРНК включается в трансляцию. Поэтому, для бактериальной иРНК практически никакая модификация не требуется. У эукариот, синтезированный транскрипт выходит из ядра, попадает в цитоплазму и там соединиться с рибосомой. На своём пути он должен быть ограждён от случайных встреч с сильными реагентами и, в тоже время быть, доступен ферментам процессинга. Поэтому РНК-транскрипт сразу же по мере удлинения взаимодействует с белком. Здесь уместна аналогия – РНК-транскрипт располагается на белке как на операционном столе, он фиксируется химическими связями, одновременно в нём становятся доступными места модификации. РНК, связанная с белком, носит название рибонуклеопротеид (информосома). В такой форме транскрипт находится в ядре. При выходе из ядра одни РНК продолжают оставаться в соединении с белком, другие выходят из комплекса и принимают участие в трансляции.

    б. Метилирование про-иРНК.

    Чаще всего происходит у бактерий, у которых имеется специальный аппарат защиты от чужеродной

    ДНК (вирусной, фаговой). Этот аппарат состоит из целого ряда ферментов разрезающих чужеродную ДНК или РНК в определённых сайтах в которой находится специфическая последовательность нуклеотидов. Ферменты носят название – рестриктазы . Понятно, что собственный, только что синтезированный РНК-транскрипт, также может быть подвергнут атаке рестриктаз. Чтобы это не случилось специальные ферменты, называемые метилазы, метилируют собственный РНК-транскрипт в тех сайтах, которые могут быть разрезаны собственными ферментами. У эукариот РНК-транскрипт метилируется в меньшей степени.

    Промотор Терминатор

    Транскрипция

    Про-иРНК фикси- Белок

    рванная на белке

    Метилирование про-иРНК

    Кэпирование про-иРНК

    Рис. 58. Схема основных моментов процессинга.

    в. Кэпирование 5’конца.

    Заключается в химическом и конформационном изменении

    5’конца синтезированной РНК. Кэпирование происходит в момент синтеза РНК, ещё до её отделения. Процесс заключается в присоединении к свободному концу про-РНК специальных химических веществ, которые изменяют конформацию концевого участка. Кэпирование необходимо для инициации процесса трансляции.

    Специальные ферменты присоединяют к 5’концу про-иРНК ГДФ (гуанозиндифосфат), а затем метилируют его.

    5’ про-иРНК

    СН 3

    КЭП = ГДФ + СН 3

    Рис.59. Структура КЭПа на 5’конце пре-иРНК эукариот.

    Функции КЭПа.

      Инициирует синтез белка.

      Предохраняет про-иРНК от распада.

      Участвует в удалении интронов.

    г. Полиаденилирование.

    Это процесс присоединения к 3’ концу про-иРНК 100 – 200 остатков адениловой кислоты. Эти остатки носят название поли-А последовательности (поли-А хвосты). Полиаденилированию подвергаются не все про-иРНК. Например, молекулы всех типов гистонов не содержат поли-А последовательности. Полиаденилирование предохраняет иРНК от разрушения.

    На растущей цепи и-РНК имеется специальная последовательность нуклеотидов (ААУААА). Особый фермент (полиА-полимераза) находит это сочетание нуклеотидов, разрезает про-иРНК в этом месте и формирует полиадениловый хвостик.

    Значение поли –А последовательностей:

          Облегчают выход иРНК из ядра в цитоплазму.

          Предохраняют иРНК от разрушения.

    Недавно было выявлено ещё одно интересное свойство поли-А последовательностей – они участвуют в терминации синтеза про-иРНК. РНК-полимераза, формируя последовательность ААУААА в про-иРНК, получает сигнал о завершении синтеза РНК-транскрипта. Но синтез сразу не прекращается. Полная остановка его наступает после того, как РНК-полимераза встречает на матричной нити ДНК специфическую последовательность нуклеотидов (у разных генов она разная), которая и даёт окончательный сигнал о прекращении синтеза РНК.

    ГТФ ПолиА - последовательность

    рАрАрАрАрАрАрАрА-ОН

    СН 3

    КЭП = ГТФ + СН 3

    Рис. 60. Структура КЭПа на 5’конце про-иРНК эукариот и полиадениловая последовательность на 3’конце про -иРНК.

    д. Сплайсинг.

    В РНК-транскрипте содержится определённое количество нуклеотидных последовательностей, которые были необходимы для успешного завершения трансляции и последующей модификации транскрипта (кэпирования, полиаденилирования и т.д.). Для выполнения основной роли РНК в цитоплазме – трансляции, эти последовательности не только не будут иметь функционального значения, но могут помешать нормальному течению синтеза белка. Поэтому в клетке предусмотрен механизм освобождения первичного транскрипта от целого ряда последовательностей, не имеющих решающего значения в трансляции.

    К таким последовательностям прежде всего относят интроны.

    Ген, с которого транскрибировалась про-иРНК содержит кодирующие и некодирующие последовательности. Кодирующие последовательности гена определяют аминокислоту и их последовательность в белке. Не кодирующие последовательности таким свойством не обладают. Кодирующие и некодирующие последовательности в гене чередуются, и их количество зависит от индивидуальных генов. В первичном транскрипте также содержатся кодирующие и некодирующие последовательности. Такая организация генов и про-РНК характерна для эукариот. Некодирующие последовательности про-иРНК носят название интроны , а кодирующие –экзоны. Длина интронов может быть от 50 до 12000 нуклеотидов. Ген начинается и

    кончается экзоном. Прерывистое строение гена характерно для большинства эукариот. Интроны могут содержать все виды РНК – иРНК, тРНК, рРНК.

    Вся совокупность экзонов (кодирующих белки) в геноме человека занимают всего 1,1 – 1,4 %. Средний ген человека содержит 9 интронов. По мере упрощения

    организации организмов совокупная величина их экзонов возрастает (например у бактерий она равна 86%).

    В вырезании интронов из РНК-транскрипта и сшивании оставшихся экзонов, принимает участие многокомпонентный комплекс. Основными его составляющими являются малые ядерные РНК (мяРНК) и белки-ферменты.

    В целом комплекс носит название малые ядерные рибонуклеопротеиды, мяРНП или сплайосома . Сам процесс достаточно сложен и состоит из нескольких этапов (см. рис. 58).

    1. Формирование сплайосомы . К началу и концу интрона прикрепляются фрагменты белка и мяРНК (рис. 56, Д) формируя сплайосому. (рис. 56, Д) Прикрепление комплекса мяРНП (рис. 56, Е).

    Экзон 1 Интрон Экзон 2

    Петля

    интрона вырезана

    Рис. 61. Схема сплайсинга (объяснение в тексте).

      Сближение соседних экзонов, за счёт образования петли интрона. Разрезание на границе экзон-интрон и соединение соседних (первого и второго) экзонов(рис. 56, В).

      Удаление и разрушение петли и сплайосоме (рис. 56, Г, Ж).

    Необходимо отметить, что при повреждении (мутации) интрона сплайсинг может быть не закончен, интрон не вырезан и конченый продукт – иРНК будет нести несвойственные ей последовательности нуклеотидов. Понятно, что это может привести к нарушению трансляции и выключению из метаболизма определённого белка

    е. Альтернативный сплайсинг.

    Такой тип сплайсинга происходит при экспрессии одного и того же гена в разных тканях.

    Сущность его в том, что один и тот же участок гена в разных тканях может выступать в качестве интрона и экзона. Это приводит к образованию разных иРНК, которые кодируют белки с различной ферментативной активностью.

    Так в клетках щитовидной железы синтезируется гормон кальцитонин. Он тормозит высвобождение кальция из костей. Ген, контролирующий синтез каль-

    Ген, контролирующий кальцитонин

    э и э и э и э и э и э

    1 2 3 4 5 6

    э и э и э и э и э и э

    про-иРНК

    1 2 3 4 5 6

    В щитовидной железе В клетках головного мозга

    иРНК

    1 2 3 4 1 2 3 5 6

    Кальцитонин Кальцитонинподобный белок

    Рис.62. Альтернативный сплайсинг кальцитонина и кальцитонин-подобного белка.

    цитонина, состоит из 6 экзонов, первичный транскрипт этого гена (про-иРНК) также состоит из 6 экзонов (рис. 62). Из первичного транскрипта формируется зрелая иРНК содержащая 4 экзона – 1,2,3,4. Экзоны № 5 и 6 были прочитаны как интроны и вырезаны. На основе такой и РНК синтезируется кальцитонин. В клетках головного мозга из первичного транскрипта, содержащего 6 экзонов, формируется зрелая иРНК, состоящая из 5 экзонов – 1,2,3,5,6. Четвёртый экзон был вырезан как интрон. Такая иРНК контролирует синтез кальцитонинподобного белка, отвечающего за вкусовое восприятие.

    Другой ген Icarus (в названного в честь легендарного Икара) способен обеспечить за счёт альтернативного сплайсинга синтез 6 различных полипептидов. Кроме этого полипептиды образуют между собой в клетке около 20 различные ансамбли из одних и тех же полипептидов или различных.

    Нарушение механизма сплайсинга может привести к патологическим состояниям, которые носят общее название талассемии . К ним относят заболевания связанные с частичным или полным подавление синтеза одной из цепей гемоглобин (α- или β-цепей). Например, болезни, связанные с недостатком синтеза β -цепи гемоглобина, могут возникнуть в результате мутаций в двух участка гена, кодирующего β-цепь – в сайте ответственном за полиаденилирование и в одном из интронов. В первом случае нарушается процесс формирования полиаденилового хвостика и формируется неполноценная β-цепь гемоглобина. Во втором случае сплайосома не способна вырезать повреждённый интрон и зрелая иРНК β-цепи гемоглобина не образуется. В любом случае нормальная функция эритроцитов будет существенно нарушена.

    МЗ. Процессинг (или созревание РНК) это процесс превращения только что синтезированной, не активной РНК (про-иРНК) в функционально активную РНК. Процесс связан со структурными и химическими модификациями про-иРНК. Происходит в ядре до момента выхода РНК в цитоплазму. Состоит из нескольких этапов: присоединение про-иРНК к белку, метилирование некоторых оснований, маркировка одного из концов, полиаденилирование другого (противоположного) конца, вырезания интронов и сшивание экзонов. Последние два процесса носят название сплайсинг.

    Вопросы к экзаменам.

    1. Каким образом ферменты определяют большинство мест, где имеется повреждение молекулы ДНК?

    ОТВЕТ. В месте повреждения молекулы ДНК в большинстве случаев наступает локальная денатурация. Её и определяют ферменты.

    2. Что происходит в месте повреждения молекулы ДНК?

    ОТВЕТ. В месте повреждения наступает локальная денатурация.

    3. На основании чего ферменты репарации восстанавливают необходимую последовательность нуклеотидов в месте повреждения одной нити ДНК?

    ОТВЕТ. На основании принципа комплементарности к нуклеотидам оппозитного участка нити ДНК.

    4. На основании чего ДНК-полимераза правильно застраивает нуклеотидами бреши в повреждённой нити ДНК?

    ОТВЕТ. На основании принципа комплементарности нуклеотидов застраиваемой цепи к нуклеотидам оппозитной нити.

    5. Какой тип репарации осуществляется ферментом, который активируется фотоном?

    ОТВЕТ. Фотореактивация.

    6. Какой фермент осуществляет репарацию используя энергию солнца?

    ОТВЕТ. Фотолиаза.

      Какой фермент принимает непосредственное участие в синтезе молекуле РНК?

    ОТВЕТ. ДНК-зависимая РНК-полимераза или РНК-полимераза.

      Перечислите периоды транскрипции.

    ОТВЕТ. Инициация, элонгация, терминация.

      Из каких компонентов состоит инициаторный комплекс в процессе транскрипции?

    ОТВЕТ. Из специального белка осевшего на промотор, РНК-полимеразы и транскрипционных факторов.

    9. Как называется участок ДНК, где формируется инициаторный комплекс в процессе транскрипции?

    ОТВЕТ. На промоторе.

    10. Как называется последовательность нуклеотидов у прокариот, которую определяет специальный белок осаждающий на промоторе в период инициации транскрипции?

    ОТВЕТ. Блок Прибнова.

    11. Как называется последовательность нуклеотидов у эукариот, которую определяет специальный белок осаждающий на промоторе в период инициации транскрипции?

    ОТВЕТ. ТАТА-бокс.

    12. Где в молекуле ДНК располагается блок Прибнова у прокариот?

    ОТВЕТ. На промоторе.

    13. Где в молекуле ДНК располагается ТАТА-бокс у эукариот?

    ОТВЕТ. На промоторе.

    14. Как называется ферментативный комплекс, который формирует транскрипционный глазок?

    ОТВЕТ. Инициаторный комплекс.

    15. Как называется участок молекулы ДНК с которого начинается синтез РНК?

    ОТВЕТ. Стартовой точкой, сайт начала транскрипции.

    16. Назовите нуклеотиды, которые находятся в терминаторе и возможно участвуют в прекращении транскрипции.

    ОТВЕТ. Г,Ц.

    17. Назовите вторичную структуру в терминаторе, которая возможно участвует в прекращении транскрипции,

    ОТВЕТ. Шпилька.

    18. Как называются кодоны находящиеся в терминаторе и возможно участвующие в прекращении транскрипции.

    ОТВЕТ. Бессмысленные (нонсенс) кодоны.

    Все стадии процессинга и-РНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).

    По мере синтеза про-и-РНК, она тут же образует комплексы с ядерными белками – информоферами . И в ядерные, и в цитоплазматические комплексы и-РНК с белками (информосомы ) входят s-РНК (малые РНК).

    Таким образом, и-РНК не бывает свободной от белков, поэтому на всем пути следования до завершения трансляции и-РНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.

    Пока вновь синтезированная про-и-РНК (первичный транскрипт или гя-РНК – гетерогенная ядерная РНК) еще находится в ядре, она подвергается процессингу и превращается в зрелую и-РНК, прежде чем начать функционировать в цитоплазме. Гетерогенная ядерная РНК копирует всю нуклеотидную последовательность ДНК от промотора до терминатора, включая нетранслируемые области. После этого гя-РНК претерпевает преобразования, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. Обычно гя-РНК в несколько раз (иногда в десятки раз) больше зрелой и-РНК. Если гя-РНК составляет примерно 10 % генома, то зрелая и-РНК – только 1-2 %.

    В ходе ряда последовательных стадий процессинга из про-и-РНК (транскрипта) удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей.

    При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы про-и-РНК. По мере образования про-и-РНК (еще до 30-ого нуклеотида), к 5"-концу, несущему пуринтрифосфат, присоединяется гуанин, после чего происходит метилирование.

    Функции кэп-группы:

    ü регулирование экспорта и-РНК из ядра;

    ü защита 5"-конца транскрипта от экзонуклеаз;

    ü участие в инициации трансляции: узнавание молекулы и-РНК малыми субъединицами рибосомы и правильная установка и-РНК на рибосоме.

    Полиаденилирование заключается в присоединении к 3"-концу транскрипта остатков адениловой кислоты, который осуществляет специальный фермент poly(A)-полимераза.

    Когда синтез про-и-РНК завершен, то на расстоянии примерно 20 нуклеотидов в направлении к 3"-концу от последовательности 5"-AAУAA-3" происходит разрезание специфической эндонуклеазой и к новому 3"-концу присоединяется от 30 до 300 остатков АМФ (безматричный синтез).

    Сплайсинг [англ. “splice” – соединять, сращивать]. После полиаденилирования про-и-РНК подвергается удалению интронов. Процесс катализируется сплайсосомами и называется сплайсингом. В 1978 г. Филипп Шарп (Массачусетский технологический институт) открыл явление сплайсинга РНК.

    Сплайсинг показан для большинства и-РНК и некоторых т-РНК. У простейших найден автосплайсинг р-РНК. Сплайсинг показан даже для археобактерий.

    Не существует единого механизма сплайсинга. Описано по крайней мере 5 разных механизмов: в ряде случаев сплайсинг осуществляют ферменты-матюразы, в некоторых случаях в процессе сплайсинга участвуют s-РНК. В случае автосплайсинга процесс происходит благодаря третичной структуре про-р-РНК.

    Для и-РНК высших организмов существуют обязательные правила сплайсинга:

    Правило 1 . 5" и 3" концы интрона очень консервативны: 5"(ГT-интрон-AГ)3" .

    Правило 2 . При сшивании копий экзонов соблюдается порядок их расположения в гене, но некоторые из них могут быть выброшены.

    Точность сплайсинга регулируют s-PНК: малые ядерные РНК (мя-РНК) , которые имеют участки, комплементарные концам интронов. мя-РНК комплементарна нуклеотидам на концах интронов – она временно соединяется с ними, стягивая интрон в петлю. Концы кодирующих фрагментов соединяются, после чего интрон благополучно удаляется из цепи.

    ③ ТРАНСЛЯЦИЯ [от лат. “translatio” – передача] заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в и-РНК. Молекула и-РНК (после процессинга у эукариот и без процессинга у прокариот) участвует в другом матричном процессе – трансляции (синтезе полипептида), который протекает на рибосомах (рис. 58).

    Рибосомы – немембранные самые мелкие клеточные органоиды, при этом они едва ли не самые сложные. В клетке Е. coli присутствует около 10 3 – 5x10 3 рибосом. Линейные размеры прокариотической рибосомы 210 х 290Å. У эукариот – 220 х 320Å.

    Выделяют четыре класса рибосом:

    1. Прокариотические 70S.

    2. Эукариотические 80S.

    3. Рибосомы митохондрий (55S – у животных, 75S – у грибов).

    4. Рибосомы хлоропластов (70S у высших растений).

    S – коэффициент седиментации или константа Сведберга . Отражает скорость осаждения молекул или их компонентов при центрифугировании, зависящую от конформации и молекулярного веса.

    Каждая рибосома состоит из 2-х субъединиц (большой и малой).

    Сложность объясняется тем, что все элементы рибосом представлены в одном экземпляре, за исключением одного белка, присутствующего в 4 копиях в 50S субъединице, и не могут быть заменены.

    р-РНК выполняют не только функцию каркасов субъединиц рибосом, но и принимают непосредственное участие в синтезе полипептидов.

    23S р-РНК входит в каталитический пептидилтрансферазный центр, 16S р-РНК необходима для установки на 30S субъединице инициирующего кодона и-PHK, 5S р-РНК – для правильной ориентации аминоацил-тPHK на рибосоме.

    Все р-РНК обладают развитой вторичной структурой: около 70% нуклеотидов собрано в шпильки.

    р-РНК в значительной степени метилированы (СН 3 -группа во втором положении рибозы, а также в азотистых основаниях).

    Порядок сборки субъединиц из р-РНК и белков строго определен. Субъединицы, не соединенные друг с другом, представляют собой диссоциированные рибосомы. Соединенные – ассоциированные рибосомы. Для ассоциации нужны не только конформационные изменения, но и ионы магния Mg 2+ (до 2x10 3 ионов на рибосому). Магний нужен для компенсации отрицательного заряда р-РНК. Все реакции матричного синтеза (репликация, транскрипция и трансляция) связаны с ионами магния Mg 2+ (в меньшей степени – марганца Мn 2+).

    Молекулы т-РНК представляют собой относительно небольшие нуклеотидные последовательности (75-95 нуклеотидов), комплементарно соединённые в определённых участках. В результате формируется структура, напоминающая по форме лист клевера, в которой выделяют две наиболее важные зоны – акцепторная часть и антикодон.

    Акцепторная часть т-РНК состоит из комплементарно соединённых 7 пар оснований и несколько более длинного одиночного участка, заканчивающегося 3′-концом, к которому присоединяется транспортируемая соответствующая аминокислота.

    Другой важный участок т-РНК – антикодон , состоящий из трёх нуклеотидов. Этим антикодоном т-РНК по принципу комплементарности определяет себе место на и-РНК, определяя тем самым очерёдность присоединения транспортируемой им аминокислоты в полипептидную цепочку.

    Наряду с функцией точного узнавания определённого кодона в и-РНК молекула т-РНК связывается и доставляет к месту синтеза белка определённую аминокислоту, присоединённую ферментом аминоацил-тРНК-синтетазы. Этот фермент обладает способностью к пространственному узнаванию, с одной стороны, антикодона т-РНК и, с другой, – соответствующей аминокислоты. Для транспортировки 20 типов аминокислот используются свои транспортные РНК.

    Процесс взаимодействия и-РНК и т-РНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах.

    Рибосомы представляют собой сложные комплексы рибосомной РНК (р-РНК) и разнообразных белков. Рибосомная РНК является не только структурным компонентом рибосом, но и обеспечивает связывание её с определённой нуклеотидной последовательностью и-РНК, устанавливая начало и рамку считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы с т-РНК.

    В рибосомах имеются две зоны. Одна из них удерживает растущую полипептидную цепь, другая – и-РНК. Кроме того, в рибосомах выделяют два участка, связывающих т-РНК. В аминоацильном участке размещается аминоацил-т-РНК, несущая определённую аминокислоту. В пептидильном находится т-РНК, которая освобождается от своей аминокислоты и покидает рибосому при её перемещении на один кодон и-РНК.

    В процессе трансляции выделяют следующие стадии :

    1. Стадия активации аминокислот . Активация свободных аминокислот осуществляется при помощи особых ферментов (аминоацил-тРНК-синтетаз) в присутствии АТФ. Для каждой аминокислоты существует свой фермент и своя т-РНК.

    Активированная аминокислота присоединяется к своей т-РНК с образованием комплекса аминоацил-т-РНК (аа-т-РНК). Только активированные аминокислоты способны образовывать пептидные связи и формировать полипептидные цепочки.

    2. Инициация . Начинается с присоединения лидирующего 5"-конца и-РНК с малой субъединицей диссоциированной рибосомы. Соединение происходит так, что стартовый кодон (всегда АУГ) оказывается в «недостроенном» Р-участке. Комплекс аа-т-РНК с помощью антикодона т-РНК (УАЦ) присоединяется к стартовому кодону и-РНК. Имеются многочисленные (особенно у эукариот) белки – факторы инициации .

    У прокариот стартовый кодон кодирует N-формилметионж, а у эукариот – N-метионин. В дальнейшем эти аминокислоты вырезаются ферментами и не входят в состав белка. После образования инициирующего комплекса происходит объединение субъединиц и «достраивание» Р- и А-участков (рис.60).

    3. Элонгация . Начинается с присоединения в А-участок и-РНК второго комплекса аа-т-РНК с антикодоном, комплементарным следующему кодону и-РНК. В рибосоме оказываются две аминокислоты, между которыми возникает пептидная связь. Первая т-РНК освобождается от аминокислоты и покидает рибосому. Рибосома перемещается вдоль нити и-РНК на один триплет (в направлении 5"→3"). 2-я аа-т-РНК перемещается в Р-участок, освобождая А-участок, который занимает следующая 3-я аа-т-РНК. Таким же образом присоединяются 4-я, 5-я и т. д. аминокислоты, принесенные своими т-РНК.

    4. Терминация . Завершение синтеза полипептидной цепочки. Наступает тогда, когда рибосома дойдет до одного из терминирующих кодонов. Имеются особые белки (факторы терминации ), которые узнают эти участки.

    На одной молекуле и-РНК может располагаться несколько рибосом (такое образование называется полисома), что позволяет осуществлять синтез нескольких полипептидных цепей одновременно

    Процесс биосинтеза белка проходит с участием большего количества специфических биохимических взаимодействий. Он представляет собой фундаментальный процесс природы. Несмотря на чрезвычайную сложность (особенно в клетках эукариот), синтез одной молекулы белка длится всего 3-4 секунды.

    Аминокислотная последовательность выстраивается при помощи транспортных РНК (т-РНК), которые образуют с аминокислотами комплексы - аминоацил-тРНК. Каждой аминокислоте соответствует своя т-РНК, имеющая соответствующий антикодон, «подходящий» к кодону и-РНК. Во время трансляции рибосома движется вдоль и-РНК, по мере этого наращивается полипептидная цепь. Биосинтез белка обеспечивается за счет энергии АТФ.

    Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки, но для достижения своего активного состояния белкам требуется дополнительная посттрансляционная модификация.

    Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включаеттрансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов, переводится в последовательность остатков аминокислот.

    19.ДНК. Строение, свойства, кодовая система.