Биографии Характеристики Анализ

Старт в науке. Способы решения уравнений

Уравнение, представляющее собой квадратный трехчлен, обыкновенно называется квадратным уравнением. С точки зрения алгебры оно описывается формулой a*x^2+b*x+c=0. В данной формуле х - это неизвестное, которое требуется найти (его называют свободной переменной); a, b и c - числовые коэффициенты. В отношении компонентов указанной существует ряд ограничений: так, коэффициент а не должен быть равен 0.

Решение уравнения: понятие дискриминанта

Значение неизвестного х, при котором квадратное уравнение превратится в верное равенство, называют корнем такого уравнения. Для того чтобы решить квадратное уравнение, необходимо сначала найти значение специального коэффициента - дискриминанта, который покажет количество корней у рассматриваемого равенства. Дискриминант вычисляется по формуле D=b^2-4ac. При этом результат вычисления может оказаться положительным, отрицательным или равным нулю.

При этом следует иметь в виду, что понятие требует, чтобы лишь коэффициент а был строго отличающимся от 0. Следовательно, коэффициент b может быть равным 0, а само уравнение в этом случае вид a*x^2+c=0. В такой ситуации следует использовать значение коэффициента, равное 0, и в формулах расчета дискриминанта и корней. Так, дискриминант в этом случае будет рассчитываться как D=-4ac.

Решение уравнения при положительном дискриминанте

В случае, если дискриминант квадратного уравнения оказался положительным, из этого можно сделать вывод, что данное равенство имеет два корня. Указанные корни можно вычислить по следующей формуле: x=(-b±√(b^2-4ac))/2a=(-b±√D)/2a. Таким образом, для расчета значения корней квадратного уравнения при положительном значении дискриминанта используются известные значения коэффициентов, имеющихся в . Благодаря использованию суммы и разности в формуле расчета корней результатом вычислений будут два значения, обращающие рассматриваемое равенство в верное.

Решение уравнения при нулевом и отрицательном дискриминанте

В случае, если дискриминант квадратного уравнения оказался равным 0, можно сделать вывод о том, что указанное уравнение имеет один корень. Строго говоря, в этой ситуации корней у уравнения по-прежнему два, однако вследствие нулевого дискриминанта они будут равны между собой. В этом случае x=-b/2a. Если же в процессе вычислений значение дискриминанта оказывается отрицательным, следует сделать вывод о том, что рассматриваемое квадратное уравнение не имеет корней, то есть таких значений x, при которых оно обращается в верное равенство.

Уравнение – это математическое выражение, являющееся равенством, содержащее неизвестное. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например: соотношение вида (x – 1)2 = (x – 1)(x – 1) выполняется при всех значениях x.

Если уравнение, содержащее неизвестное x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17.

В разделе математики, который называется теорией уравнений, основным предметом изучения являются методы решения уравнений. В школьном курсе алгебры уравнениям уделяется большое внимание.

История изучения уравнений насчитывает много веков. Самыми известными математиками, внесшими вклад в развитие теории уравнений, были:

Архимед (около 287–212 до н. э.) - древнегреческий ученый, математик и механик. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Франсуа Виет жил в XVI в. Он внес большой вклад в изучение различных проблем математики. В частности, он ввел буквенные обозначения коэффициентов уравнения и установил связь между корнями квадратного уравнения.

Леонард Эйлер (1707 – 1783) - математик, механик, физик и астроном. Автор св. 800 работ по математическаму анализу, дифференциальных уравнений, геометрии, теории чисел, приближённым вычислениям, небесной механике, математике, оптике, баллистике, кораблестроению, теории музыки, и т. д. Оказал значительное влияниена развитие науки. Вывел формулы (Формулы Эйлера), выражающие тригонометрические функции переменного х через показательную функцию.

Лагранж Жозеф Луи (1736 - 1813 гг.), французский математик и механик. Ему принадлежат выдающиеся исследования, среди них исследования по алгебре (симметрической функции корней уравнения, по дифференциальным уравнениям (теория особых решений, метод вариации постоянных).

Ж. Лагранж и А. Вандермонд - французские математики. В 1771 г. впервые применили способ решения систем уравнений (способ подстановки).

Гаусс Карл Фридрих (1777 -1855 гг.) - немецкий математик. Написал книгу, в которой излагается теория уравнений деления круга (т. е. уравнений xn - 1 = 0), которая во многом была прообразом Галуа теории. Помимо общих методов решения этих уравнений, установил связь между ними и построением правильных многоугольников. Он, впервые после древнегреческих учёных, сделал значительный шаг вперёд в этом вопросе, а именно: нашёл все те значения n, для которых правильный n-угольник можно построить циркулем и линейкой. Изучал способ сложения. Сделал вывод, что системы уравнений можно между собой складывать, делить, и умножать.

О. И. Сомов – обогатил разные части математики важными и многочисленными трудами, среди них теория определённых алгебраических уравнений высших степеней.

Галуа Эварист (1811-1832 гг.), - французский математик. Основной его заслугой является формулировка комплекса идей, к которым он пришёл в связи с продолжением исследований о разрешимости алгебраических уравнений, начатых Ж. Лагранжем, Н. Абелем и др. , создал теорию алгебраических уравнений высших степеней с одним неизвестным.

А. В. Погорелов (1919 – 1981 гг.) - В его творчестве связаны геометрические методы с аналитическими методами теории дифференциальных уравнений с частными производными. Его труды оказали существенное влияние также на теорию нелинейных дифференциальных уравнений.

П. Руффини - итальянский математик. Посвятил ряд работ, доказательству неразрешимости уравнения 5-й степени, систематически использует замкнутость множества подстановок.

Не смотря на то, что ученые давно изучают уравнения, науке не известно, как и когда у людей возникла необходимость использовать уравнения. Известно только, что задачи, приводящие к решению простейших уравнений, люди решали с того времени, как стали людьми. Еще 3 - 4 тысячи лет до н. э. египтяне и вавилоняне умели решать уравнения. Правило решения этих уравнений, совпадает с современным, но неизвестно, как они до этого дошли.

В Древнем Египте и Вавилоне использовался метод ложного положения. Уравнение первой степени с одним неизвестным можно привести всегда к виду ах + Ь = с, в котором а, Ь, с целые числа. По правилам арифметических действий ах = с - b,

Если Ь > с, то с b число отрицательное. Отрицательные числа были египтянам и многим другим более поздним народам неизвестны (равноправно с положительными числами их стали употреблять в математике только в семнадцатом веке). Для решения задач, которые мы теперь решаем уравнениями первой степени, был изобретен метод ложного положения. В папирусе Ахмеса 15 задач решается этим методом. Египтяне имели особый знак для обозначения неизвестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или «неизвестное количество» единиц). Теперь читают немного менее неточно: «ага». Способ решения, примененный Ахмесом, называется методом одного ложного положения. При помощи этого метода решаются уравнения вида ах = b. Этот способ заключается в том, что каждую часть уравнения делят на а. Его применяли как египтяне, так и вавилоняне. У разных народов применялся метод двух ложных положений. Арабами этот метод был механизирован и получен ту форму, в которой он перешел в учебники европейских народов, в том числе в «Арифметику» Магницкого. Магницкий называет способ решения «фальшивым правилом» и пишет в части своей книги, излагающей этот метод:

Зело бо хитра есть сия часть, Яко можеши ею все класть. Не токмо что есть во гражданстве, Но и высших наук в пространстве, Яже числятся в сфере неба, Якоже мудрым есть потреба.

Содержание стихов Магницкого можно вкратце передать так: эта часть арифметики весьма хитрая. При помощи ее можно вычислить не только то, что понадобится в житейской практике, но она решает и вопросы «высшие», которые встают перед «мудрыми». Магницкий пользуется «фальшивым правилом» в форме, какую ему придали арабы, называя его «арифметикой двух ошибок» или «методой весов». Индийские математики часто давали задачи в стихах. Задача о лотосе:

Над озером тихим, с полмеры над водой, Был виден лотоса цвет. Он рос одиноко, и ветер волной Нагнул его в сторону, и уж нет

Цветка над водой. Нашёл его глаз рыбака В двух мерах от места, где рос. Сколько озера здесь вода глубока? Тебе предложу я вопрос.

Виды уравнений

Линейные уравнения

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а (ах + b; ах = - b; х = - b: а.).

Например: решить линейное уравнение: 4х + 12 = 0.

Решение: Т. к а = 4, а b = 12, то х = - 12: 4; х = - 3.

Проверка: 4 (- 3) + 12 = 0; 0 = 0.

Т. к 0 = 0, то -3 является корнем исходного уравнения.

Ответ. х = -3

Если а равно нулю, и b равно нулю, то корнем уравнения ах + b = 0 является любое число.

Например:

0 = 0. Т. к 0 равно 0, то корнем уравнения 0х + 0 = 0 является любое число.

Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Например:

0 = 6. Т. к 0 не равно 6, то 0х – 6 = 0 не имеет корней.

Системы линейных уравнений.

Система линейных уравнений – это система, все уравнения которой линейные.

Решить систему - значит найти все ее решения.

Прежде чем решать систему линейных уравнений, можно определить число её решений.

Пусть дана система уравнений: {а1х + b1y = с1, {а2х + b2y = c2.

Если а1 делённое на а2 не равно b1 делённое на b2, то система имеет одно единственное решение.

Если а1 делённое на а2 равно b1 делённое на b2, но равно с1 делённое на с2, то система не имеет решений.

Если а1 делённое на а2 равно b1 делённое на b2, и равно с1 делённое на с2, то система имеет бесконечно много решений.

Система уравнений, имеющая, по крайней мере, одно решение, называется совместной.

Совместная система называется определенной, если она имеет конечное число решений, и неопределенной, если множество ее решений бесконечно.

Система, не имеющая ни одного решения, называется несовместной или противоречивой.

Способы решения линейных уравнений

Всего есть несколько способов решения линейных уравнений:

1) Метод подбора. Это самый простейший способ. Он заключается в том, что подбирают все допустимые значения неизвестного путём перечисления.

Например:

Решить уравнение.

Пусть х = 1. Тогда

4 = 6. Т. к 4 не равно 6, то наше предположение, что х = 1 было неверным.

Пусть х = 2.

6 = 6. Т. к 6 равно 6, то наше предположение, что х = 2 было верным.

Ответ: х = 2.

2) Способ упрощения

Этот способ заключается в том, что все члены содержащие неизвестное переносим в левую часть, а известные в правую с противоположным знаком, приводим подобные, и делим обе части уравнения на коэффициент при неизвестном.

Например:

Решить уравнение.

5х – 4 = 11 + 2х;

5х – 2х = 11 + 4;

3х = 15; : (3) х = 5.

Ответ. х = 5.

3) Графический способ.

Он заключается в том, что строится график функций данного уравнения. Т. к в линейном уравнение у = 0, то график будет параллелен оси ординат. Точка пересечения графика с осью абсцисс будет решением данного уравнения.

Например:

Решить уравнение.

Пусть у = 7. Тогда у = 2х + 3.

Построим график функций обоих уравнений:

Способы решения систем линейных уравнений

В седьмом классе изучают три способа решения систем уравнений:

1) Способ подстановки.

Этот способ заключается в том, что в одном из уравнений выражают одно неизвестное через другое. Полученное выражение подставляют в другое уравнение, которое после этого обращается в уравнение с одним неизвестным, затем решают его. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например.

Решить систему уравнений.

5х - 2у - 2 = 1.

3х + у = 4; у = 4 - 3х.

Подставим полученное выражение в другое уравнение:

5х – 2(4 – 3х) -2 = 1;

5х – 8 + 6х = 1 + 2;

11х = 11; : (11) х = 1.

Подставим полученное значение в уравнение 3х + у = 4.

3 · 1 + у = 4;

3 + у = 4; у = 4 – 3; у = 1.

Проверка.

/3 · 1 + 1 = 4,

\5 · 1 – 2 · 1 – 2 = 1;

Ответ: х = 1; у = 1.

2) Способ сложения.

Этот способ заключается в том, что если данная система состоит из уравнений, которые при почленном сложении образуют уравнение с одним неизвестным, то решив это уравнение, мы получим значение одного из неизвестных. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например:

Решить систему уравнений.

/3у – 2х = 5,

\5х – 3у = 4.

Решим полученное уравнение.

3х = 9; : (3) х = 3.

Подставим полученное значение в уравнение 3у – 2х = 5.

3у – 2 · 3 = 5;

3у = 11; : (3) у = 11/3; у = 3 2/3.

Итак, х = 3; у = 3 2/3.

Проверка.

/3 · 11/3 – 2 · 3 = 5,

\5 · 3 – 3 · 11/ 3 = 4;

Ответ. х = 3; у = 3 2/3

3) Графический способ.

Этот способ основан на том, что в одной системе координат строятся графики уравнений. Если графики уравнения пересекаются, то координаты точки пересечения являются решением данной системы. Если графики уравнения являются параллельными прямыми, то данная система не имеет решений. Если графики уравнений сольются в одну прямую, то система имеет бесконечно много решений.

Например.

Решить систему уравнений.

18х + 3у - 1 = 8.

2х - у = 5; 18х + 3y - 1 = 8;

У = 5 - 2х; 3у = 9 - 18х; : (3) у = 2х - 5. у = 3 - 6х.

Построим графики функций у = 2х - 5 и у = 3 - 6х на одной системе координат.

Графики функций у = 2х - 5 и у = 3 - 6х пересекаются в точке А (1; -3).

Следовательно решением данной системы уравнений будет х = 1 и у = -3.

Проверка.

2 · 1 - (- 3) = 5,

18 · 1 + 3 · (-3) - 1 = 8.

18 - 9 – 1 = 8;

Ответ. х = 1; у = -3.

Заключение

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

Министерство общего и профессионального образования РФ

Муниципальное образовательное учреждение

Гимназия № 12

сочинение

на тему: Уравнения и способы их решения

Выполнил: ученик 10 "А" класса

Крутько Евгений

Проверила: учитель математики Исхакова Гульсум Акрамовна

Тюмень 2001

План................................................................................................................................... 1

Введение........................................................................................................................... 2

Основная часть................................................................................................................. 3

Заключение..................................................................................................................... 25

Приложение................................................................................................................... 26

Список использованной литературы.......................................................................... 29

План.

Введение.

Историческая справка.

Уравнения. Алгебраически уравнения.

а) Основные определения.

б) Линейное уравненение и способ его решения.

в) Квадратные уравнения и способы его решения.

г) Двучленные уравнения способ их решения.

д) Кубические уравнения и способы его решения.

е) Биквадратное уравнение и способ его решения.

ё) Уравнения четвертой степени и способы его решения.

ж) Уравнения высоких степеней и способы из решения.

з) Рациональноное алгебраическое уравнение и способ его

и) Иррациональные уравнения и способы его решения.

к) Уравнения, содержащие неизвестное под знаком.

абсолютной величины и способ его решения.

Трансцендентные уравнения.

а) Показательные уравнения и способ их решения.

б) Логарифмические уравнения и способ их решения.

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположил материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попытался показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стал ограничиваться только действительным решением, но и указал комплексное, так как считаю, что иначе уравнение просто недорешено. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений. К сожалению, из-за нехватки времени я не смог изложить весь имеющийся у меня материал, но даже по тому материалу, который здесь изложен, может возникнуть множество вопросов. Я надеюсь, что моих знаний хватит для того, чтобы дать ответ на большинство вопросов. Итак, я приступаю к изложению материала.

Математика... выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

Аристотель.

Историческая справка

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

уравнения. Алгебраические уравнения

Основные определения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв ). Для записи тождества наряду со знаком

также используется знак .

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:

, , ... – или теми же буквами, снабженными индексами: , , ... или , , ...); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: , , , ... – или теми же буквами, снабженными индексами: , , ... или , , ...).

В общем виде уравнение может быть записано так:

(, , ..., ).

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

Как правило, уравнения появляются в задачах, в которых требуется найти некую величину. Уравнение позволяет сформулировать задачу на языке алгебры. Решив уравнение, мы получим значение нужной величины, которая называется неизвестной. «У Андрея в кошельке несколько рублей. Если умножить это число на 2, а затем вычесть 5, получится 10. Сколько денег у Андрея?» Обозначим неизвестную сумму денег за х и запишем уравнение: 2х-5=10.

Чтобы говорить о способах решения уравнений , сначала нужно определить основные понятия и познакомиться с общепринятыми обозначениями. Для разных типов уравнений существуют различные алгоритмы их решения. Проще всего решаются уравнения первой степени с одной неизвестной. Многим со школы знакома формула для решения квадратных уравнений. Приемы высшей математики помогут решить уравнения более высокого порядка. Множество чисел, на которых определено уравнение, тесно связано с его решениями. Также интересна взаимосвязь между уравнениями и графиками функций, так как представление уравнений в графическом виде великолепно помогает в их .

Описание . Уравнение - это математическое равенство с одной или несколькими неизвестными величинами, например 2х+3у=0.

Выражения по обе стороны знака равенства называются левой и правой частями уравнения . Буквами латинского алфавита обозначаются неизвестные. Хотя число неизвестных может быть любым, далее мы расскажем только об уравнениях с одной неизвестной, которую будем обозначать за х.

Степень уравнения - это максимальная степень, в которую возводится неизвестная. Например,
$3x^4+6x-1=0$ - уравнение четвертой степени, $x-4x^2+6x=8$ - уравнение второй степени.

Числа, на которые умножается неизвестная, называются коэффициентами . В предыдущем примере неизвестная в четвертой степени имеет коэффициент 3. Если при замене х на это число выполняется заданное равенство, то говорят, что это число удовлетворяет уравнению. Оно называется решением уравнения , или его корнем. Например, 3 является корнем, или решением, уравнения 2х+8=14, так как 2*3+8=6+8=14.

Решение уравнений . Допустим, что мы хотим решить уравнение 2х+5=11.

Можно подставить в него какое-нибудь значение х, например х=2. Заменим х на 2 и получим: 2*2+5=4+5=9.

Здесь что-то не так, потому что в правой части уравнения мы должны были получить 11. Попробуем х=3: 2*3+5=6+5=11.

Ответ верный. Получается, что если неизвестная принимает значение 3, то равенство выполняется . Следовательно, мы показали, что число 3 является решением уравнения.

Способ, который мы использовали для решения этого уравнения, называется методом подбора . Очевидно, что он неудобен в использовании. Более того, его даже нельзя назвать методом. Чтобы убедиться в этом, достаточно попробовать применить его к уравнению вида $x^4-5x^2+16=2365$.

Методы решения . При существуют так называемые «правила игры», с которыми будет полезно ознакомиться. Наша цель - определить значение неизвестной, которое удовлетворяет уравнению. Поэтому нужно каким-либо способом выделить неизвестную. Для этого необходимо перенести члены уравнения из одной его части в другую. Первое правило решения уравнений таково…

1. При переносе члена уравнения из одной части в другую его знак меняется на противоположный: плюс меняется на минус и наоборот. Рассмотрим в качестве примера уравнение 2х+5=11. Перенесем 5 из левой части в правую: 2х=11-5. Уравнение примет вид 2х=6.

Перейдем ко второму правилу.
2. Обе части уравнения можно умножать и делить на число, не равное нулю. Применим это правило к нашему уравнению: $x=\frac62=3$. В левой части равенства осталась только неизвестная х, следовательно, мы нашли ее значение и решили уравнение.

Мы только что рассмотрели простейшую задачку - линейное уравнение с одной неизвестной . Уравнения этого типа всегда имеют решение, более того, их всегда можно решить с помощью простейших операций: сложения, вычитания, умножения и деления. Увы, не все уравнения столь же просты. Более того, степень их сложности возрастает очень быстро. Например, уравнения второй степени легко решит любой ученик средней школы, но способы решения систем линейных уравнений или уравнений высших степеней изучаются только в старших классах.

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.