Биографии Характеристики Анализ

Статистические ряды распределения. Статистическое дискретное распределение

Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось п 1 раз, х 2 - п 2 раз, х к - п к раз и - объем выборки. Наблюдаемые значения х 1 называют вариантами, а последовательность вариант, записанных в возрастающем порядке - вариационным рядом .

Число наблюдений варианты называют частотой, а ее отношение к объему выборки - относительной частотой .

Определение. Статистическим (эмпирическим) законом распределения выборки, или просто статистическим распределением выборки называют последовательность вариант и соответствующих им частот п i или относительных частот .

Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:

(сумма всех относительных частот равна единице ).

Пример 1 . При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72,74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.

Решение. 1) Статистический ряд распределения частот:

Контроль: 0,1 + 0,2 + 0,4 + 0,1 + 0,2 = 1.

Полигоном частот называют ломаную, отрезки, которой соединяют точки Для построения полигона частот на оси абсцисс откладывают варианты х 2 , а на оси ординат - соответствующие им частоты п i . Точки соединяют отрезками и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки . Для построения полигона относительных частот на оси абсцисс откладывают варианты х i , а на оси ординат соответствующие им частоты w i . Точки соединяют отрезками и получают полигон относительных частот

Пример 2. Постройте полигон частот и полигон относительных частот по данным примера 1.

Решение: Используя дискретный статистический ряд распределения, составленный в примере 1 построим полигон частот и полигон относительных частот:


2. Статистический интервальный ряд распределения. Гистограмма .

Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интерисующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно (или невозможно) учитывать, то варианты группируются в интервалы.


Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

1. R(размах) = X max -X min

2. k- число групп

3. (формула Стерджеса)

4. a = x min , b = x max

Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:

Интервалы группировки ...
Частоты ...

Аналогическую таблицу можно образовать, заменяя частоты n i относительными частотами.

Выборка, полученная при проведении экспериментального исследования, представляет собой неупорядочен­ный набор чисел, записанных в той последовательности, в которой производились измерения. Обычно выборка оформляется в виде таблицы, в первой строке (или столбце) которой стоит номер опыта i , а во второй (втором) - зафиксированное значение случайной величины признака. В таком виде выборка представляет собой первичную форму записи статистического материала, который может быть обработан различными способами. В качестве примера рассмотрим результаты, показанные на легкоатлетических соревнованиях толкателями ядра и приведенные в таблице 1. В первой строке этой таблицы записаны номера измерений, а во второй - их численные значения в метрах.

Таблица 1

Результаты соревнований в толкании ядра

x i 16,36 14,91 15,31 14,26 14,77 13,88 14,97 14,01 14,07 14,48
x i 14,44 14,81 13,81 15,15 15,23 15,69 14,29 14,15 14,57 13,92
x i 13,62 14,92 15,73 13,22 14,65 14,8 13,04 15,1 13,3

Как видно из таблицы 1, простая статистическая совокупность перестает быть удобной формой представления статистического материала даже при относительно небольшом объеме выборки: она является достаточно громоздкой и мало наглядной. Проанализировать полученные экспериментальные данные и тем более сделать какие-либо выводы на их основе весьма затруднительно. Исходя из этого, полученный статистический материал должен быть обработан для проведения дальнейшего исследования. Простейшим способом обработки выборки является ранжирование. Ранжированием называют расстановку вариант в порядке возрастания или убывания их значений. Ниже в таблице 2 приведена ранжированная выборка, элементы которой расположены в порядке возрастания.

Таблица 2

Ранжированные результаты соревнований в толкании ядра

x i 13,04 13,22 13,3 13,62 13,81 13,88 13,92 14,01 14,07 14,15
x i 14,26 14,29 14,44 14,48 14,57 14,65 14,77 14,8 14,81 14,91
x i 14,92 14,97 15,1 15,15 15,23 15,31 15,69 15,73 16,36

Но и в таком виде полученные экспериментальные данные плохо обозримы и мало пригодны для непосредственного анализа. Именно поэтому для придания статистическому материалу большей компактности и наглядности он должен быть подвергнут дальнейшей обработке – строится так называемый статистический ряд. Построение статистического ряда начинается с группировки.

Группировкой называется процесс упорядочения и систематизации данных, полученных в ходе проведения эксперимента, направленный на извлечение содержащейся в них информации. В процессе группировки осуществляется распределение вариант выборки по группам или интервалам группировки, каждый из которых содержит некоторый диапазон значений изучаемого признака. Процесс группировки начинается с разбиения всего диапазона варьирования признака на интервалы группировки.

Для каждой конкретной цели статистического исследования, объема рассматриваемой выборки и степени варьирования признака в ней существует оптимальное значение числа интервалов и ширины каждого из них. Ориентировочное значение оптимального числа интервалов k может быть определено, исходя из объема выборки п либо с помощью данных, приведенных в таблице 3., либо с помощью формулы Стэрджесса:

k = 1 + 3,322 lgn .

Таблица 3

Определение числа интервалов группировки

Получаемое по формуле значение k почти всегда оказывается дробной величиной, которую необходимо округлить до целого числа, поскольку количество интервалов не может быть дробным. Практика показывает, что, как правило, лучше округлять в меньшую сторону, ибо формула дает хорошие результаты при больших значениях n , а при малых - несколько завышенные.

Рассмотрим группировку вариант выборки на конкретном примере. Для этого обратимся к примеру с толкателями ядра (см. таблицы 1, 2). Определение числа интервалов группировки будем производить на основе данных, приведенных в таблице 3. При объеме выборки n =29 число интервалов целесообразно выбрать равным k =5 (формула Стэрджесса дает значение k =5,9).

Условимся использовать в рассматриваемом примере интервалы равной ширины. В этом случае после того, как число интервалов группировки определено, следует вычислить ширину каждого из них с помощью соотношения:

Здесь h - ширина интервалов, а х max и х min - соответственно максимальное и минимальное значение признака в выборке. Величины х max и х min определяются непосредственно по таблице исходных данных (см. таблицу 2). В рассматриваемом случае:

(м).

Здесь необходимо остановиться на точности определения ширины интервала. Возможны две ситуации: точность вычисленного значения h совпадает с точностью проведения эксперимента или превышает ее. В последнем случае возможно использование двух подходов для определения границ интервалов. С теоретической точки зрения наиболее правильно использовать полученное значение h для построения интервалов. Такой подход не внесет дополнительных искажений, связанных с обработкой экспериментальных данных. Однако для практических целей в статистических исследованиях, относящихся к физической культуре и спорту, принято округлять полученное значение h до точности измерения данных. Связано это с тем, что для наглядного представления получаемых результатов удобно, чтобы границами интервалов являлись возможные значения признака. Таким образом, полученное значение ширины интервалов следует округлить с учетом точности проводимого эксперимента. Особо отметим, что округление необходимо производить не в общепринятом математическом смысле, а в сторону увеличения, т.е. с избытком, чтобы не уменьшить общий диапазон варьирования признака - сумма ширины всех интервалов не должна быть меньше разности между максимальным и минимальным значениями признака. В рассматриваемом примере экспериментальные данные определены с точностью до сотых (0,01 м), поэтому полученное выше значение ширины интервалов следует округлить с избытком с точностью до сотых. В результате получаем:

h = 0,67 (м).

После определения ширины интервалов группировки следует определить их границы. Нижнюю границу первого интервала целесообразно принять равной минимальному значению признака в выборке x min:

x Н1 = x min .

В рассматриваемом примере x Н1 = 13,04 (м).

Для получения верхней границы первого интервала (x В1) следует к значению нижней границы первого интервала прибавить значение ширины интервала:

x В1 = х Н1 +h .

Заметим, что верхняя граница каждого интервала (здесь – первого) будет являться одновременно и нижней границей следующего (в данном случае второго) интервала: x Н2 = x В1 .

Подобным образом определяются значения нижних и верхних границ всех оставшихся интервалов:

x В i =x Н i +1 = x Н i +h .

В рассматриваемом примере:

x В1 = x Н2 = x Н1 +h =13,04+0,67=13,71 (м),

x В2 = x Н3 = x Н2 +h =13,71+0,67=14,38 (м),

x В3 = x Н4 = x Н3 +h =14,38+0,67=15,05 (м),

x В4 = x Н5 = x Н4 +h =15,05+0,67=15,72 (м),

x В5 = x Н5 +h =15,72+0,67=16,39 (м).

Перед группировкой вариант введем понятие срединного значения интервала x i , равного значению признака, равноудаленного от концов этого интервала. Учитывая, что оно отстоит от нижней границы на величину, равную половине ширины интервала, для его определения удобно воспользоваться соотношением:

x i = x Н i + h /2,

где x Н i - нижняя граница i -ro интервала, а h - его ширина. Срединные значения интервалов будут использоваться в дальнейшем при обработке сгруппированных данных.

После определения границ всех интервалов следует распределить выборочные варианты по этим интервалам. Но предварительно следует решить вопрос о том, к какому интервалу отнести значение, находящееся в точности на границе двух интервалов, т. е. когда значение варианты совпадает с верхней границей одного и нижней границей соседнего с ним интервала. В таком случае варианта может быть отнесена к любому из двух соседних интервалов и, для исключения неоднозначности при группировке, условимся в таких случаях относить варианты к верхнему интервалу. В пользу такого подхода можно привести следующий довод. Поскольку минимальное значение признака совпадает с нижней границей первого интервала и входит в этот интервал, то варианту, попадающую на границу двух интервалов, следует отнести к тому из них, значение нижней границы которого равно рассматриваемой варианте.

Перейдем к рассмотрению статистической таблицы - см. таблицу 4, которая состоит из семи столбцов.

Таблица 4

Табличное представление результатов в толкании ядра

В первых трех столбцах статистической таблицы содержатся соответственно номера интервалов группировки i , их границы x Н i - x В i и срединные значения интервалов x i .

В четвертом столбце располагаются частоты интервалов. Частотой интервала называется число, показывающее сколько вариант, т.е. результатов измерений попало в данный интервал. Для обозначения этой величины принято использовать символ n i . Сумма всех частот всех интервалов всегда равна объему выборки п ,что можно использовать для проверки правильности проведенной группировки.

Пятый столбец таблицы 4 предназначен для занесения в негонакопленной частоты интервала - числа, полученного суммированием частоты текущего интервала с частотами всех предыдущих интервалов. Накопленную частоту принято обозначать латинской буквой N i . Накопленная частота показывает, сколько вариант имеют значения не больше, чем верхняя граница интервала.

В шестой столбец таблицы помещается частость. Частостью называется частота, представленная в относительном выражении, т.е. отношение частоты к объему выборки. Сумма всех частостей всегда равна 1. Для обозначения частости используется символ f i :

f i =n i /n .

Частость интервала связана с вероятностью попадания случайной величины в этот интервал. Согласно теореме Бернулли, при неограниченном увеличении числа опытов частость события сходится по вероятности к его вероятности. Если понимать под событием попадание значения исследуемой величины в определенный интервал, то становится ясно, что при большом числе опытов частость интервала приближается к вероятности попадания измеряемой случайной величины в этот интервал.

И частота, и частость характеризуют повторяемость результатов в выборке. Сравнивая их статистическое значение, следует отметить, что информативность частости существенно выше, чем у частоты. Действительно, если, как, например, в таблице 4 частота второго интервала равна 8 и, значит, 8 результатов попало в этот интервал, то трудно понять - мало это или много; если в выборке 1000 вариант, то такая частота мала, а если 20, то велика. В таком случае для объективной оценки необходимо сопоставить значение частоты с объемом выборки. Если же воспользоваться частостью, то сразу можно сказать, какая доля результатов попала в рассматриваемый интервал (примерно 28% в приведенном примере). Поэтому частость дает более наглядное представление о повторяемости признака в выборке. Особо следует отметить другое важное достоинство частости. Ее использование позволяет сопоставлять выборки различного объема. Частота для таких целей не применима.

В седьмом столбце таблицы расположена накопленная частость. Накопленной частостью является отношение накопленной частоты к объему выборки. Накопленная частость обозначается буквой F i :

Накопленная частость показывает, какая доля вариант выборки имеет значения, не превосходящие значения верхней границы интервала.

Последняя строка статистической таблицы используется для контроля над проведением группировки.

После заполнения таблицы вернемся к определению статистического ряда. Как правило, статистический ряд оформляется в виде таблицы, в первой строке которой перечислены интервалы, а во второй – соответствующие им частости или частоты. Таким образом, статистическим рядом называется двойной числовой ряд, устанавливающий связь между численным значением исследуемого признака и его повторяемостью в выборке. Существенным достоинством статистических рядов является то, что они, в отличие от статистических совокупностей, дают наглядное представление о характерных особенностях варьирования признаков.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Наиболее простым способом обобщения статистического материала является построение рядов. Результатом сводки статистического исследования могут быть ряды распределения.

После определения группировочного признака, количества групп и интервалов группировки данные сводки и группировки представляются в виде рядов распределения и оформляются в виде статистических таблиц.

Ряд распределния является одним из видов группировок.

Рядом распределения в статистике называется упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку: по качественному или количественному.

  1. Виды рядов распределения

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

    атрибутивными называют ряды распределения, построенные по качественными признакам;

    вариационными называют ряды распределения, построенные в порядке возрастания или убывания значений количественного признака.

Вариационный ряд распределения состоит из двух столбцов. В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются. Дискретная варианта - выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд. Во втором столбце содержится количество конкретных вариант, выраженное через частоты или частости:

    частоты - это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака; сумма всех частот должна быть равна численности единиц всей совокупности;

    частости - это частоты выраженные в процентах к итогу; сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Вариационный ряд характеризуется двумя элементами: вариантой (Х) и частотой (f). Варианта – это отдельное значение признака отдельной единицы или группы совокупности. Число, показывающее, сколько раз встречается то или иное значение признака, называется частотой. Если частота выражена относительным числом, то она называется частостью.

Вариационный ряд может быть:

    интервальным, когда определены границы «от» и «до», интервальные ряды распределения можно представить графически в виде гистограммы;

    дискретным, когда изучаемый признак характеризуется определенным числом.

  1. Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:

    полигона;

    гистограммы;

    кумуляты;

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) - частоты или частости.

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат - накопленные частоты или частости.

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака - на оси ординат.

Разновидностью кумуляты является кривая концентрации или график Лоренца. Для построения кривой концентрации на обе оси прямоугольной системы координат наносится масштабная шкала в процентах от 0 до 100. При этом на оси абсцисс указывают накопленные частости, а на оси ординат - накопленные значения доли (в процентах) по объему признака.

Предположим, что в результате измерений параметров исследуемых объектов имеется статистическая совокупность, представляющая собой множество значений СВ Х, полученное в результате измерений(наблюдений).

Построение гистограммы осуществляется в следующем порядке.

1. Весь диапазон измерений СВ () делится на интервалы и подсчитывается количество значений , приходящееся на каждый -й интервал. Это число делится на общее количество измерений (изделий) и определяется частота, соответствующая данному интервалу.

Сумма частот всех разрядов очевидно должна быть равна единице.

2. Строится таблица 1.1 , в которой приведены интервалы в порядке их расположения вдоль оси абсцисс и соответствующие частоты. Эта таблица называется статистическим рядом .

Таблица 1.1

Статистический ряд значений СВ

Интервал,
Количество значений
Частота,

Здесь -обозначение i-го интервала; - его границы; k- число интервалов.

При группировке наблюденных значений СВ по интервалам может возникнуть ситуация, при которой значение попадает на границу интервала. В этом случае встает вопрос о том, к какому разряду отнести это значение. Рекомендуется считать данное значение принадлежащим в равной мере обоим интервалам и прибавлять к числам того и другого интервала по 0,5.

3. Определение числа интервалов.

Число интервалов, на которые следует группировать статистический ряд, не должно быть слишком большим, поскольку в этом случае ряд распределения становится невыразительным, и частоты в нем обнаруживают незакономерные колебания. С другой стороны оно не должно быть слишком малым, так как при малом числе интервалов свойства распределения описываются статистическим рядом слишком грубо.

Практика показывает, что в большинстве случаев рационально выбирать число интервалов в пределах 10¸20. Чем больше и однороднее статистический материал, тем большее количество интервалов можно выбирать при составлении статистического ряда.

Для определения количества интервалов можно также использовать эмпирические формулы, предлагаемые различными авторами. В работе в качестве таких формул предлагается использовать следующие выражения

Эти выражения получены для наиболее часто встречающихся на практике распределений с эксцессом, находящимся в пределах от 1,8 до 6, то есть от равномерного до распределения Лапласа.

Длины интервалов могут быть как одинаковыми, так и различными. Очевидно, что проще их брать одинаковыми. Однако, при оформлении данных о СВ, распределенных слишком неравномерно, иногда бывает удобно выбирать в области наибольшей плотности распределения интервалы более узкие, чем в области малой плотности.

4. Оформление гистограммы графически.

Статистический ряд оформляется графически в виде так называемой гистограммы (рис.1.1). Она строится следующим образом. По оси абсцисс откладываются интервалы, а на каждом из интервалов как основании строится прямоугольник, площадь которого равна частоте данного интервала. Для построения гистограммы нужно частоту каждого интервала разделить на его длину и полученное число взять в качестве высоты прямоугольника. В случае равных по длине интервалов высоты прямоугольников пропорциональны соответствующим частотам. Из способа построения гистограммы следует, что полная площадь ее равна единице.

Очевидно, что при увеличении числа опытов можно выбирать все более мелкие интервалы, и при этом верх гистограммы будет все более приближаться к кривой, ограничивающей площадь, равную единице. Эта кривая представляет собой график функции плотности распределения вероятности f(x) (дифференциальная функция распределения для непрерывных СВ).

5. Статистическая функция распределения.

Пользуясь данными статистического ряда, можно построить и статистическую(эмпирическую) функцию распределения СВ Х. Для этого из ряда берутся точки x i границ интервалов и соответствующие им суммы частот p i , приходящиеся на прямоугольники гистограммы, лежащие левее этих точек. Эти частоты и их суммы обозначают как F(x i). Тогда получим систему выражений, определяющих точки статистической функции распределения. Соединяя их ломаной линией или плавной кривой, получим приближенный график статистической функции распределения (интегральной функции распределения для непрерывных СВ) F(x) (рис.1.2).

Важнейшим этапом исследования социально-экономических явлений и процессов является систематизация первичных данных и получение на этой основе сводной характеристики всего объекта при помощи обобщающих показателей, что достигается путем сводки и группировки первичного статистического материала.

Статистическая сводка - это комплекс последовательных операций по обобщению конкретных единичных фактов, образующих совокупность, для выявления типичных черт и закономерностей, присущих изучаемому явлению в целом. Проведение статистической сводки включает следующие этапы :

  • выбор группировочного признака;
  • определение порядка формирования групп;
  • разработка системы статистических показателей для характеристики групп и объекта в целом;
  • разработка макетов статистических таблиц для представления результатов сводки.

Статистической группировкой называется расчленение единиц изучаемой совокупности на однородные группы по определенным существенным для них признакам. Группировки являются важнейшим статистическим методом обобщения статистических данных, основой для правильного исчисления статистических показателей.

Различают следующие виды группировок: типологические, структурные, аналитические. Все эти группировки объединяет то, что единицы объекта разделены на группы по какому-либо признаку.

Группировочным признаком называется признак, по которому проводится разбиение единиц совокупности на отдельные группы. От правильного выбора группировочного признака зависят выводы статистического исследования. В качестве основания группировки необходимо использовать существенные, теоретически обоснованные признаки (количественные или качественные).

Количественные признаки группировки имеют числовое выражение (объем торгов, возраст человека, доход семьи и т. д.), а качественные признаки группировки отражают состояние единицы совокупности (пол, семейное положение, отраслевая принадлежность предприятия, его форма собственности и т. д.).

После того, как определено основание группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность. Число групп зависит от задач исследования и вида показателя, положенного в основание группировки, объема совокупности, степени вариации признака.

Например, группировка предприятий по формам собственности учитывает муниципальную, федеральную и собственность субъектов федерации. Если группировка производится по количественному признаку, то тогда необходимо обратить особое внимание на число единиц исследуемого объекта и степень колеблемости группировочного признака.

Когда определено число групп, то следует определить интервалы группировки. Интервал - это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет свою величину, верхнюю и нижнюю границы или хотя бы одну из них.

Нижней границей интервала называется наименьшее значение признака в интервале, а верхней границей - наибольшее значение признака в интервале. Величина интервала представляет собой разность между верхней и нижней границами.

Интервалы группировки в зависимости от их величины бывают: равные и неравные. Если вариация признака проявляется в сравнительно узких границах и распределение носит равномерный характер, то строят группировку с равными интервалами. Величина равного интервала определяется по следующей формуле :

где Хmax, Хmin - максимальное и минимальное значения признака в совокупности; n - число групп.

Простейшая группировка, в которой каждая выделенная группа характеризуется одним показателем представляет собой ряд распределения.

Статистический ряд распределения - это упорядоченное распределение единиц совокупности на группы по определенному признаку. В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения.

Атрибутивными называют ряды распределения, построенные по качественным признакам, то есть признакам, не имеющим числового выражения (распределение по видам труда, по полу, по профессии и т.д.). Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.

Вариационными рядами называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами называются отдельные значения признака, которые он принимает в вариационном ряду, то есть конкретное значение варьирующего признака.

Частотами называются численности отдельных вариант или каждой группы вариационного ряда, то есть это числа, которые показывают, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем. Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100%.

В зависимости от характера вариации признака различают три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный вариационный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Дискретный вариационный ряд характеризует распределение единиц совокупности по дискретному признаку, принимающему только целые значения. Например, тарифный разряд, количество детей в семье, число работников на предприятии и др.

Если признак имеет непрерывное изменение, которые в определенных границах могут принимать любые значения («от - до»), то для этого признака нужно строить интервальный вариационный ряд . Например, размер дохода, стаж работы, стоимость основных фондов предприятия и др.

Примеры решения задач по теме «Статистическая сводка и группировка»

Задача 1 . Имеется информация о количестве книг, полученных студентами по абонементу за прошедший учебный год.

Построить ранжированный и дискретный вариационные ряды распределения, обозначив элементы ряда.

Решение

Данная совокупность представляет собой множество вариантов количества получаемых студентами книг. Подсчитаем число таких вариантов и упорядочим в виде вариационного ранжированного и вариационного дискретного рядов распределения.

Задача 2 . Имеются данные о стоимости основных фондов у 50 предприятий, тыс. руб.

Построить ряд распределения, выделив 5 групп предприятий (с равными интервалами).

Решение

Для решения выберем наибольшее и наименьшее значения стоимости основных фондов предприятий. Это 30,0 и 10,2 тыс. руб.

Найдем размер интервала: h = (30,0-10,2):5= 3,96 тыс. руб.

Тогда в первую группу будут входить предприятия, размер основных фондов которых составляет от 10,2 тыс. руб. до 10,2+3,96=14,16 тыс. руб. Таких предприятий будет 9. Во вторую группу войдут предприятия, размер основных фондов которых составит от 14,16 тыс. руб. до 14,16+3,96=18,12 тыс. руб. Таких предприятий будет 16. Аналогично найдем число предприятий, входящих в третью, четвертую и пятую группы.

Полученный ряд распределения поместим в таблицу.

Задача 3 . По ряду предприятий легкой промышленности получены следующие данные:

Произведите группировку предприятий по числу рабочих, образуя 6 групп с равными интервалами. Подсчитайте по каждой группе:

1. число предприятий
2. число рабочих
3. объем произведенной продукции за год
4. среднюю фактическую выработку одного рабочего
5. объем основных средств
6. средний размер основных средств одного предприятия
7. среднюю величину произведенной продукции одним предприятием

Результаты расчета оформите в таблицы. Сделайте выводы.

Решение

Для решения выберем наибольшее и наименьшее значения среднесписочного числа рабочих на предприятии. Это 43 и 256.

Найдем размер интервала: h = (256-43):6 = 35,5

Тогда в первую группу будут входить предприятия, среднесписочное число рабочих на которых составляет от 43 до 43+35,5=78,5 человек. Таких предприятий будет 5. Во вторую группу войдут предприятия, среднесписочное число рабочих на которых составит от 78,5 до 78,5+35,5=114 человек. Таких предприятий будет 12. Аналогично найдем число предприятий, входящих в третью, четвертую, пятую и шестую группы.

Полученный ряд распределения поместим в таблицу и вычислим необходимые показатели по каждой группе:

Вывод : Как видно из таблицы, вторая группа предприятий является самой многочисленной. В нее входят 12 предприятий. Самыми малочисленными являются пятая и шестая группы (по два предприятия). Это самые крупные предприятия (по числу рабочих).

Поскольку вторая группа самая многочисленная, объем произведенной продукции за год предприятиями этой группы и объем основных средств значительно выше других. Вместе с тем средняя фактическая выработка одного рабочего на предприятиях этой группы наибольшей не является. Здесь лидируют предприятия четвертой группы. На эту группу приходится и довольно большой объем основных средств.

В заключении отметим, что средний размер основных средств и средняя величина произведенной продукции одного предприятия прямо пропорциональны размерам предприятия (по числу рабочих).