ชีวประวัติ ลักษณะเฉพาะ การวิเคราะห์

คำที่คล้ายกันคืออะไร? การลดเงื่อนไขที่คล้ายกัน (Wolfson G.I.)

ผลคูณคือจำนวนที่หารด้วย หมายเลขที่กำหนดไร้ร่องรอย ตัวคูณร่วมน้อย (LCM) ของกลุ่มตัวเลขคือจำนวนที่น้อยที่สุดที่หารด้วยแต่ละตัวเลขในกลุ่มโดยไม่ทิ้งเศษ ในการหาตัวคูณร่วมน้อย คุณต้องหาตัวประกอบเฉพาะของตัวเลขที่กำหนด LCM ยังสามารถคำนวณได้โดยใช้วิธีการอื่นๆ อีกหลายวิธีที่ใช้กับกลุ่มที่มีตัวเลขตั้งแต่สองตัวขึ้นไป

ขั้นตอน

อนุกรมของทวีคูณ

    ดูตัวเลขเหล่านี้สิวิธีที่อธิบายไว้ ณ ที่นี้เหมาะที่สุดเมื่อให้ตัวเลขสองตัว ซึ่งแต่ละตัวมีค่าน้อยกว่า 10 ถ้าให้ ตัวเลขใหญ่ให้ใช้วิธีอื่น

    • เช่น หาตัวคูณร่วมน้อยของ 5 กับ 8 ซึ่งเป็นตัวเลขเล็กๆ คุณจึงใช้วิธีนี้ได้
  1. ผลคูณคือตัวเลขที่หารด้วยจำนวนที่กำหนดโดยไม่มีเศษ สามารถพบได้ในตารางสูตรคูณ

    • ตัวอย่างเช่น ตัวเลขที่เป็นทวีคูณของ 5 ได้แก่ 5, 10, 15, 20, 25, 30, 35, 40
  2. เขียนชุดตัวเลขที่เป็นจำนวนทวีคูณของจำนวนแรกทำสิ่งนี้ด้วยการคูณตัวเลขแรกเพื่อเปรียบเทียบตัวเลขสองชุด

    • ตัวอย่างเช่น ตัวเลขที่เป็นทวีคูณของ 8 คือ 8, 16, 24, 32, 40, 48, 56 และ 64
  3. ค้นหาจำนวนที่น้อยที่สุดที่มีอยู่ในชุดทวีคูณทั้งสองชุดคุณอาจต้องเขียนชุดคำคูณยาวๆ เพื่อค้นหา จำนวนทั้งหมด- จำนวนที่น้อยที่สุดที่มีอยู่ในตัวคูณทั้งสองชุดคือตัวคูณร่วมน้อย

    • ตัวอย่างเช่น, จำนวนที่น้อยที่สุดซึ่งมีอยู่ในชุดทวีคูณของ 5 และ 8 คือเลข 40 ดังนั้น 40 จึงเป็นตัวคูณร่วมน้อยของ 5 และ 8

    การแยกตัวประกอบเฉพาะ

    1. ดูตัวเลขเหล่านี้สิวิธีที่อธิบายไว้ ณ ที่นี้เหมาะที่สุดเมื่อระบุตัวเลขสองตัว ซึ่งแต่ละตัวมีค่ามากกว่า 10 หากระบุ ตัวเลขที่น้อยกว่าให้ใช้วิธีอื่น

      • เช่น ค้นหาตัวคูณร่วมน้อยของตัวเลข 20 และ 84 แต่ละตัวเลขมีค่ามากกว่า 10 คุณจึงใช้วิธีนี้ได้
    2. แยกตัวประกอบจำนวนแรกให้เป็นตัวประกอบเฉพาะ.นั่นคือคุณต้องค้นหาจำนวนเฉพาะที่เมื่อคูณแล้วจะได้จำนวนที่กำหนด เมื่อคุณพบปัจจัยเฉพาะแล้ว ให้เขียนพวกมันว่ามีความเท่าเทียมกัน

      • ตัวอย่างเช่น, 2 × 10 = 20 (\displaystyle (\mathbf (2) )\times 10=20)และ 2 × 5 = 10 (\displaystyle (\mathbf (2) )\times (\mathbf (5) )=10)- ดังนั้น ตัวประกอบเฉพาะของจำนวน 20 คือตัวเลข 2, 2 และ 5 เขียนเป็นนิพจน์:
    3. แยกตัวประกอบจำนวนที่สองให้เป็นตัวประกอบเฉพาะ.ทำแบบเดียวกับที่คุณแยกตัวประกอบจำนวนแรก นั่นคือ หาจำนวนเฉพาะที่เมื่อคูณแล้วจะได้จำนวนที่กำหนด

      • ตัวอย่างเช่น, 2 × 42 = 84 (\displaystyle (\mathbf (2) )\times 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\times 6=42)และ 3 × 2 = 6 (\displaystyle (\mathbf (3) )\times (\mathbf (2) )=6)- ดังนั้น ตัวประกอบเฉพาะของเลข 84 คือตัวเลข 2, 7, 3 และ 2 เขียนเป็นนิพจน์:
    4. เขียนตัวประกอบร่วมของตัวเลขทั้งสอง.เขียนตัวประกอบเช่นการดำเนินการคูณ ขณะที่คุณเขียนตัวประกอบแต่ละตัว ให้ขีดฆ่าทั้งสองนิพจน์ (นิพจน์ที่อธิบายการแยกตัวประกอบของตัวเลขให้เป็นตัวประกอบเฉพาะ)

      • ตัวอย่างเช่น ตัวเลขทั้งสองมีตัวประกอบร่วมกันคือ 2 ดังนั้นจงเขียน 2 × (\displaystyle 2\times )และขีดฆ่า 2 ในทั้งสองพจน์
      • สิ่งที่ตัวเลขทั้งสองมีเหมือนกันคือตัวประกอบของ 2 อีกตัว ดังนั้นจงเขียนไว้ 2 × 2 (\รูปแบบการแสดงผล 2\คูณ 2)และขีดฆ่า 2 ตัวที่สองในทั้งสองนิพจน์
    5. เพิ่มตัวประกอบที่เหลือในการคูณปัจจัยเหล่านี้เป็นปัจจัยที่ไม่ได้ขีดฆ่าในทั้งสองนิพจน์ กล่าวคือ ปัจจัยที่ไม่เหมือนกันในตัวเลขทั้งสอง

      • ตัวอย่างเช่นในนิพจน์ 20 = 2 × 2 × 5 (\รูปแบบการแสดงผล 20=2\คูณ 2\คูณ 5)สอง (2) ทั้งสองถูกขีดฆ่าเนื่องจากเป็นปัจจัยร่วม ไม่มีการขีดฆ่าตัวประกอบ 5 ดังนั้นเขียนการดำเนินการคูณดังนี้: 2 × 2 × 5 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5)
      • ในการแสดงออก 84 = 2 × 7 × 3 × 2 (\รูปแบบการแสดงผล 84=2\คูณ 7\คูณ 3\คูณ 2)ทั้งสอง (2) ก็ถูกขีดฆ่าเช่นกัน ไม่มีการขีดฆ่าตัวประกอบ 7 และ 3 ดังนั้นให้เขียนการดำเนินการคูณดังนี้: 2 × 2 × 5 × 7 × 3 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5\คูณ 7\คูณ 3).
    6. คำนวณตัวคูณร่วมน้อย.เมื่อต้องการทำเช่นนี้ ให้คูณตัวเลขในการดำเนินการคูณที่เป็นลายลักษณ์อักษร

      • ตัวอย่างเช่น, 2 × 2 × 5 × 7 × 3 = 420 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5\คูณ 7\คูณ 3=420)- ดังนั้นตัวคูณร่วมน้อยของ 20 กับ 84 คือ 420

    การหาปัจจัยร่วมกัน

    1. วาดตารางเหมือนกับเกมโอเอกซ์ตารางดังกล่าวประกอบด้วยเส้นคู่ขนานสองเส้นที่ตัดกัน (ที่มุมฉาก) กับเส้นคู่ขนานอีกสองเส้น นี่จะทำให้คุณมีสามแถวและสามคอลัมน์ (ตารางจะดูเหมือนไอคอน # มาก) เขียนตัวเลขแรกในบรรทัดแรกและคอลัมน์ที่สอง เขียนตัวเลขตัวที่สองในแถวแรกและคอลัมน์ที่สาม

      • เช่น หาตัวคูณร่วมน้อยของตัวเลข 18 และ 30 เขียนเลข 18 ในแถวแรกและคอลัมน์ที่สอง และเขียนเลข 30 ในแถวแรกและคอลัมน์ที่สาม
    2. หาตัวหารร่วมของตัวเลขทั้งสอง.เขียนลงในแถวแรกและคอลัมน์แรก เป็นการดีกว่าที่จะมองหาปัจจัยสำคัญ แต่นี่ไม่ใช่ข้อกำหนด

      • ตัวอย่างเช่น 18 และ 30 เป็นเลขคู่ ดังนั้นจึงเป็นเลขคู่ ตัวหารร่วมตัวเลขจะเป็น 2 ดังนั้นให้เขียน 2 ในแถวแรกและคอลัมน์แรก
    3. หารแต่ละตัวเลขด้วยตัวหารตัวแรกเขียนแต่ละผลหารภายใต้จำนวนที่เหมาะสม ผลหารคือผลลัพธ์ของการหารตัวเลขสองตัว

      • ตัวอย่างเช่น, 18 ۞ 2 = 9 (\displaystyle 18\div 2=9)ดังนั้นเขียน 9 ต่ำกว่า 18
      • 30 ۞ 2 = 15 (\displaystyle 30\div 2=15)ดังนั้นเขียน 15 ลงไปต่ำกว่า 30
    4. หาตัวหารร่วมของผลหารทั้งสอง.หากไม่มีตัวหารดังกล่าว ให้ข้ามสองขั้นตอนถัดไป หรือเขียนตัวหารในแถวที่สองและคอลัมน์แรก

      • เช่น 9 และ 15 หารด้วย 3 ลงตัว ดังนั้นให้เขียน 3 ในแถวที่สองและคอลัมน์แรก
    5. หารแต่ละผลหารด้วยตัวหารที่สอง.เขียนผลการหารแต่ละผลภายใต้ผลหารที่สอดคล้องกัน

      • ตัวอย่างเช่น, 9 ۞ 3 = 3 (\displaystyle 9\div 3=3)ดังนั้นเขียน 3 ใต้ 9.
      • 15 ۞ 3 = 5 (\displaystyle 15\div 3=5)ดังนั้นเขียน 5 ต่ำกว่า 15
    6. หากจำเป็น ให้เพิ่มเซลล์เพิ่มเติมลงในตารางทำซ้ำขั้นตอนที่อธิบายไว้จนกว่าผลหารจะมีตัวหารร่วม

    7. วงกลมตัวเลขในคอลัมน์แรกและแถวสุดท้ายของตารางจากนั้นเขียนตัวเลขที่เลือกเป็นการคูณ

      • ตัวอย่างเช่น ตัวเลข 2 และ 3 อยู่ในคอลัมน์แรก และตัวเลข 3 และ 5 อยู่ในแถวสุดท้าย ดังนั้นให้เขียนการดำเนินการคูณดังนี้: 2 × 3 × 3 × 5 (\รูปแบบการแสดงผล 2\คูณ 3\คูณ 3\คูณ 5).
    8. ค้นหาผลลัพธ์ของการคูณตัวเลขวิธีนี้จะคำนวณตัวคูณร่วมน้อยของตัวเลขที่กำหนดสองตัว

      • ตัวอย่างเช่น, 2 × 3 × 3 × 5 = 90 (\รูปแบบการแสดงผล 2\คูณ 3\คูณ 3\คูณ 5=90)- ดังนั้นตัวคูณร่วมน้อยของ 18 กับ 30 คือ 90

    อัลกอริธึมของยุคลิด

    1. จำคำศัพท์ที่เกี่ยวข้องกับการดำเนินการแบ่งเงินปันผลคือจำนวนที่จะหาร ตัวหารคือตัวเลขที่ถูกหารด้วย ผลหารคือผลลัพธ์ของการหารตัวเลขสองตัว เศษคือจำนวนที่เหลือเมื่อหารตัวเลขสองตัว

      • ตัวอย่างเช่นในนิพจน์ 15 ۞ 6 = 2 (\displaystyle 15\div 6=2)เพลงประกอบละคร 3:
        15 คือเงินปันผล
        6 เป็นตัวหาร
        2 คือความฉลาดทาง
        3 คือส่วนที่เหลือ

เรามาพูดคุยกันต่อเกี่ยวกับตัวคูณร่วมน้อย ซึ่งเราเริ่มต้นไว้ในส่วน “LCM - ตัวคูณร่วมน้อย คำจำกัดความ และตัวอย่าง” ในหัวข้อนี้ เราจะดูวิธีค้นหา LCM สำหรับตัวเลขสามตัวขึ้นไป และเราจะดูคำถามว่าจะหา LCM ของจำนวนลบได้อย่างไร

ยานเดกซ์RTB R-A-339285-1

การคำนวณตัวคูณร่วมน้อย (LCM) ผ่าน GCD

เราได้กำหนดความสัมพันธ์ระหว่างตัวคูณร่วมน้อยกับตัวหารร่วมมากแล้ว ตอนนี้เรามาเรียนรู้วิธีกำหนด LCM ผ่าน GCD กัน ก่อนอื่น เรามาดูวิธีการทำเช่นนี้กันก่อน ตัวเลขบวก.

คำจำกัดความ 1

คุณสามารถหาตัวคูณร่วมน้อยได้จากตัวหารร่วมมากโดยใช้สูตร LCM (a, b) = a · b: GCD (a, b)

ตัวอย่างที่ 1

คุณต้องค้นหา LCM ของตัวเลข 126 และ 70

สารละลาย

ลองหา a = 126, b = 70 กัน ลองแทนค่าลงในสูตรในการคำนวณตัวคูณร่วมน้อยผ่านตัวหารร่วมมาก LCM (a, b) = a · b: GCD (a, b) .

ค้นหา gcd ของตัวเลข 70 และ 126 สำหรับสิ่งนี้ เราจำเป็นต้องมีอัลกอริทึมแบบยุคลิด: 126 = 70 1 + 56, 70 = 56 1 + 14, 56 = 14 4 ดังนั้น GCD (126 , 70) = 14 .

มาคำนวณ LCM กัน: จอแอลซีดี (126, 70) = 126 70: GCD (126, 70) = 126 70: 14 = 630

คำตอบ:ล.ซม.(126, 70) = 630.

ตัวอย่างที่ 2

ค้นหาหมายเลข 68 และ 34

สารละลาย

GCD ใน ในกรณีนี้ไม่ใช่เรื่องยาก เนื่องจาก 68 หารด้วย 34 ลงตัว ลองคำนวณตัวคูณร่วมน้อยโดยใช้สูตร: LCM (68, 34) = 68 34: GCD (68, 34) = 68 34: 34 = 68

คำตอบ:ล.ซม.(68, 34) = 68.

ในตัวอย่างนี้ เราใช้กฎในการค้นหาตัวคูณร่วมน้อยของจำนวนเต็มบวก a และ b: หากจำนวนแรกหารด้วยวินาทีลงตัว LCM ของจำนวนเหล่านั้นจะเท่ากับจำนวนแรก

การค้นหา LCM โดยการแยกตัวประกอบตัวเลขให้เป็นตัวประกอบเฉพาะ

ตอนนี้เรามาดูวิธีการหา LCM ซึ่งขึ้นอยู่กับการแยกตัวประกอบตัวเลขให้เป็นตัวประกอบเฉพาะ

คำจำกัดความ 2

หากต้องการค้นหาตัวคูณร่วมน้อย เราต้องทำขั้นตอนง่ายๆ หลายประการ:

  • เราสร้างผลงานของทั้งหมด ปัจจัยสำคัญตัวเลขที่เราต้องหา LCM
  • เราแยกปัจจัยสำคัญทั้งหมดออกจากผลิตภัณฑ์ผลลัพธ์
  • ผลิตภัณฑ์ที่ได้รับหลังจากกำจัดปัจจัยเฉพาะทั่วไปจะเท่ากับ LCM ของตัวเลขที่กำหนด

วิธีการหาตัวคูณร่วมน้อยนี้ขึ้นอยู่กับความเท่าเทียมกัน LCM (a, b) = a · b: GCD (a, b) หากคุณดูสูตรจะชัดเจน: ผลคูณของตัวเลข a และ b เท่ากับผลคูณของปัจจัยทั้งหมดที่มีส่วนร่วมในการสลายตัวของตัวเลขทั้งสองนี้ ในกรณีนี้ gcd ของตัวเลขสองตัว เท่ากับสินค้าตัวประกอบเฉพาะทั้งหมดที่ปรากฏในการแยกตัวประกอบของตัวเลขสองตัวที่กำหนดพร้อมกัน

ตัวอย่างที่ 3

เรามีตัวเลขสองตัวคือ 75 และ 210 เราสามารถแยกตัวประกอบได้ดังนี้: 75 = 3 5 5และ 210 = 2 3 5 7- หากคุณเขียนผลคูณของตัวประกอบทั้งหมดของตัวเลขเดิมสองตัว คุณจะได้: 2 3 3 5 5 5 7.

ถ้าเราไม่รวมตัวประกอบ 3 และ 5 ร่วมกันของตัวเลขทั้งสอง เราจะได้ผลลัพธ์ ประเภทต่อไปนี้: 2 3 5 5 7 = 1,050- สินค้าชิ้นนี้จะเป็น LCM ของเราสำหรับหมายเลข 75 และ 210

ตัวอย่างที่ 4

ค้นหา LCM ของตัวเลข 441 และ 700 แยกตัวประกอบทั้งสองจำนวนให้เป็นตัวประกอบเฉพาะ

สารละลาย

เรามาค้นหาตัวประกอบเฉพาะทั้งหมดของตัวเลขที่ระบุในเงื่อนไข:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

เราได้ตัวเลขสองสาย: 441 = 3 3 7 7 และ 700 = 2 2 5 5 7

ผลคูณของปัจจัยทั้งหมดที่มีส่วนร่วมในการสลายตัวของตัวเลขเหล่านี้จะมีรูปแบบ: 2 2 3 3 5 5 7 7 7- มาหาปัจจัยร่วมกัน นี่คือหมายเลข 7 ให้เราแยกเขาออกจาก สินค้าทั้งหมด: 2 2 3 3 5 5 7 7- ปรากฎว่า NOC (441, 700) = 2 2 3 3 5 5 7 7 = 44 100.

คำตอบ:ล็อค(441, 700) = 44,100.

ขอให้เราให้สูตรอีกวิธีหนึ่งในการค้นหา LCM โดยการแยกตัวเลขออกเป็นปัจจัยเฉพาะ

คำจำกัดความ 3

ก่อนหน้านี้ เราได้แยกออกจากจำนวนตัวประกอบทั้งหมดที่เหมือนกันกับตัวเลขทั้งสอง ตอนนี้เราจะทำมันแตกต่างออกไป:

  • ลองแยกตัวเลขทั้งสองให้เป็นตัวประกอบเฉพาะ:
  • เพิ่มผลคูณของตัวประกอบเฉพาะของจำนวนแรกด้วยปัจจัยที่ขาดหายไปของจำนวนที่สอง
  • เราได้รับผลิตภัณฑ์ซึ่งจะเป็น LCM ที่ต้องการของตัวเลขสองตัว

ตัวอย่างที่ 5

ลองกลับไปที่ตัวเลข 75 และ 210 ซึ่งเราได้ค้นหา LCM ในตัวอย่างก่อนหน้านี้แล้ว มาแบ่งพวกมันออกเป็นปัจจัยง่ายๆ: 75 = 3 5 5และ 210 = 2 3 5 7- ผลคูณของปัจจัย 3, 5 และ 5 หมายเลข 75 บวกปัจจัยที่ขาดหายไป 2 และ 7 หมายเลข 210 เราได้รับ: 2 · 3 · 5 · 5 · 7 .นี่คือ LCM ของหมายเลข 75 และ 210

ตัวอย่างที่ 6

จำเป็นต้องคำนวณ LCM ของตัวเลข 84 และ 648

สารละลาย

ลองแยกตัวเลขจากเงื่อนไขให้เป็นปัจจัยง่ายๆ: 84 = 2 2 3 7และ 648 = 2 2 2 3 3 3 3- ลองเพิ่มปัจจัย 2, 2, 3 และเข้าไปในผลคูณกัน 7 หมายเลข 84 ตัวประกอบที่หายไป 2, 3, 3 และ
3 หมายเลข 648 เราได้รับสินค้า 2 2 2 3 3 3 3 7 = 4536.นี่คือตัวคูณร่วมน้อยของ 84 และ 648

คำตอบ:ลทบ.(84, 648) = 4,536.

การค้นหา LCM ของตัวเลขสามตัวขึ้นไป

ไม่ว่าเราจะจัดการกับตัวเลขจำนวนเท่าใด อัลกอริธึมของการกระทำของเราจะเหมือนเดิมเสมอ: เราจะค้นหา LCM ของตัวเลขสองตัวตามลำดับ มีทฤษฎีบทสำหรับกรณีนี้

ทฤษฎีบท 1

สมมติว่าเรามีจำนวนเต็ม ก 1 , 2 , … , หรือเค- NOC ม.เคตัวเลขเหล่านี้หาได้จากการคำนวณตามลำดับ m 2 = LCM (a 1, a 2), m 3 = LCM (m 2, a 3), ..., m k = LCM (m k − 1, a k)

ตอนนี้เรามาดูกันว่าทฤษฎีบทสามารถนำไปใช้ในการแก้ปัญหาเฉพาะได้อย่างไร

ตัวอย่างที่ 7

คุณต้องคำนวณตัวคูณร่วมน้อยของตัวเลขสี่ตัว 140, 9, 54 และ 250 .

สารละลาย

ให้เราแนะนำสัญกรณ์: a 1 = 140, 2 = 9, 3 = 54, a 4 = 250

เริ่มต้นด้วยการคำนวณ m 2 = LCM (a 1 , a 2) = LCM (140, 9) ลองใช้อัลกอริทึมแบบยุคลิดเพื่อคำนวณ GCD ของตัวเลข 140 และ 9: 140 = 9 15 + 5, 9 = 5 1 + 4, 5 = 4 1 + 1, 4 = 1 4 เราได้รับ: GCD (140, 9) = 1, GCD (140, 9) = 140 · 9: GCD (140, 9) = 140 · 9: 1 = 1,260 ดังนั้น ม.2 = 1,260

ทีนี้มาคำนวณโดยใช้อัลกอริทึมเดียวกัน m 3 = LCM (m 2 , a 3) = LCM (1 260, 54) ในระหว่างการคำนวณเราได้รับ m 3 = 3 780

เราแค่ต้องคำนวณ m 4 = LCM (m 3 , a 4) = LCM (3 780, 250) เราปฏิบัติตามอัลกอริธึมเดียวกัน เราได้ ม. 4 = 94 500

LCM ของตัวเลขสี่ตัวจากเงื่อนไขตัวอย่างคือ 94500

คำตอบ: NOC (140, 9, 54, 250) = 94,500

อย่างที่คุณเห็นการคำนวณนั้นง่าย แต่ต้องใช้แรงงานมาก เพื่อประหยัดเวลาคุณสามารถไปอีกทางหนึ่งได้

คำจำกัดความที่ 4

เราเสนออัลกอริธึมการดำเนินการต่อไปนี้ให้กับคุณ:

  • เราแยกตัวเลขทั้งหมดออกเป็นปัจจัยเฉพาะ
  • ผลคูณของตัวประกอบของจำนวนแรกบวกปัจจัยที่หายไปจากผลคูณของจำนวนที่สอง
  • ไปยังผลิตภัณฑ์ที่ได้รับในขั้นตอนก่อนหน้าเราจะเพิ่มปัจจัยที่ขาดหายไปของตัวเลขที่สาม ฯลฯ
  • ผลคูณที่ได้จะเป็นตัวคูณร่วมน้อยของจำนวนทั้งหมดจากเงื่อนไข

ตัวอย่างที่ 8

คุณต้องค้นหา LCM ของตัวเลขห้าตัว 84, 6, 48, 7, 143

สารละลาย

ลองแยกตัวเลขทั้งห้าตัวเป็นตัวประกอบเฉพาะ: 84 = 2 2 3 7, 6 = 2 3, 48 = 2 2 2 2 3, 7, 143 = 11 13 จำนวนเฉพาะซึ่งเป็นเลข 7 ไม่สามารถแยกตัวประกอบเป็นจำนวนเฉพาะได้ ตัวเลขดังกล่าวเกิดขึ้นพร้อมกับการสลายตัวเป็นปัจจัยเฉพาะ

ทีนี้ลองหาผลคูณของตัวประกอบเฉพาะ 2, 2, 3 และ 7 ของเลข 84 แล้วบวกกับตัวประกอบที่หายไปของเลขตัวที่สอง เราแยกเลข 6 ออกเป็น 2 และ 3 ตัวประกอบเหล่านี้อยู่ในผลคูณของเลขตัวแรกแล้ว ดังนั้นเราจึงละเว้นพวกเขา

เรายังคงเพิ่มตัวคูณที่ขาดหายไปต่อไป มาดูเลข 48 กันดีกว่า จากผลคูณที่เราเอา 2 และ 2 มาเป็นตัวประกอบเฉพาะ จากนั้นเราบวกตัวประกอบเฉพาะของ 7 จากจำนวนที่สี่ และตัวประกอบของ 11 และ 13 ของจำนวนที่ห้า เราได้รับ: 2 2 2 2 3 7 11 13 = 48,048 นี่คือตัวคูณร่วมน้อยของตัวเลขห้าตัวดั้งเดิม

คำตอบ:ลทบ.(84, 6, 48, 7, 143) = 48,048.

การหาผลคูณร่วมน้อยของจำนวนลบ

เพื่อหาตัวคูณร่วมน้อย ตัวเลขติดลบโดยจะต้องแทนที่ตัวเลขเหล่านี้ด้วยตัวเลขด้วยก่อน เครื่องหมายตรงข้ามจากนั้นจึงทำการคำนวณโดยใช้อัลกอริธึมด้านบน

ตัวอย่างที่ 9

LCM (54, − 34) = LCM (54, 34) และ LCM (- 622, − 46, − 54, − 888) = LCM (622, 46, 54, 888)

การกระทำดังกล่าวเป็นที่อนุญาตได้เพราะว่าหากเรายอมรับสิ่งนั้น และ − ก– ตัวเลขตรงข้าม
แล้วเซตของการคูณของตัวเลข จับคู่ชุดทวีคูณของตัวเลข − ก.

ตัวอย่างที่ 10

จำเป็นต้องคำนวณ LCM ของจำนวนลบ − 145 และ − 45 .

สารละลาย

มาแทนที่ตัวเลขกันเถอะ − 145 และ − 45 เป็นจำนวนตรงข้ามกัน 145 และ 45 - ตอนนี้ เมื่อใช้อัลกอริทึม เราคำนวณ LCM (145, 45) = 145 · 45: GCD (145, 45) = 145 · 45: 5 = 1,305 โดยก่อนหน้านี้ได้กำหนด GCD โดยใช้อัลกอริทึมแบบยุคลิด

เราพบว่า LCM ของตัวเลขคือ − 145 และ − 45 เท่ากับ 1 305 .

คำตอบ:ค.ร.น. (- 145, - 45) = 1,305

หากคุณสังเกตเห็นข้อผิดพลาดในข้อความ โปรดไฮไลต์แล้วกด Ctrl+Enter

คำนิยาม.เรียกจำนวนธรรมชาติที่ใหญ่ที่สุดโดยการนำตัวเลข a และ b มาหารกันโดยไม่มีเศษเหลือ ตัวหารร่วมมาก (GCD)ตัวเลขเหล่านี้

ลองหาตัวหารร่วมมากของตัวเลข 24 และ 35 กัน
ตัวหารของ 24 คือตัวเลข 1, 2, 3, 4, 6, 8, 12, 24 และตัวหารของ 35 คือตัวเลข 1, 5, 7, 35
เราจะเห็นว่าตัวเลข 24 และ 35 มีตัวหารร่วมเพียงตัวเดียวคือหมายเลข 1 ตัวเลขดังกล่าวเรียกว่า สำคัญซึ่งกันและกัน.

คำนิยาม.เรียกว่าจำนวนธรรมชาติ สำคัญซึ่งกันและกันถ้าตัวหารร่วมมาก (GCD) คือ 1

ตัวหารร่วมมาก (GCD)สามารถพบได้โดยไม่ต้องเขียนตัวหารทั้งหมดของตัวเลขที่กำหนด

แยกตัวประกอบตัวเลข 48 และ 36 เราจะได้:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
จากปัจจัยต่างๆ ที่รวมอยู่ในการขยายตัวเลขตัวแรก เราจะขีดฆ่าปัจจัยที่ไม่รวมอยู่ในการขยายตัวเลขตัวที่สอง (เช่น สองสอง)
ตัวประกอบที่เหลือคือ 2 * 2 * 3 ผลคูณคือ 12 จำนวนนี้คือตัวหารร่วมมากของตัวเลข 48 และ 36 นอกจากนี้ยังพบตัวหารร่วมมากของตัวเลขสามตัวขึ้นไปด้วย

เพื่อค้นหา ตัวหารร่วมมาก

2) จากปัจจัยที่รวมอยู่ในการขยายของตัวเลขใดจำนวนหนึ่งเหล่านี้ ให้ขีดฆ่าปัจจัยที่ไม่รวมอยู่ในการขยายของตัวเลขอื่น
3) ค้นหาผลคูณของปัจจัยที่เหลือ

หากตัวเลขที่กำหนดทั้งหมดหารด้วยหนึ่งในนั้นลงตัว แสดงว่าจำนวนนี้คือ ตัวหารร่วมมากตัวเลขที่กำหนด
ตัวอย่างเช่น ตัวหารร่วมที่ยิ่งใหญ่ที่สุดของตัวเลข 15, 45, 75 และ 180 คือเลข 15 เนื่องจากตัวเลขอื่นๆ ทั้งหมดหารด้วยตัวมันเองได้: 45, 75 และ 180

ตัวคูณร่วมน้อย (LCM)

คำนิยาม. ตัวคูณร่วมน้อย (LCM) ตัวเลขธรรมชาติ a และ b เป็นจำนวนธรรมชาติที่น้อยที่สุดซึ่งเป็นผลคูณของทั้ง a และ b ตัวคูณร่วมน้อย (LCM) ของตัวเลข 75 และ 60 สามารถหาได้โดยไม่ต้องจดจำนวนทวีคูณของตัวเลขเหล่านี้ติดกัน เมื่อต้องการทำเช่นนี้ ให้แยกตัวประกอบ 75 และ 60 เป็นตัวประกอบเฉพาะ: 75 = 3 * 5 * 5 และ 60 = 2 * 2 * 3 * 5
ลองเขียนปัจจัยที่รวมอยู่ในการขยายตัวเลขตัวแรกและเพิ่มปัจจัยที่หายไป 2 และ 2 จากการขยายตัวเลขที่สอง (เช่น เรารวมปัจจัยต่างๆ เข้าด้วยกัน)
เราได้ห้าปัจจัย 2 * 2 * 3 * 5 * 5 ซึ่งผลคูณคือ 300 จำนวนนี้เป็นตัวคูณร่วมน้อยของตัวเลข 75 และ 60

นอกจากนี้ยังค้นหาตัวคูณร่วมน้อยของตัวเลขสามตัวขึ้นไปด้วย

ถึง หาตัวคูณร่วมน้อยคุณต้องการจำนวนธรรมชาติหลายจำนวน:
1) แยกปัจจัยเหล่านั้นออกเป็นปัจจัยเฉพาะ
2) เขียนปัจจัยที่รวมอยู่ในการขยายตัวเลขตัวใดตัวหนึ่ง
3) เพิ่มปัจจัยที่ขาดหายไปจากการขยายตัวเลขที่เหลือ
4) ค้นหาผลคูณของปัจจัยผลลัพธ์

โปรดทราบว่าหากตัวเลขตัวใดตัวหนึ่งหารด้วยตัวเลขอื่นๆ ทั้งหมด ตัวเลขนี้จะเป็นตัวคูณร่วมน้อยของตัวเลขเหล่านี้
ตัวอย่างเช่น ตัวคูณร่วมน้อยของตัวเลข 12, 15, 20 และ 60 คือ 60 เพราะหารด้วยตัวเลขเหล่านั้นทั้งหมด

พีทาโกรัส (ศตวรรษที่ 6 ก่อนคริสต์ศักราช) และนักเรียนของเขาศึกษาคำถามเรื่องการหารตัวเลขลงตัว ตัวเลข, เท่ากับผลรวมพวกเขาเรียกตัวหารทั้งหมด (โดยไม่มีตัวเลขนั้นเอง) ว่าเป็นจำนวนสมบูรณ์ ตัวอย่างเช่น ตัวเลข 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) นั้นสมบูรณ์แบบ จำนวนสมบูรณ์ถัดไปคือ 496, 8128, 33,550,336 ชาวพีทาโกรัสรู้เพียงเลขสมบูรณ์สามตัวแรกเท่านั้น ที่สี่ - 8128 - กลายเป็นที่รู้จักในศตวรรษที่ 1 n. จ. ที่ห้า - 33,550,336 - ถูกค้นพบในศตวรรษที่ 15 ภายในปี 1983 ตัวเลขสมบูรณ์ 27 ตัวเป็นที่รู้จักแล้ว แต่นักวิทยาศาสตร์ยังไม่ทราบว่ามีจำนวนสมบูรณ์คี่หรือมีจำนวนสมบูรณ์มากที่สุดหรือไม่
ความสนใจของนักคณิตศาสตร์โบราณในเรื่องจำนวนเฉพาะเกิดจากการที่จำนวนใดๆ ที่เป็นจำนวนเฉพาะหรือสามารถแสดงเป็นผลคูณได้ หมายเลขเฉพาะกล่าวคือ จำนวนเฉพาะเปรียบเสมือนก้อนอิฐที่ใช้สร้างจำนวนธรรมชาติที่เหลือ
คุณอาจสังเกตเห็นว่าจำนวนเฉพาะในชุดของจำนวนธรรมชาติเกิดขึ้นไม่เท่ากัน ในบางส่วนของอนุกรมจะมีมากกว่า บางส่วนมีน้อยกว่า แต่ยิ่งเราก้าวต่อไป. ชุดตัวเลข, จำนวนเฉพาะที่พบได้น้อยกว่าคือ คำถามเกิดขึ้น: มีจำนวนเฉพาะตัวสุดท้าย (ใหญ่ที่สุด) หรือไม่? ยูคลิด นักคณิตศาสตร์ชาวกรีกโบราณ (ศตวรรษที่ 3 ก่อนคริสต์ศักราช) ในหนังสือของเขาเรื่อง “องค์ประกอบ” ซึ่งเป็นตำราคณิตศาสตร์หลักมาเป็นเวลาสองพันปี ได้พิสูจน์ว่ามีจำนวนเฉพาะจำนวนอนันต์ กล่าวคือ ด้านหลังจำนวนเฉพาะทุกตัวจะมีจำนวนเฉพาะที่มากกว่านั้นอีก ตัวเลข.
ในการค้นหาจำนวนเฉพาะ เอราทอสเธเนส นักคณิตศาสตร์ชาวกรีกอีกคนหนึ่งในยุคเดียวกันได้คิดวิธีนี้ขึ้นมา เขาจดตัวเลขทั้งหมดตั้งแต่ 1 ถึงจำนวนใดจำนวนหนึ่ง แล้วขีดฆ่าตัวหนึ่งซึ่งไม่ใช่จำนวนเฉพาะหรือจำนวนประกอบ แล้วขีดฆ่าตัวเลขทั้งหมดที่ตามหลัง 2 ออกไป (จำนวนที่เป็นทวีคูณของ 2 เช่น 4, 6 , 8 ฯลฯ) ตัวเลขตัวแรกที่เหลือหลังจาก 2 คือ 3 จากนั้น หลังจากสอง ตัวเลขทั้งหมดที่ตามมาหลัง 3 (ตัวเลขที่เป็นทวีคูณของ 3 เช่น 6, 9, 12 เป็นต้น) จะถูกขีดฆ่าออก ท้ายที่สุดแล้วมีเพียงจำนวนเฉพาะเท่านั้นที่ยังคงไม่ถูกข้าม