ชีวประวัติ ข้อมูลจำเพาะ การวิเคราะห์

การประยุกต์ใช้ทางเรขาคณิตของการคำนวณพื้นที่อินทิกรัลที่แน่นอน การประยุกต์ใช้ทางกายภาพของ OI

อินทิกรัลที่แน่นอน (OI) ถูกนำมาใช้กันอย่างแพร่หลายในการประยุกต์ใช้งานทางคณิตศาสตร์และฟิสิกส์

โดยเฉพาะอย่างยิ่งในรูปทรงเรขาคณิตด้วยความช่วยเหลือของ OR พบพื้นที่ ตัวเลขง่ายๆและพื้นผิวที่ซับซ้อน ปริมาตรของวัตถุของการปฏิวัติและวัตถุที่มีรูปร่างตามอำเภอใจ ความยาวของเส้นโค้งในระนาบและในอวกาศ

ในวิชาฟิสิกส์และ กลศาสตร์เชิงทฤษฎี RI ใช้ในการคำนวณโมเมนต์คงที่ มวลและจุดศูนย์กลางมวลของเส้นโค้งและพื้นผิวของวัสดุ เพื่อคำนวณการทำงานของแรงแปรผันตามเส้นทางโค้ง เป็นต้น

พื้นที่ของรูปแบน

ให้ระนาบบางส่วนอยู่ในคาร์ทีเซียน ระบบสี่เหลี่ยมผืนผ้าพิกัด $xOy$ อยู่เหนือเส้นโค้ง $y=y_(1) \left(x\right)$ อยู่ด้านล่างด้วยเส้นโค้ง $y=y_(2) \left(x\right)$ และไปทางซ้าย และขวาด้วยเส้นแนวตั้ง $x=a$ และ $x=b$ ตามลำดับ ที่ กรณีทั่วไปพื้นที่ของรูปดังกล่าวแสดงโดยใช้ OR $S=\int \limits _(a)^(b)\left(y_(1) \left(x\right)-y_(2) \left( x\right)\right )\cdot dx $

ถ้าตัวเลขแบนๆ ในระบบพิกัดสี่เหลี่ยมคาร์ทีเซียน $xOy$ มีขอบเขตทางด้านขวาโดยเส้นโค้ง $x=x_(1) \left(y\right)$ ทางซ้าย - โดยเส้นโค้ง $x=x_(2 ) \left(y\right) $ และด้านล่างและด้านบนด้วยเส้นแนวนอน $y=c$ และ $y=d$ ตามลำดับ จากนั้นพื้นที่ของตัวเลขดังกล่าวจะแสดงโดยใช้ OI $S=\int \limits _(c)^(d)\left(x_(1 ) \left(y\right)-x_(2) \left(y\right)\right)\cdot dy $

ให้พิจารณารูปแบน (ส่วนโค้ง) ระบบขั้วโลกพิกัด เกิดจากกราฟของฟังก์ชันต่อเนื่อง $\rho =\rho \left(\phi \right)$ เช่นเดียวกับรังสีสองเส้นที่ผ่านมุม $\phi =\alpha $ และ $\phi =\ เบต้า $ ตามลำดับ สูตรสำหรับการคำนวณพื้นที่ของส่วนโค้งดังกล่าวคือ: $S=\frac(1)(2) \cdot \int \limits _(\alpha )^(\beta )\rho ^(2) \left (\phi \right )\cdot d\phi$

ความยาวส่วนโค้ง

ถ้าในส่วน $\left[\alpha ,\; เส้นโค้ง \beta \right]$ ถูกกำหนดโดยสมการ $\rho =\rho \left(\phi \right)$ ในพิกัดเชิงขั้ว จากนั้นความยาวของส่วนโค้งจะคำนวณโดยใช้ OR $L=\int \limits _ (\alpha )^ (\beta )\sqrt(\rho ^(2) \left(\phi \right)+\rho "^(2) \left(\phi \right)) \cdot d\phi $

ถ้าเส้นโค้งในส่วน $\left$ ถูกกำหนดโดยสมการ $y=y\left(x\right)$ ความยาวของส่วนโค้งจะคำนวณโดยใช้ OR $L=\int \limits _(a) ^(b)\sqrt(1 +y"^(2) \left(x\right)) \cdot dx $

ถ้าในส่วน $\left[\alpha ,\; \beta \right]$ เส้นโค้งจะได้รับพาราเมตริก เช่น $x=x\left(t\right)$, $y=y\left(t\right)$ จากนั้นความยาวของส่วนโค้งจะคำนวณโดยใช้ OR $L=\ int \limits _(\alpha )^(\beta )\sqrt(x"^(2) \left(t\right)+y"^(2) \left(t\right)) \cdot dt $

การคำนวณปริมาตรของร่างกายจากพื้นที่ของส่วนขนาน

จำเป็นต้องหาปริมาตรของวัตถุเชิงพื้นที่ที่มีพิกัดจุดตรงตามเงื่อนไข $a\le x\le b$ และพื้นที่หน้าตัด $S\left(x\right)$ โดยระนาบที่ตั้งฉากกับ รู้จักแกน $Ox$

สูตรคำนวณปริมาตรของวัตถุดังกล่าวคือ $V=\int \limits _(a)^(b)S\left(x\right)\cdot dx $

ปริมาณของการปฏิวัติ

ปล่อยให้ไม่เป็นลบ ฟังก์ชันต่อเนื่อง$y=y\left(x\right)$ กำลังสร้าง สี่เหลี่ยมคางหมูโค้ง(กฤษ). ถ้าเราหมุน CRT นี้รอบแกน $Ox$ ร่างกายจะถูกสร้างขึ้นเรียกว่าร่างกายของการปฏิวัติ

การคำนวณปริมาตรของร่างกายของการปฏิวัติเป็นกรณีพิเศษของการคำนวณปริมาตรของร่างกายจาก จัตุรัสที่มีชื่อเสียงส่วนที่ขนานกัน สูตรที่เกี่ยวข้องคือ $V=\int \limits _(a)^(b)S\left(x\right)\cdot dx =\pi \cdot \int \limits _(a)^(b)y^( 2) \left(x\right)\cdot dx$

ให้รูประนาบในระบบพิกัดสี่เหลี่ยมคาร์ทีเซียน $xOy$ ล้อมรอบด้วยเส้นโค้ง $y=y_(1) \left(x\right)$ จากด้านล่าง $y=y_(2) \left (x\right)$ โดยที่ $y_(1) \left(x\right)$ และ $y_(2) \left(x\right)$ เป็นฟังก์ชันต่อเนื่องที่ไม่ใช่ค่าลบ และเส้นแนวตั้ง $x=a$ และ $x= b$ ตามลำดับ จากนั้นปริมาตรของร่างกายที่เกิดขึ้นจากการหมุนของตัวเลขนี้รอบแกน $Ox$ แสดงโดย OR $V=\pi \cdot \int \limits _(a)^(b)\left(y_(1) ^(2) \left(x \right)-y_(2)^(2) \left(x\right)\right)\cdot dx $

ให้รูประนาบในระบบพิกัดสี่เหลี่ยมคาร์ทีเซียน $xOy$ ล้อมรอบทางขวาด้วยเส้นโค้ง $x=x_(1) \left(y\right)$ ทางซ้าย - โดยเส้นโค้ง $x=x_(2 ) \left(y\right)$ โดยที่ $x_(1) \left(y\right)$ และ $x_(2) \left(y\right)$ เป็นฟังก์ชันต่อเนื่องที่ไม่ใช่ค่าลบ และเส้นแนวนอน $y =c$ และ $y= d$ ตามลำดับ จากนั้นปริมาตรของร่างกายที่เกิดขึ้นจากการหมุนของตัวเลขนี้รอบแกน $Oy$ จะแสดงโดย OI $V=\pi \cdot \int \limits _(c)^(d)\left(x_(1) ^(2) \left(y \right)-x_(2)^(2) \left(y\right)\right)\cdot dy $

พื้นที่ผิวของร่างกายของการปฏิวัติ

ให้ฟังก์ชันที่ไม่ใช่ค่าลบ $y=y\left(x\right)$ ที่มีอนุพันธ์ $y"\left(x\right)$ ต่อเนื่อง ถูกกำหนดในส่วน $\left$ ฟังก์ชันนี้สร้าง KrT ถ้า เราหมุน KrT นี้รอบแกน $Ox $ จากนั้นตัวมันเองจะก่อตัวเป็นร่างของการปฏิวัติและส่วนโค้ง KrT เป็นพื้นผิวของมัน พื้นที่ผิวของวัตถุของการปฏิวัตินั้นแสดงโดยสูตร $Q=2\cdot \pi \cdot \int \limits _(a)^(b)y\left( x\right)\cdot \sqrt(1+y"^(2) \left(x\right)) \cdot dx $

สมมติว่าเส้นโค้ง $x=\phi \left(y\right)$ โดยที่ $\phi \left(y\right)$ เป็นฟังก์ชันที่ไม่ใช่ค่าลบที่กำหนดในส่วน $c\le y\le d$ จะหมุนรอบแกน $Oy$ ในกรณีนี้ พื้นที่ผิวของตัวการปฏิวัติที่เกิดขึ้นจะแสดงเป็น OR $Q=2\cdot \pi \cdot \int \limits _(c)^(d)\phi \left(y\right) \cdot \sqrt(1+\phi "^(2) \left(y\right)) \cdot dy $

การประยุกต์ใช้ทางกายภาพของ OI

  1. ในการคำนวณระยะทางที่เดินทาง ณ เวลา $t=T$ ด้วยความเร็วตัวแปร $v=v\left(t\right)$ ของจุดที่เริ่มเคลื่อนที่ ณ เวลา $t=t_(0) $ ให้ใช้ OR $ S =\int \จำกัด _(t_(0) )^(T)v\left(t\right)\cdot dt $
  2. ในการคำนวณการทำงานของตัวแปรบังคับ $F=F\left(x\right)$ ที่นำไปใช้ จุดวัสดุย้ายไป เส้นทางตรงตามแกน $Ox$ จากจุด $x=a$ ไปยังจุด $x=b$ (ทิศทางของแรงตรงกับทิศทางการเคลื่อนที่) ใช้คำสั่ง OR $A=\int \limits _(a)^ (b)F\left(x \right)\cdot dx$
  3. ช่วงเวลาที่คงที่เมื่อเทียบกับ แกนพิกัดเส้นโค้งของวัสดุ $y=y\left(x\right)$ ในช่วง $\left$ แสดงโดยสูตร $M_(x) =\rho \cdot \int \limits _(a)^(b)y\ ซ้าย(x\ ขวา)\cdot \sqrt(1+y"^(2) \left(x\right)) \cdot dx $ และ $M_(y) =\rho \cdot \int \limits _(a) ^(b) x\cdot \sqrt(1+y"^(2) \left(x\right)) \cdot dx $ โดยที่ความหนาแน่นเชิงเส้น $\rho $ ของเส้นโค้งนี้จะถือว่าคงที่
  4. จุดศูนย์กลางมวลของเส้นโค้งของวัสดุคือจุดที่มวลทั้งหมดมีความเข้มข้นตามเงื่อนไขในลักษณะที่โมเมนต์คงที่ของจุดที่สัมพันธ์กับแกนพิกัดเท่ากับโมเมนต์คงที่ที่สอดคล้องกันของเส้นโค้งทั้งหมดโดยรวม
  5. สูตรสำหรับการคำนวณพิกัดของจุดศูนย์กลางมวลของเส้นโค้งระนาบคือ $x_(C) =\frac(\int \limits _(a)^(b)x\cdot \sqrt(1+y"^(2 ) \left(x\ right)) \cdot dx )(\int \limits _(a)^(b)\sqrt(1+y"^(2) \left(x\right)) \cdot dx ) $ และ $y_(C) =\frac(\int \limits _(a)^(b)y\left(x\right)\cdot \sqrt(1+y"^(2) \left(x\right) ) \cdot dx )( \int \จำกัด _(a)^(b)\sqrt(1+y"^(2) \left(x\right)) \cdot dx ) $

  6. ช่วงเวลาคงที่ของวัสดุ รูปแบนในรูปแบบของ КрТ ที่เกี่ยวกับแกนพิกัดจะแสดงโดยสูตร $M_(x) =\frac(1)(2) \cdot \rho \cdot \int \limits _(a)^(b)y^ (2) \left(x\ right)\cdot dx $ และ $M_(y) =\rho \cdot \int \limits _(a)^(b)x\cdot y\left(x\right)\cdot dx $
  7. พิกัดของจุดศูนย์กลางมวลของวัตถุทรงแบนในรูปของ KrT ซึ่งเกิดจากเส้นโค้ง $y=y\left(x\right)$ ในช่วง $\left$ คำนวณโดยสูตร $x_( C) =\frac(\int \จำกัด _(a )^(b)x\cdot y\left(x\right)\cdot dx )(\int \จำกัด _(a)^(b)y\left( x\right)\cdot dx ) $ และ $y_( C) =\frac(\frac(1)(2) \cdot \int \limits _(a)^(b)y^(2) \left(x \right)\cdot dx )(\int \จำกัด _ (a)^(b)y\left(x\right)\cdot dx ) $

ให้เรานำเสนอแอพพลิเคชั่นของอินทิกรัลที่แน่นอน

การคำนวณพื้นที่ของรูปแบน

พื้นที่ของเส้นโค้งสี่เหลี่ยมคางหมูที่ล้อมรอบด้วยเส้นโค้ง (ที่
), ตรง
,
และส่วน
แกน
คำนวณโดยสูตร

.

พื้นที่ของรูปที่ล้อมรอบด้วยเส้นโค้ง
และ
(ที่ไหน
) ตรง
และ
คำนวณโดยสูตร

.

ถ้าเส้นโค้งถูกกำหนดโดยสมการพาราเมตริก
จากนั้นพื้นที่ของเส้นโค้งสี่เหลี่ยมคางหมูที่ล้อมรอบด้วยเส้นโค้งนี้เป็นเส้นตรง
,
และส่วน
แกน
คำนวณโดยสูตร

,

ที่ไหน และ ถูกกำหนดจากสมการ
,
, ก
ที่
.

พื้นที่ของส่วนโค้งที่ล้อมรอบด้วยเส้นโค้งที่กำหนดใน พิกัดเชิงขั้วสมการ
และรัศมีสองขั้ว
,
(
) หาได้จากสูตร

.

ตัวอย่าง 1.27คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยพาราโบลา
และโดยตรง
(รูปที่ 1.1)

การตัดสินใจ.มาหาจุดตัดของเส้นตรงกับพาราโบลากัน ในการทำเช่นนี้ เราแก้สมการ

,
.

ที่ไหน
,
. จากนั้นตามสูตร (1.6) เรามี

.

การคำนวณความยาวส่วนโค้งของเส้นโค้งระนาบ

หากเป็นทางโค้ง
ในส่วนของ
- เรียบ (นั่นคืออนุพันธ์
ต่อเนื่อง) จากนั้นสูตรจะพบความยาวของส่วนโค้งที่สอดคล้องกันของเส้นโค้งนี้

.

เมื่อระบุเส้นโค้งพาราเมตริก
(
- ฟังก์ชันที่แตกต่างกันอย่างต่อเนื่อง) ความยาวของส่วนโค้งของเส้นโค้งที่สอดคล้องกับการเปลี่ยนแปลงแบบโมโนโทนิกในพารามิเตอร์ จาก ก่อน คำนวณโดยสูตร

ตัวอย่าง 1.28.คำนวณความยาวส่วนโค้งของเส้นโค้ง
,
,
.

การตัดสินใจ.ลองหาอนุพันธ์ที่เกี่ยวกับพารามิเตอร์กัน :
,
. จากนั้นตามสูตร (1.7) เราได้รับ

.

2. แคลคูลัสเชิงอนุพันธ์ของฟังก์ชันของตัวแปรหลายตัว

ให้แต่ละคู่ของหมายเลขที่สั่งซื้อ
จากบางพื้นที่
ตรงกับจำนวนหนึ่ง
. แล้ว เรียกว่า ฟังก์ชันของตัวแปรสองตัว และ ,
-ตัวแปรอิสระ หรือ ข้อโต้แย้ง ,
-โดเมนของคำนิยาม ฟังก์ชั่นแต่ล่ะชุด ค่าฟังก์ชันทั้งหมด - ช่วงของมัน และแสดงว่า
.

ในทางเรขาคณิต โดเมนของฟังก์ชันมักจะเป็นส่วนหนึ่งของระนาบ
ล้อมรอบด้วยเส้นที่อาจจะเป็นหรือไม่ใช่ของพื้นที่นี้ก็ได้

ตัวอย่าง 2.1ค้นหาโดเมน
ฟังก์ชั่น
.

การตัดสินใจ.ฟังก์ชันนี้กำหนดไว้ที่จุดต่างๆ ของระนาบ
, ซึ่งใน
, หรือ
. จุดของเครื่องบินซึ่ง
, สร้างขอบเขตของภูมิภาค
. สมการ
กำหนดพาราโบลา (รูปที่ 2.1; เนื่องจากพาราโบลาไม่ได้เป็นของพื้นที่
จะแสดงเป็นเส้นประ) นอกจากนี้ยังง่ายต่อการตรวจสอบโดยตรงว่าจุดใด
ซึ่งอยู่เหนือพาราโบลา ภูมิภาค
เปิดอยู่และสามารถระบุได้โดยใช้ระบบอสมการ:

หากแปรผัน ให้กำลังใจบ้าง
, ก ปล่อยให้มันคงที่แล้วฟังก์ชั่น
จะได้รับเพิ่มขึ้น
เรียกว่า ฟังก์ชั่นเพิ่มส่วนตัว โดยตัวแปร :

ในทำนองเดียวกันหากตัวแปร ได้รับเพิ่มขึ้น
, ก คงที่แล้วฟังก์ชัน
จะได้รับเพิ่มขึ้น
เรียกว่า ฟังก์ชั่นเพิ่มส่วนตัว โดยตัวแปร :

หากมีข้อจำกัด:

,

,

พวกเขาถูกเรียก อนุพันธ์ย่อยของฟังก์ชัน
โดยตัวแปร และ
ตามลำดับ

หมายเหตุ 2.1. อนุพันธ์ย่อยของฟังก์ชันของตัวแปรอิสระจำนวนใดๆ ถูกกำหนดในทำนองเดียวกัน

หมายเหตุ 2.2. เนื่องจากอนุพันธ์ย่อยที่เกี่ยวกับตัวแปรใด ๆ เป็นอนุพันธ์ย่อยที่เกี่ยวกับตัวแปรนี้ โดยมีเงื่อนไขว่าตัวแปรอื่น ๆ เป็นค่าคงที่ ดังนั้นกฎทั้งหมดสำหรับการหาอนุพันธ์ย่อยของฟังก์ชันของตัวแปรเดียวจึงใช้ได้กับการหาอนุพันธ์ย่อยของฟังก์ชันของตัวแปรจำนวนเท่าใดก็ได้

ตัวอย่าง 2.2.
.

การตัดสินใจ. เราพบ:

,

.

ตัวอย่าง 2.3ค้นหาอนุพันธ์ย่อยของฟังก์ชัน
.

การตัดสินใจ. เราพบ:

,

,

.

การเพิ่มฟังก์ชันแบบเต็ม
เรียกว่าความแตกต่าง

ส่วนหลักของการเพิ่มฟังก์ชันทั้งหมด
เชิงเส้นขึ้นอยู่กับการเพิ่มขึ้นของตัวแปรอิสระ
และ
,เรียกว่าผลต่างทั้งหมดของฟังก์ชัน และแสดงว่า
. หากฟังก์ชันมีอนุพันธ์ย่อยต่อเนื่อง แสดงว่าผลต่างทั้งหมดมีอยู่และเท่ากับ

,

ที่ไหน
,
- การเพิ่มตัวแปรอิสระโดยพลการเรียกว่าดิฟเฟอเรนเชียล

ในทำนองเดียวกันสำหรับฟังก์ชันของตัวแปรสามตัว
ความแตกต่างทั้งหมดถูกกำหนดโดย

.

ให้ฟังก์ชั่น
ได้ตรงจุด
อนุพันธ์ย่อยอันดับ 1 เทียบกับตัวแปรทั้งหมด จากนั้นจึงเรียกเวกเตอร์ การไล่ระดับสี ฟังก์ชั่น
ที่จุด
และแสดงว่า
หรือ
.

หมายเหตุ 2.3. สัญลักษณ์
เรียกว่าตัวดำเนินการแฮมิลตันและออกเสียงว่า "นัมบลา"

ตัวอย่าง 2.4ค้นหาการไล่ระดับสีของฟังก์ชันที่จุด
.

การตัดสินใจ. มาหาอนุพันธ์ย่อยกัน:

,
,

และคำนวณค่า ณ จุดนั้น
:

,
,
.

เพราะเหตุนี้,
.

อนุพันธ์ ฟังก์ชั่น
ที่จุด
ในทิศทางของเวกเตอร์
เรียกว่าขีดจำกัดของอัตราส่วน
ที่
:

, ที่ไหน
.

ถ้าฟังก์ชั่น
อนุพันธ์ในทิศทางนี้จะคำนวณโดยสูตร:

,

ที่ไหน ,- มุม ซึ่งเวกเตอร์ แบบฟอร์มด้วยแกน
และ
ตามลำดับ

ในกรณีของฟังก์ชันสามตัวแปร
อนุพันธ์เชิงทิศทางถูกกำหนดในทำนองเดียวกัน สูตรที่เกี่ยวข้องมีรูปแบบ

,

ที่ไหน
- ทิศทางโคไซน์ของเวกเตอร์ .

ตัวอย่างที่ 2.5ค้นหาอนุพันธ์ของฟังก์ชัน
ที่จุด
ในทิศทางของเวกเตอร์
, ที่ไหน
.

การตัดสินใจ. ลองหาเวกเตอร์กัน
และทิศทางของโคไซน์:

,
,
,
.

คำนวณค่าของอนุพันธ์บางส่วนที่จุด
:

,
,
;
,
,
.

แทนที่ (2.1) เราได้รับ

.

อนุพันธ์ย่อยของอันดับสอง เรียกว่าอนุพันธ์ย่อยที่นำมาจากอนุพันธ์ย่อยของลำดับที่หนึ่ง:

,

,

,

อนุพันธ์บางส่วน
,
เรียกว่า ผสม . ค่าของอนุพันธ์แบบผสมจะเท่ากัน ณ จุดที่อนุพันธ์เหล่านี้ต่อเนื่องกัน

ตัวอย่าง 2.6ค้นหาอนุพันธ์ย่อยอันดับสองของฟังก์ชัน
.

การตัดสินใจ. คำนวณอนุพันธ์ย่อยอันดับหนึ่งของลำดับที่หนึ่ง:

,
.

แยกความแตกต่างอีกครั้ง เราได้รับ:

,
,

,
.

เปรียบเทียบนิพจน์สุดท้าย เราจะเห็นว่า
.

ตัวอย่าง 2.7จงพิสูจน์ว่าฟังก์ชัน
เป็นไปตามสมการของ Laplace

.

การตัดสินใจ. เราพบ:

,
.

,
.


.

จุด
เรียกว่า จุดสูงสุดของท้องถิ่น (ขั้นต่ำ ) ฟังก์ชั่น
ถ้าสำหรับทุกจุด
, นอกเหนือจากนี้
และอยู่ในย่านเล็กๆ ของมันพอสมควร ความเหลื่อมล้ำ

(
).

ค่าสูงสุดหรือต่ำสุดของฟังก์ชันเรียกว่าฟังก์ชัน สุดขีด . จุดที่ถึงจุดสูงสุดของฟังก์ชันเรียกว่า จุดสูงสุดของฟังก์ชัน .

ทฤษฎีบท 2.1 (เงื่อนไขที่จำเป็นสำหรับสุดขีด ). ถ้าจุด
เป็นจุดสูงสุดของฟังก์ชัน
ดังนั้นอย่างน้อยหนึ่งอนุพันธ์เหล่านี้ไม่มีอยู่จริง

จุดที่ตรงกับเงื่อนไขเหล่านี้เรียกว่า เครื่องเขียน หรือ วิกฤต . จุดสุดขั้วจะอยู่นิ่งเสมอ แต่จุดที่หยุดนิ่งอาจไม่ใช่จุดสุดขั้ว เพื่อให้จุดที่อยู่นิ่งเป็นจุดสุดขั้ว ต้องเป็นไปตามเงื่อนไขสุดขั้วที่เพียงพอ

ให้เราแนะนำสัญกรณ์ต่อไปนี้ก่อน :

,
,
,
.

ทฤษฎีบท 2.2 (สภาวะที่เพียงพอสำหรับความสุดโต่ง ). ให้ฟังก์ชั่น
หาอนุพันธ์ได้สองเท่าในย่านของจุดหนึ่ง
และจุด
อยู่นิ่งสำหรับฟังก์ชัน
. แล้ว:

1.ถ้า
แล้วจุด
เป็นสุดขั้วของฟังก์ชัน และ
จะเป็นจุดสูงสุดที่
(
)และจุดต่ำสุดที่
(
).

2.ถ้า
แล้วที่จุด

ไม่มีความสุดโต่ง

3.ถ้า
จากนั้นอาจมีหรือไม่มีเลยก็ได้

ตัวอย่าง 2.8ตรวจสอบฟังก์ชันเพื่อหาค่าสูงสุด
.

การตัดสินใจ. ตั้งแต่ใน กรณีนี้อนุพันธ์ย่อยของลำดับที่หนึ่งจะมีอยู่เสมอ จากนั้นเพื่อหาจุดคงที่ (วิกฤติ) ที่เราแก้ระบบ:

,
,

ที่ไหน
,
,
,
. ดังนั้นเราจึงมีจุดหยุดนิ่งสองจุด:
,
.

,
,
.

สำหรับจุด
เราได้รับ: นั่นคือไม่มีจุดสูงสุด ณ จุดนี้ สำหรับจุด
เราได้รับ: และ
, เพราะเหตุนี้

ณ จุดนี้ ฟังก์ชันที่กำหนดถึงขั้นต่ำในท้องถิ่น: .

การบรรยาย 8. การประยุกต์ใช้ อินทิกรัลแน่นอน.

การประยุกต์ใช้อินทิกรัลกับ งานทางกายภาพขึ้นอยู่กับคุณสมบัติการบวกของอินทิกรัลเหนือเซต ดังนั้นด้วยความช่วยเหลือของอินทิกรัลจึงสามารถคำนวณปริมาณดังกล่าวซึ่งเป็นสารเติมแต่งในชุดได้ ตัวอย่างเช่น พื้นที่ของรูปเท่ากับผลรวมของพื้นที่ของส่วนต่าง ๆ ความยาวของส่วนโค้ง พื้นที่ผิว ปริมาตรของวัตถุ และมวลของวัตถุ มีคุณสมบัติเหมือนกัน ดังนั้นปริมาณทั้งหมดเหล่านี้สามารถคำนวณได้โดยใช้อินทิกรัลที่แน่นอน

มีสองวิธีในการแก้ปัญหา: วิธีผลบวกรวมและวิธีหาอนุพันธ์

วิธีการของผลรวมแบบอินทิกรัลทำซ้ำการสร้างอินทิกรัลที่แน่นอน: มีการสร้างพาร์ติชัน, จุดถูกทำเครื่องหมาย, ฟังก์ชันถูกคำนวณในพวกมัน, คำนวณผลรวมแบบอินทิกรัล, และดำเนินการผ่านไปยังขีด จำกัด ในวิธีนี้ปัญหาหลักคือการพิสูจน์ว่าในขอบเขตนั้นจะได้รับสิ่งที่จำเป็นในปัญหาอย่างแน่นอน

วิธีการใช้ดิฟเฟอเรนเชียล อินทิกรัลไม่ จำกัดและสูตรนิวตัน-ไลบ์นิซ ส่วนต่างของค่าที่จะกำหนดจะถูกคำนวณ จากนั้นเมื่อรวมส่วนต่างนี้เข้าด้วยกัน จะได้ค่าที่ต้องการโดยใช้สูตรนิวตัน-ไลบ์นิซ ในวิธีนี้ ความยากหลักคือการพิสูจน์ว่าเป็นส่วนต่างของค่าที่ต้องการที่คำนวณ ไม่ใช่อย่างอื่น

การคำนวณพื้นที่ของรูปทรงระนาบ

1. ตัวเลขนี้จำกัดเฉพาะกราฟของฟังก์ชันที่ระบุใน ระบบคาร์ทีเซียนพิกัด.

เรามาถึงแนวคิดของอินทิกรัลที่แน่นอนจากปัญหาของพื้นที่ของสี่เหลี่ยมคางหมูแบบโค้ง (อันที่จริงใช้วิธีผลรวมอินทิกรัล) หากฟังก์ชั่นยอมรับเท่านั้น ค่าลบจากนั้นพื้นที่ใต้กราฟของฟังก์ชันในส่วนสามารถคำนวณได้โดยใช้อินทิกรัลที่แน่นอน สังเกตว่า คุณสามารถดูวิธีการหาส่วนต่างได้ที่นี่

แต่ฟังก์ชั่นยังสามารถรับค่าลบในบางส่วนจากนั้นอินทิกรัลในส่วนนี้จะให้พื้นที่เชิงลบซึ่งขัดแย้งกับคำจำกัดความของพื้นที่

คุณสามารถคำนวณพื้นที่โดยใช้สูตร=. นี่เทียบเท่ากับการเปลี่ยนเครื่องหมายของฟังก์ชันในพื้นที่ซึ่งรับค่าลบ

หากคุณต้องการคำนวณพื้นที่ของรูปที่ล้อมรอบด้วยกราฟของฟังก์ชันจากด้านบนและจากด้านล่างโดยกราฟของฟังก์ชัน คุณสามารถใช้สูตร= , เพราะ .

ตัวอย่าง. คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้นตรง x=0, x=2 และกราฟของฟังก์ชัน y=x 2 , y=x 3 .

โปรดทราบว่าในช่วง (0,1) สมการอสมการ x 2 > x 3 และสำหรับ x >1 สมการอสมการ x 3 > x 2 นั่นเป็นเหตุผล

2. รูปนี้จำกัดเฉพาะกราฟของฟังก์ชันที่กำหนดในระบบพิกัดเชิงขั้ว

ให้กราฟของฟังก์ชันได้รับในระบบพิกัดเชิงขั้วและเราต้องการคำนวณพื้นที่ของส่วนโค้งที่ล้อมรอบด้วยรังสีสองเส้นและกราฟของฟังก์ชันในระบบพิกัดเชิงขั้ว

ที่นี่คุณสามารถใช้วิธีการหาผลรวมรวมคำนวณพื้นที่ของเซกเตอร์โค้งเป็นขีด จำกัด ของผลรวมของพื้นที่ของเซกเตอร์พื้นฐานซึ่งกราฟของฟังก์ชันถูกแทนที่ด้วยส่วนโค้งของวงกลม .

คุณยังสามารถใช้วิธีดิฟเฟอเรนเชียล: .

คุณสามารถให้เหตุผลเช่นนี้ แทนที่ส่วนโค้งพื้นฐานที่สอดคล้องกับมุมกลางด้วยส่วนวงกลม เรามีสัดส่วน . จากที่นี่ . เราได้บูรณาการและใช้สูตรของนิวตัน-ไลบ์นิซ .

ตัวอย่าง. คำนวณพื้นที่วงกลม (ตรวจสอบสูตร) พวกเราเชื่อว่า . พื้นที่ของวงกลมคือ .

ตัวอย่าง. คำนวณพื้นที่ที่ล้อมรอบด้วย cardioid .

3 ตัวเลขนี้จำกัดเฉพาะกราฟของฟังก์ชันที่ระบุในรูปแบบพาราเมตริก

สามารถระบุฟังก์ชันในรูปแบบพาราเมตริกได้ เราใช้สูตร = แทนที่ขีดจำกัดของการรวมเข้ากับตัวแปรใหม่ . โดยปกติแล้ว เมื่อคำนวณอินทิกรัล พื้นที่เหล่านั้นจะถูกแยกแยะโดยที่อินทิกรัลมีเครื่องหมายเฉพาะและคำนึงถึงพื้นที่ที่สอดคล้องกันซึ่งมีเครื่องหมายเดียวหรืออีกเครื่องหมายหนึ่ง

ตัวอย่าง. คำนวณพื้นที่ที่ล้อมรอบด้วยวงรี

คำนวณพื้นที่หนึ่งในสี่ของวงรีโดยใช้สมมาตรของวงรีซึ่งอยู่ในควอดแดรนต์แรก ในจตุภาคนี้ นั่นเป็นเหตุผล

การคำนวณปริมาตรของร่างกาย

1. การคำนวณปริมาตรของร่างกายจากพื้นที่ของส่วนขนาน

ให้คำนวณปริมาตรของร่างกาย V จากพื้นที่ที่ทราบของส่วนต่างๆ ของร่างกายนี้ด้วยระนาบที่ตั้งฉากกับเส้น OX ที่ลากผ่านจุด x ใดๆ ของส่วนของเส้นตรง OX

เราใช้วิธีการของความแตกต่าง พิจารณาปริมาตรมูลฐาน เหนือส่วนเป็นปริมาตรของทรงกระบอกกลมด้านขวาที่มีพื้นที่ฐานและความสูง เราได้รับ . เราได้บูรณาการและใช้สูตรของนิวตัน-ไลบ์นิซ

2. การคำนวณปริมาตรของร่างกายของการปฏิวัติ

ให้มันจำเป็นต้องคำนวณ วัว.

แล้ว .

เช่นเดียวกัน, ปริมาตรของวัตถุที่หมุนรอบแกนเอ๋ยหากกำหนดฟังก์ชันไว้ในรูป สามารถคำนวณโดยใช้สูตร

หากฟังก์ชันได้รับในรูปแบบและจำเป็นต้องกำหนดปริมาตรของวัตถุของการปฏิวัติรอบแกนเอ๋ยก็จะได้สูตรคำนวณหาปริมาตรดังนี้

เรามีความแตกต่างและละเลยเงื่อนไขกำลังสอง . การรวมและใช้สูตรของนิวตัน-ไลบ์นิซ เรามี

ตัวอย่าง. คำนวณปริมาตรของทรงกลม

ตัวอย่าง. คำนวณปริมาตรของกรวยกลมด้านขวาที่มีพื้นผิวและระนาบล้อมรอบ

คำนวณปริมาตรเป็นปริมาตรของการหมุนรอบแกน OZ สามเหลี่ยมมุมฉากในระนาบ OXZ ซึ่งมีขาอยู่บนแกน OZ และเส้น z \u003d H และด้านตรงข้ามมุมฉากอยู่บนเส้น

แสดง x ในรูปของ z เราจะได้ .

การคำนวณความยาวส่วนโค้ง

เพื่อให้ได้สูตรสำหรับคำนวณความยาวของส่วนโค้ง ให้เราจำสูตรสำหรับส่วนต่างของความยาวของส่วนโค้งที่ได้มาในภาคการศึกษาที่ 1

ถ้าส่วนโค้งเป็นกราฟของฟังก์ชันหาอนุพันธ์ได้อย่างต่อเนื่อง, ความแตกต่างของความยาวส่วนโค้งสามารถคำนวณได้จากสูตร

. นั่นเป็นเหตุผล

หากระบุส่วนโค้งเรียบแบบพาราเมตริก, แล้ว

. นั่นเป็นเหตุผล .

ถ้าส่วนโค้งอยู่ในพิกัดเชิงขั้ว, แล้ว

. นั่นเป็นเหตุผล .

ตัวอย่าง. คำนวณความยาวส่วนโค้งของกราฟฟังก์ชัน .

พื้นที่ของสี่เหลี่ยมคางหมูเชิงเส้นโค้งล้อมรอบด้วยกราฟของฟังก์ชัน y=ฉ(x), ซ้ายและขวา - ตรง x=กและ x=ขตามลำดับจากด้านล่าง - แกน วัวคำนวณโดยสูตร

พื้นที่ของสี่เหลี่ยมคางหมูเชิงเส้นโค้งล้อมรอบด้วยกราฟของฟังก์ชันทางด้านขวา x=φ(ย)ด้านบนและด้านล่าง - ตรง ย=งและ y=cตามลำดับด้านซ้าย - แกน โอ๊ย:

สี่เหลี่ยม รูปโค้งล้อมรอบด้วยกราฟของฟังก์ชันจากด้านบน ย 2 \u003d ฉ 2 (x)ด้านล่าง - กราฟของฟังก์ชัน ย 1 \u003d ฉ 1 (x), ซ้ายและขวา - ตรง x=กและ x=ข:

พื้นที่ของเส้นโค้งล้อมรอบทางซ้ายและขวาด้วยกราฟฟังก์ชัน x 1 \u003d φ 1 (y)และ x 2 \u003d φ 2 (y)ด้านบนและด้านล่าง - ตรง ย=งและ y=cตามลำดับ:

พิจารณากรณีที่เส้นที่จำกัดเส้นโค้งสี่เหลี่ยมคางหมูจากด้านบนกำหนดโดยสมการพาราเมตริก x = φ 1 (เสื้อ), y \u003d φ 2 (t), ที่ไหน α ≤ เสื้อ ≤ β, φ 1 (α)=ก, φ 1 (β)=b. สมการเหล่านี้กำหนดฟังก์ชันบางอย่าง y=ฉ(x)ในส่วนของ [ ก ข]. พื้นที่ของสี่เหลี่ยมคางหมูโค้งคำนวณโดยสูตร

ไปที่ตัวแปรใหม่กันเถอะ x = φ 1 (เสื้อ), แล้ว dx = φ" 1 (t) dt, ก y=f(x)=f(φ 1 (t))=φ 2 (t)ดังนั้น \begin(displaymath)

พื้นที่ในพิกัดเชิงขั้ว

พิจารณาภาคเส้นโค้ง สตงล้อมรอบด้วยเส้นที่กำหนดโดยสมการ ρ=ρ(φ) ในพิกัดเชิงขั้ว คานสองอัน สสจและ สตง, ซึ่ง φ=α , φ=β .

เราแบ่งภาคออกเป็นภาคประถมศึกษา โอม k-1เอ็มเค ( k=1, …, n, M 0 = ก, Mn=B). แสดงโดย Δφkมุมระหว่างคาน โอม k-1และ โอม เคทำมุมกับแกนขั้วโลก φk-1และ φkตามลำดับ แต่ละภาคประถมศึกษา โอม k-1 M kแทนที่ด้วยภาควงกลมที่มีรัศมี ρ k \u003d ρ (φ "k), ที่ไหน φ"เค- ค่ามุม φ จากช่วงเวลา [ φk-1 , φk], และ มุมกลาง Δφk. พื้นที่ของภาคสุดท้ายแสดงโดยสูตร .

แสดงพื้นที่ของเซกเตอร์ "ขั้นบันได" ซึ่งจะแทนที่เซกเตอร์ที่กำหนดโดยประมาณ สตง.

พื้นที่ภาค สตงเรียกว่าขีด จำกัด ของพื้นที่ของภาค "ขั้นบันได" ที่ n→∞และ λ=สูงสุด Δφ k → 0:

เพราะ , แล้ว

ความยาวส่วนโค้ง

ให้ในส่วน [ ก ข] มีการกำหนดฟังก์ชันที่หาอนุพันธ์ได้ y=ฉ(x)ซึ่งกราฟคือส่วนโค้ง ส่วน [ ก ข] แบ่งเป็น จุดชิ้นส่วน x 1, x2, …, xn-1. จุดเหล่านี้จะสอดคล้องกับจุด ม.1, M2, …, Mn-1ส่วนโค้งเชื่อมต่อด้วยเส้นหักซึ่งเรียกว่าเส้นหักที่จารึกไว้ในส่วนโค้ง เส้นรอบวงของเส้นแบ่งนี้แสดงด้วย เอส เอ็น, นั่นคือ

คำนิยาม. ความยาวของส่วนโค้งของเส้นคือขีด จำกัด ของเส้นรอบวงของเส้นที่จารึกไว้เมื่อจำนวนลิงก์ M k-1 M kเพิ่มขึ้นเรื่อย ๆ และความยาวของส่วนที่ใหญ่ที่สุดมีแนวโน้มที่จะเป็นศูนย์:

โดยที่ λ คือความยาวของลิงค์ที่ใหญ่ที่สุด

เราจะนับความยาวของส่วนโค้งจากจุดบางจุด เช่น . ให้ตรงจุด ม(x,ย)ความยาวส่วนโค้งคือ และตรงจุด ม"(x+Δx,y+Δy)ความยาวส่วนโค้งคือ s+Δsที่ไหน i>Δs - ความยาวส่วนโค้ง จากรูปสามเหลี่ยม เอ็มเอ็นเอ็ม"ค้นหาความยาวของคอร์ด: .

จาก การพิจารณาทางเรขาคณิตตามนั้น

นั่นคือส่วนโค้งเล็ก ๆ ที่ไม่ จำกัด ของเส้นและคอร์ดที่มีส่วนย่อยนั้นมีค่าเท่ากัน

ลองแปลงสูตรที่แสดงความยาวของคอร์ด:

เมื่อผ่านไปถึงขีด จำกัด ของความเท่าเทียมกันนี้ เราได้รับสูตรสำหรับอนุพันธ์ของฟังก์ชัน ส=ส(x):

จากที่เราหามา

สูตรนี้แสดงความแตกต่างของส่วนโค้งของเส้นโค้งระนาบและมีความเรียบง่าย ความรู้สึกทางเรขาคณิต : แสดงทฤษฎีบทพีทาโกรัสสำหรับรูปสามเหลี่ยมที่เล็กที่สุด มท (ds=MT, ).

ความแตกต่างของส่วนโค้งของเส้นโค้งอวกาศกำหนดโดย

พิจารณาส่วนโค้งของเส้นปริภูมิที่กำหนดโดยสมการพาราเมตริก

ที่ไหน α ≤ เสื้อ ≤ β, φ ฉัน (เสื้อ) (ผม=1, 2, 3) เป็นฟังก์ชันที่หาอนุพันธ์ได้ของอาร์กิวเมนต์ ที, แล้ว

การรวมความเท่าเทียมกันนี้ในช่วงเวลา [ α, β ] เราได้สูตรสำหรับคำนวณความยาวของส่วนโค้งของเส้นนี้

หากเส้นอยู่ในระนาบ อ๊อกซี่, แล้ว z=0สำหรับทุกอย่าง เสื้อ∈[α, β]นั่นเป็นเหตุผล

ในกรณีที่เมื่อ เส้นแบนกำหนดโดยสมการ y=ฉ(x) (a≤x≤b), ที่ไหน ฉ(x)เป็นฟังก์ชันที่หาอนุพันธ์ได้ สูตรสุดท้ายจะใช้รูปแบบนี้

ให้สมการกำหนดเส้นแบน ρ=ρ(φ) (α≤φ≤β ) ในพิกัดเชิงขั้ว ในกรณีนี้เรามี สมการพาราเมตริกเส้น x=ρ(φ) คอส φ, y=ρ(φ) บาป φโดยที่มุมขั้วจะถูกนำมาเป็นพารามิเตอร์ φ . เพราะว่า

จากนั้นสูตรแสดงความยาวของส่วนโค้งของเส้น ρ=ρ(φ) (α≤φ≤β ) ในพิกัดเชิงขั้วมีรูปแบบ

ปริมาณของร่างกาย

ให้เราหาปริมาตรของร่างกายถ้าทราบพื้นที่ของส่วนตัดขวางของร่างกายที่ตั้งฉากกับทิศทางที่แน่นอน

ให้เราแบ่งร่างกายนี้เป็นชั้นพื้นฐานโดยระนาบตั้งฉากกับแกน วัวและกำหนดโดยสมการ x=ค่าคงที่. สำหรับการแก้ไขใดๆ x∈พื้นที่ที่รู้จัก ส=ส(x)ภาพตัดขวางของร่างกายนี้

ชั้นประถมศึกษาถูกตัดออกโดยระนาบ x=x k-1, x=x เค (k=1, …, n, x 0 =ก, xn=ข) เราแทนที่ด้วยทรงกระบอกที่มีความสูง ∆x k =x k -x k-1และพื้นที่ฐาน เอส(ξk), ξk ∈.

ปริมาตรของทรงกระบอกพื้นฐานที่ระบุแสดงโดยสูตร Δvk =E(ξk)Δxk. สรุปผลิตภัณฑ์ดังกล่าวทั้งหมด

ซึ่งเป็นผลรวมของฟังก์ชันที่กำหนด ส=ส(x)ในส่วนของ [ ก ข]. เป็นการแสดงปริมาตรของร่างกายขั้นบันไดซึ่งประกอบด้วยกระบอกสูบพื้นฐานและแทนที่ร่างกายที่กำหนดโดยประมาณ

ปริมาตรของวัตถุที่กำหนดคือขีด จำกัด ของปริมาตรของวัตถุขั้นบันไดที่ระบุที่ λ→0 , ที่ไหน λ - ความยาวของส่วนพื้นฐานที่ใหญ่ที่สุด ∆x กิโล. แสดงโดย วีปริมาตรของร่างกายที่กำหนด จากนั้นตามนิยาม

ในทางกลับกัน,

ดังนั้นสูตรจึงคำนวณปริมาตรของร่างกายสำหรับส่วนตัดขวางที่กำหนด

หากร่างกายเกิดจากการหมุนรอบแกน วัวสี่เหลี่ยมคางหมูโค้งล้อมรอบด้วยส่วนโค้งของเส้นต่อเนื่องจากด้านบน y=ฉ(x), ที่ไหน a≤x≤b, แล้ว S(x)=πf 2 (x)และสูตรสุดท้ายจะกลายเป็น:

ความคิดเห็น. ปริมาตรของร่างกายที่ได้จากการหมุนสี่เหลี่ยมคางหมูแบบโค้งซึ่งล้อมรอบด้วยกราฟฟังก์ชันทางด้านขวา x=φ(ย) (ค ≤ x ≤ ง) รอบแกน โอ๊ยคำนวณโดยสูตร

พื้นที่ผิวของการหมุน

พิจารณาพื้นผิวที่ได้จากการหมุนส่วนโค้งของเส้น y=ฉ(x) (a≤x≤b) รอบแกน วัว(สมมติว่าฟังก์ชัน y=ฉ(x)มีอนุพันธ์ต่อเนื่อง) เราแก้ไขค่า x∈อาร์กิวเมนต์ของฟังก์ชันจะเพิ่มขึ้น ดีเอ็กซ์ซึ่งสอดคล้องกับ "วงแหวนมูลฐาน" ที่ได้จากการหมุนส่วนโค้งมูลฐาน ∆l. "วงแหวน" นี้ถูกแทนที่ด้วยวงแหวนทรงกระบอก - พื้นผิวด้านข้างของร่างกายที่เกิดจากการหมุนของสี่เหลี่ยมผืนผ้าที่มีฐานเท่ากับส่วนต่างของส่วนโค้ง ดล, และส่วนสูง ชั่วโมง=ฉ(x). ตัดวงแหวนสุดท้ายแล้วคลี่ออกเราจะได้แถบที่มีความกว้าง ดลและความยาว 2πy, ที่ไหน y=ฉ(x).

ดังนั้น ความแตกต่างของพื้นที่ผิวจะแสดงด้วยสูตร

สูตรนี้แสดงพื้นที่ผิวที่ได้จากการหมุนส่วนโค้งของเส้น y=ฉ(x) (a≤x≤b) รอบแกน วัว.

หน้าแรก > การบรรยาย

บทบรรยาย 18. การประยุกต์ใช้อินทิกรัลที่แน่นอน

18.1. การคำนวณพื้นที่ของรูปทรงระนาบ

เป็นที่ทราบกันว่าอินทิกรัลที่แน่นอนในส่วนคือพื้นที่ของเส้นโค้งสี่เหลี่ยมคางหมูที่ล้อมรอบด้วยกราฟของฟังก์ชัน f(x) หากกราฟอยู่ใต้แกน x เช่น ฉ(x)< 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) >0 พื้นที่นั้นจะมีเครื่องหมาย “+”

สูตรนี้ใช้ในการหาพื้นที่ทั้งหมด

พื้นที่ของรูปที่ล้อมรอบด้วยเส้นบางเส้นสามารถพบได้โดยใช้อินทิกรัลบางตัวหากทราบสมการของเส้นเหล่านี้

ตัวอย่าง.หาพื้นที่ของรูป ล้อมรอบด้วยเส้น y \u003d x, y \u003d x 2, x \u003d 2

พื้นที่ที่ต้องการ (แรเงาในรูป) สามารถดูได้จากสูตร:

18.2. การหาพื้นที่ของส่วนโค้ง

ในการค้นหาพื้นที่ของส่วนโค้ง เราแนะนำระบบพิกัดเชิงขั้ว สมการของเส้นโค้งที่ล้อมรอบเซกเตอร์ในระบบพิกัดนี้มีรูปแบบ  = f() โดยที่  คือความยาวของเวกเตอร์รัศมีที่เชื่อมต่อเสากับ จุดโดยพลการเส้นโค้ง และ  - มุมเอียงของเวกเตอร์รัศมีนี้ไปยังแกนขั้วโลก

พื้นที่ของเซกเตอร์โค้งสามารถหาได้จากสูตร

18.3. การคำนวณความยาวส่วนโค้งของเส้นโค้ง

y y = ฉ(x)

S ฉัน y ฉัน

สามารถหาความยาวของเส้นที่สอดคล้องกับส่วนโค้งได้ดังนี้
.

แล้วความยาวของส่วนโค้งคือ
.

ด้วยเหตุผลทางเรขาคณิต:

ในเวลาเดียวกัน

ก็แสดงว่าได้

เหล่านั้น.

หากสมการของเส้นโค้งถูกกำหนดโดยพาราเมตริก เมื่อคำนึงถึงกฎสำหรับการคำนวณอนุพันธ์ของอนุพันธ์ที่กำหนดโดยพาราเมตริก เราจะได้รับ

,

โดยที่ x = (t) และ y = (t)

ถ้าตั้ง เส้นโค้งเชิงพื้นที่และ x = (t), y = (t) และ z = Z(t) แล้ว

หากกำหนดเส้นโค้งเป็น พิกัดเชิงขั้ว, แล้ว

,  = ฉ().

ตัวอย่าง:หาเส้นรอบวงที่กำหนดโดยสมการ x 2 + y 2 = r 2

1 วิธีให้เราแสดงตัวแปร y จากสมการ

ลองหาอนุพันธ์กัน

จากนั้น S = 2r เราได้สูตรที่รู้จักกันดีสำหรับเส้นรอบวงของวงกลม

2 ทางถ้าเราแทนสมการที่กำหนดในระบบพิกัดเชิงขั้ว เราจะได้: r 2 cos 2  + r 2 sin 2  = r 2 นั่นคือ ฟังก์ชัน  = f() = r,
แล้ว

18.4. การคำนวณปริมาตรของร่างกาย

การคำนวณปริมาตรของร่างกายจากพื้นที่ที่ทราบของส่วนที่ขนานกัน

ปล่อยให้มีเนื้อหาของปริมาตร V พื้นที่ของส่วนตัดขวางของร่างกาย Q เรียกว่าฟังก์ชันต่อเนื่อง Q = Q(x) มาแบ่งร่างกายออกเป็น "เลเยอร์" โดยส่วนตัดผ่านจุด x ผม ของการแบ่งส่วน . เพราะ ฟังก์ชัน Q(x) ต่อเนื่องกับส่วนตรงกลางของพาร์ติชัน จากนั้นจะใช้ในส่วนที่ใหญ่ที่สุดและ ค่าที่น้อยที่สุด. มากำหนดพวกเขาตาม M i และ m i .

หากในส่วนที่ใหญ่ที่สุดและเล็กที่สุดในการสร้างกระบอกสูบที่มีเครื่องกำเนิดไฟฟ้าขนานกับแกน x ปริมาตรของกระบอกสูบเหล่านี้จะเท่ากับ M i x i และ m i x i ที่นี่ x i = x i - x i -1 .

หลังจากสร้างโครงสร้างดังกล่าวสำหรับทุกส่วนของพาร์ติชันแล้ว เราได้กระบอกสูบที่มีปริมาตรตามลำดับ
และ
.

เนื่องจากขั้นตอนของพาร์ติชัน  มีแนวโน้มที่จะเป็นศูนย์ ผลรวมเหล่านี้จึงมีขีดจำกัดร่วมกัน:

ดังนั้นปริมาตรของร่างกายสามารถหาได้จากสูตร:

ข้อเสียของสูตรนี้คือในการหาปริมาตร จำเป็นต้องรู้ฟังก์ชัน Q(x) ซึ่งเป็นปัญหามากสำหรับเนื้อหาที่ซับซ้อน

ตัวอย่าง:หาปริมาตรของทรงกลมรัศมี R

ที่ ภาพตัดขวางได้รับลูกบอลวงกลมรัศมีตัวแปร y ขึ้นอยู่กับพิกัด x ปัจจุบัน รัศมีนี้แสดงโดยสูตร
.

จากนั้นฟังก์ชันพื้นที่หน้าตัดจะมีรูปแบบ: Q(x) =
.

เราได้ปริมาตรของลูกบอล:

ตัวอย่าง:ค้นหาปริมาตรของพีระมิดโดยพลการที่มีความสูง H และพื้นที่ฐาน S

เมื่อข้ามพีระมิดด้วยระนาบที่ตั้งฉากกับความสูง ในส่วนนี้ เราจะได้ตัวเลขที่คล้ายกับฐาน ค่าสัมประสิทธิ์ความคล้ายคลึงกันของตัวเลขเหล่านี้เท่ากับอัตราส่วน x / H โดยที่ x คือระยะทางจากระนาบส่วนถึงยอดพีระมิด

จากรูปทรงเรขาคณิตเป็นที่รู้กันว่าอัตราส่วนของพื้นที่ของตัวเลขที่คล้ายกันนั้นเท่ากับค่าสัมประสิทธิ์ของความคล้ายคลึงกันกำลังสอง นั่นคือ

จากที่นี่เราได้ฟังก์ชันของพื้นที่หน้าตัด:

การหาปริมาตรของพีระมิด:

18.5 ปริมาณของร่างกายของการปฏิวัติ

พิจารณาเส้นโค้ง กำหนดโดยสมการ y = ฉ(x). ให้เราถือว่าฟังก์ชัน f(x) ต่อเนื่องในส่วนของ หากสี่เหลี่ยมคางหมูโค้งที่สอดคล้องกับฐาน a และ b หมุนรอบแกน Ox เราจะได้สิ่งที่เรียกว่า ร่างกายของการปฏิวัติ.

y = ฉ(x)

เพราะ แต่ละส่วนของร่างกายโดยระนาบ x = const คือวงกลมรัศมี
จากนั้นสามารถหาปริมาตรของร่างกายของการปฏิวัติได้อย่างง่ายดายโดยใช้สูตรที่ได้รับด้านบน:

18.6. พื้นที่ผิวของร่างกายของการปฏิวัติ

เอ็ม ไอ บี

คำนิยาม: พื้นที่ผิวของการหมุนเส้นโค้ง AB รอบแกนที่กำหนดคือขีดจำกัดซึ่งพื้นที่ของพื้นผิวของการหมุนของเส้นหักซึ่งระบุไว้ในเส้นโค้ง AB มักจะเป็น เมื่อความยาวที่ใหญ่ที่สุดของการเชื่อมโยงของเส้นหักเหล่านี้มีแนวโน้มที่จะเป็นศูนย์

ลองแบ่งส่วนโค้ง AB ออกเป็น n ส่วนโดยจุด M 0 , M 1 , M 2 , … , M n . จุดยอดของเส้นผลลัพธ์มีพิกัด x i และ y i เมื่อหมุนเส้นหักรอบแกนเราจะได้พื้นผิวที่ประกอบด้วยพื้นผิวด้านข้างของกรวยที่ถูกตัดออกซึ่งมีพื้นที่เท่ากับ P ผม . พื้นที่นี้สามารถพบได้โดยใช้สูตร:

โดยที่ S i คือความยาวของคอร์ดแต่ละคอร์ด

เราใช้ทฤษฎีบทของลากรองจ์ (เปรียบเทียบ ทฤษฎีบทของลากรองจ์) กับความสัมพันธ์
.