ชีวประวัติ ลักษณะเฉพาะ การวิเคราะห์

วิธีสร้างกราฟฟังก์ชัน การสร้างกราฟออนไลน์ การสร้างกราฟด้วยฟังก์ชันที่ซับซ้อน

สร้างฟังก์ชัน

เราขอเสนอบริการสร้างกราฟของฟังก์ชันออนไลน์แก่คุณ ซึ่งสิทธิ์ทั้งหมดเป็นของบริษัท เดสมอส- ใช้คอลัมน์ด้านซ้ายเพื่อเข้าสู่ฟังก์ชัน คุณสามารถป้อนด้วยตนเองหรือใช้แป้นพิมพ์เสมือนที่ด้านล่างของหน้าต่าง หากต้องการขยายหน้าต่างด้วยกราฟ คุณสามารถซ่อนทั้งคอลัมน์ด้านซ้ายและแป้นพิมพ์เสมือนได้

ประโยชน์ของการสร้างแผนภูมิออนไลน์

  • การแสดงฟังก์ชั่นที่ป้อนด้วยสายตา
  • การสร้างกราฟที่ซับซ้อนมาก
  • การสร้างกราฟที่ระบุโดยปริยาย (เช่น วงรี x^2/9+y^2/16=1)
  • ความสามารถในการบันทึกแผนภูมิและรับลิงก์ไปยังแผนภูมิเหล่านั้นซึ่งทุกคนบนอินเทอร์เน็ตสามารถใช้ได้
  • การควบคุมขนาดและสีของเส้น
  • ความเป็นไปได้ของการวาดกราฟตามจุดโดยใช้ค่าคงที่
  • การพล็อตกราฟฟังก์ชันหลายกราฟพร้อมกัน
  • การลงจุดในพิกัดเชิงขั้ว (ใช้ r และ θ(\theta))

กับเราการสร้างแผนภูมิที่มีความซับซ้อนหลากหลายทางออนไลน์เป็นเรื่องง่าย การก่อสร้างเสร็จสิ้นทันที บริการนี้เป็นที่ต้องการในการค้นหาจุดตัดกันของฟังก์ชันเพื่อแสดงกราฟเพื่อย้ายไปยังเอกสาร Word เพื่อเป็นภาพประกอบในการแก้ปัญหาและเพื่อวิเคราะห์คุณลักษณะเชิงพฤติกรรมของกราฟฟังก์ชัน เบราว์เซอร์ที่เหมาะสมที่สุดสำหรับการทำงานกับกราฟบนหน้าเว็บไซต์นี้คือ Google Chrome ไม่รับประกันการทำงานที่ถูกต้องเมื่อใช้เบราว์เซอร์อื่น

กราฟฟังก์ชันคือการแสดงพฤติกรรมของฟังก์ชันบนระนาบพิกัดด้วยภาพ กราฟช่วยให้คุณเข้าใจแง่มุมต่างๆ ของฟังก์ชันที่ไม่สามารถระบุได้จากตัวฟังก์ชันเอง คุณสามารถสร้างกราฟของฟังก์ชันต่างๆ ได้มากมาย และแต่ละฟังก์ชันจะได้รับสูตรเฉพาะ กราฟของฟังก์ชันใดๆ ถูกสร้างขึ้นโดยใช้อัลกอริธึมเฉพาะ (ในกรณีที่คุณลืมขั้นตอนที่แน่นอนในการสร้างกราฟฟังก์ชันเฉพาะ)

ขั้นตอน

การสร้างกราฟฟังก์ชันเชิงเส้น

    ตรวจสอบว่าฟังก์ชันเป็นแบบเชิงเส้นหรือไม่ฟังก์ชันเชิงเส้นได้มาจากสูตรของแบบฟอร์ม F (x) = k x + b (\รูปแบบการแสดงผล F(x)=kx+b)หรือ y = kx + b (\displaystyle y=kx+b)(เช่น ) และกราฟเป็นเส้นตรง ดังนั้น สูตรจึงประกอบด้วยตัวแปรหนึ่งตัวและค่าคงที่หนึ่งตัว (ค่าคงที่) โดยไม่มีเลขยกกำลัง เครื่องหมายราก หรือสิ่งที่คล้ายกัน หากมีการกำหนดฟังก์ชันประเภทเดียวกัน การพล็อตกราฟของฟังก์ชันดังกล่าวจะค่อนข้างง่าย นี่คือตัวอย่างอื่นๆ ของฟังก์ชันเชิงเส้น:

    ใช้ค่าคงที่เพื่อทำเครื่องหมายจุดบนแกน Yค่าคงที่ (b) คือพิกัด “y” ของจุดที่กราฟตัดกับแกน Y นั่นคือเป็นจุดที่พิกัด “x” เท่ากับ 0 ดังนั้น หาก x = 0 ถูกแทนที่ด้วยสูตร แล้ว y = b (ค่าคงที่) ในตัวอย่างของเรา y = 2 x + 5 (\displaystyle y=2x+5)ค่าคงที่เท่ากับ 5 นั่นคือจุดตัดกับแกน Y มีพิกัด (0.5) พล็อตจุดนี้บนระนาบพิกัด

    หาความชันของเส้นตรง.มันเท่ากับตัวคูณของตัวแปร ในตัวอย่างของเรา y = 2 x + 5 (\displaystyle y=2x+5)ด้วยตัวแปร “x” จะมีตัวประกอบเป็น 2; ดังนั้น ค่าสัมประสิทธิ์ความชันจะเท่ากับ 2 ค่าสัมประสิทธิ์ความชันจะกำหนดมุมเอียงของเส้นตรงไปยังแกน X กล่าวคือ ยิ่งค่าสัมประสิทธิ์ความชันยิ่งมาก ฟังก์ชันก็จะยิ่งเพิ่มหรือลดลงเร็วขึ้นเท่านั้น

    เขียนความชันเป็นเศษส่วน.ค่าสัมประสิทธิ์เชิงมุมเท่ากับค่าแทนเจนต์ของมุมเอียง นั่นคืออัตราส่วนของระยะทางแนวตั้ง (ระหว่างจุดสองจุดบนเส้นตรง) กับระยะทางแนวนอน (ระหว่างจุดเดียวกัน) ในตัวอย่างของเรา ความชันคือ 2 ดังนั้นเราจึงระบุได้ว่าระยะในแนวตั้งคือ 2 และระยะแนวนอนคือ 1 เขียนนี่เป็นเศษส่วน: 2 1 (\displaystyle (\frac (2)(1))).

    • หากความชันเป็นลบ ฟังก์ชันจะลดลง
  1. จากจุดที่เส้นตรงตัดแกน Y ให้วาดจุดที่สองโดยใช้ระยะห่างในแนวตั้งและแนวนอน

    ฟังก์ชันเชิงเส้นสามารถเขียนกราฟได้โดยใช้จุดสองจุด ในตัวอย่างของเรา จุดตัดกับแกน Y มีพิกัด (0.5) จากจุดนี้ ให้เลื่อนขึ้นไป 2 ช่องแล้วไปทางขวา 1 ช่อง ทำเครื่องหมายจุด; ก็จะมีพิกัด (1,7) ตอนนี้คุณสามารถวาดเส้นตรงได้แล้วใช้ไม้บรรทัดลากเส้นตรงผ่านจุดสองจุด

    เพื่อหลีกเลี่ยงข้อผิดพลาด ให้ค้นหาจุดที่สาม แต่โดยส่วนใหญ่แล้วกราฟสามารถพล็อตได้โดยใช้จุดสองจุด ดังนั้น คุณได้พลอตฟังก์ชันเชิงเส้นแล้ว

    1. การพล็อตจุดบนระนาบพิกัดกำหนดฟังก์ชัน

      วาดเส้นตั้งฉากตัดกันสองเส้นเส้นแนวนอนคือแกน X เส้นแนวตั้งคือแกน Y

      ติดป้ายกำกับแกนพิกัดแบ่งแต่ละแกนออกเป็นส่วนเท่าๆ กัน แล้วกำหนดหมายเลข จุดตัดของแกนคือ 0 สำหรับแกน X: ตัวเลขบวกจะถูกพล็อตไปทางขวา (จาก 0) และตัวเลขลบไปทางซ้าย สำหรับแกน Y: ตัวเลขบวกจะถูกพล็อตไว้ด้านบน (ตั้งแต่ 0) และตัวเลขลบจะอยู่ด้านล่าง

      ค้นหาค่าของ "y" จากค่าของ "x"ในตัวอย่างของเรา f(x) = x+2 แทนค่า x เฉพาะลงในสูตรนี้เพื่อคำนวณค่า y ที่สอดคล้องกัน หากได้รับฟังก์ชันที่ซับซ้อน ให้ลดความซับซ้อนโดยการแยกตัว “y” ออกจากด้านหนึ่งของสมการ

      • -1: -1 + 2 = 1
      • 0: 0 +2 = 2
      • 1: 1 + 2 = 3
    2. พล็อตจุดบนระนาบพิกัดสำหรับพิกัดแต่ละคู่ ให้ทำดังนี้: ค้นหาค่าที่สอดคล้องกันบนแกน X และวาดเส้นแนวตั้ง (เส้นประ) ค้นหาค่าที่สอดคล้องกันบนแกน Y แล้ววาดเส้นแนวนอน (เส้นประ) ทำเครื่องหมายจุดตัดของเส้นประสองเส้น ดังนั้นคุณได้พล็อตจุดบนกราฟแล้ว

      ลบเส้นประทำสิ่งนี้หลังจากพล็อตจุดทั้งหมดบนกราฟบนระนาบพิกัดแล้ว หมายเหตุ: กราฟของฟังก์ชัน f(x) = x เป็นเส้นตรงที่ผ่านจุดศูนย์กลางพิกัด [จุดที่มีพิกัด (0,0)] กราฟ f(x) = x + 2 เป็นเส้นขนานกับเส้น f(x) = x แต่เลื่อนขึ้นสองหน่วยจึงผ่านจุดที่มีพิกัด (0,2) (เพราะค่าคงที่คือ 2) .

    การสร้างกราฟฟังก์ชันที่ซับซ้อน

      ค้นหาศูนย์ของฟังก์ชันค่าศูนย์ของฟังก์ชันคือค่าของตัวแปร x โดยที่ y = 0 นั่นคือจุดที่กราฟตัดกับแกน X โปรดจำไว้ว่าไม่ใช่ทุกฟังก์ชันจะมีศูนย์ แต่เป็นฟังก์ชันแรก ขั้นตอนในกระบวนการสร้างกราฟฟังก์ชันใดๆ หากต้องการค้นหาค่าศูนย์ของฟังก์ชัน ให้จัดให้เป็นศูนย์ ตัวอย่างเช่น:

      ค้นหาและทำเครื่องหมายเส้นกำกับแนวนอนเส้นกำกับคือเส้นตรงที่กราฟของฟังก์ชันเข้าใกล้แต่ไม่เคยตัดกัน (นั่นคือ ในภูมิภาคนี้ ฟังก์ชันไม่ได้ถูกกำหนดไว้ เช่น เมื่อหารด้วย 0) ทำเครื่องหมายเส้นกำกับด้วยเส้นประ หากตัวแปร "x" อยู่ในตัวส่วนของเศษส่วน (เช่น y = 1 4 − x 2 (\displaystyle y=(\frac (1)(4-x^(2))))) ตั้งค่าตัวส่วนเป็นศูนย์แล้วหา "x" ในค่าที่ได้รับของตัวแปร “x” ฟังก์ชันไม่ได้ถูกกำหนดไว้ (ในตัวอย่างของเรา ให้วาดเส้นประผ่าน x = 2 และ x = -2) เนื่องจากคุณไม่สามารถหารด้วย 0 ได้ แต่เส้นกำกับไม่ได้มีเฉพาะในกรณีที่ฟังก์ชันมีนิพจน์เศษส่วนเท่านั้น ดังนั้นจึงแนะนำให้ใช้สามัญสำนึก:

การสร้างกราฟของฟังก์ชันที่มีโมดูลมักจะทำให้เกิดปัญหาอย่างมากสำหรับเด็กนักเรียน อย่างไรก็ตามทุกอย่างก็ไม่ได้เลวร้ายนัก การจำอัลกอริธึมสองสามอย่างในการแก้ปัญหาดังกล่าวก็เพียงพอแล้ว และคุณสามารถสร้างกราฟของฟังก์ชันที่ซับซ้อนที่สุดได้อย่างง่ายดาย เรามาดูกันว่าอัลกอริธึมเหล่านี้คืออะไร

1. เขียนกราฟของฟังก์ชัน y = |f(x)|

โปรดทราบว่าชุดของค่าฟังก์ชัน y = |f(x)| : y ≥ 0 ดังนั้น กราฟของฟังก์ชันดังกล่าวจึงอยู่ในระนาบครึ่งบนเสมอ

การพล็อตกราฟของฟังก์ชัน y = |f(x)| ประกอบด้วยสี่ขั้นตอนง่ายๆ ดังต่อไปนี้

1) สร้างกราฟของฟังก์ชัน y = f(x) อย่างระมัดระวังและรอบคอบ

2) ปล่อยจุดทั้งหมดบนกราฟที่อยู่เหนือหรือบนแกน 0x ไว้ไม่เปลี่ยนแปลง

3) แสดงส่วนของกราฟที่อยู่ต่ำกว่าแกน 0x อย่างสมมาตรสัมพันธ์กับแกน 0x

ตัวอย่างที่ 1 วาดกราฟของฟังก์ชัน y = |x 2 – 4x + 3|

1) เราสร้างกราฟของฟังก์ชัน y = x 2 – 4x + 3 แน่นอนว่ากราฟของฟังก์ชันนี้คือพาราโบลา ลองหาพิกัดของทุกจุดตัดของพาราโบลากับแกนพิกัดและพิกัดของจุดยอดของพาราโบลากัน

x 2 – 4x + 3 = 0

x 1 = 3, x 2 = 1

ดังนั้น พาราโบลาจะตัดแกน 0x ที่จุด (3, 0) และ (1, 0)

ปี = 0 2 – 4 0 + 3 = 3

ดังนั้น พาราโบลาจะตัดแกน 0y ที่จุด (0, 3)

พิกัดจุดยอดพาราโบลา:

x ใน = -(-4/2) = 2, y ใน = 2 2 – 4 2 + 3 = -1

ดังนั้น จุด (2, -1) คือจุดยอดของพาราโบลานี้

วาดพาราโบลาโดยใช้ข้อมูลที่ได้รับ (รูปที่ 1)

2) ส่วนของกราฟที่อยู่ต่ำกว่าแกน 0x จะแสดงแบบสมมาตรสัมพันธ์กับแกน 0x

3) เราได้กราฟของฟังก์ชันดั้งเดิม ( ข้าว. 2ปรากฏเป็นเส้นประ)

2. การสร้างกราฟฟังก์ชัน y = f(|x|)

โปรดทราบว่าฟังก์ชันที่อยู่ในรูปแบบ y = f(|x|) จะเป็นคู่:

y(-x) = f(|-x|) = f(|x|) = y(x) ซึ่งหมายความว่ากราฟของฟังก์ชันดังกล่าวมีความสมมาตรเกี่ยวกับแกน 0y

การพล็อตกราฟของฟังก์ชัน y = f(|x|) ประกอบด้วยลำดับการกระทำอย่างง่ายดังต่อไปนี้

1) สร้างกราฟฟังก์ชัน y = f(x)

2) ปล่อยส่วนของกราฟซึ่งมี x ≥ 0 ซึ่งก็คือส่วนของกราฟที่อยู่ในระนาบครึ่งขวา

3) แสดงส่วนของกราฟที่ระบุในจุด (2) แบบสมมาตรกับแกน 0y

4) เป็นกราฟสุดท้าย ให้เลือกการรวมกันของเส้นโค้งที่ได้รับในจุด (2) และ (3)

ตัวอย่างที่ 2 วาดกราฟของฟังก์ชัน y = x 2 – 4 · |x| + 3

เนื่องจาก x 2 = |x| 2 จากนั้นฟังก์ชันดั้งเดิมสามารถเขียนใหม่ได้ในรูปแบบต่อไปนี้: y = |x| 2 – 4 · |x| + 3. ตอนนี้เราสามารถใช้อัลกอริธึมที่เสนอข้างต้นได้แล้ว

1) เราสร้างกราฟของฟังก์ชัน y = x 2 – 4 x + 3 อย่างระมัดระวังและรอบคอบ (ดูเพิ่มเติม ข้าว. 1).

2) เราปล่อยให้ส่วนของกราฟมี x ≥ 0 ซึ่งก็คือส่วนของกราฟที่อยู่ในระนาบครึ่งขวา

3) แสดงด้านขวาของกราฟอย่างสมมาตรกับแกน 0y

(รูปที่ 3).

ตัวอย่างที่ 3 วาดกราฟของฟังก์ชัน y = log 2 |x|

เราใช้รูปแบบที่ให้ไว้ข้างต้น

1) สร้างกราฟของฟังก์ชัน y = log 2 x (รูปที่ 4).

3. การพล็อตฟังก์ชัน y = |f(|x|)|

โปรดทราบว่าฟังก์ชันที่อยู่ในรูปแบบ y = |f(|x|)| ก็ยังเท่ากัน แท้จริงแล้ว y(-x) = y = |f(|-x|)| = y = |ฉ(|x|)| = y(x) ดังนั้น กราฟของพวกมันจึงสมมาตรรอบแกน 0y ชุดค่าของฟังก์ชันดังกล่าว: y 0 ซึ่งหมายความว่ากราฟของฟังก์ชันดังกล่าวจะอยู่ในระนาบครึ่งบนทั้งหมด

ในการพล็อตฟังก์ชัน y = |f(|x|)| คุณต้อง:

1) สร้างกราฟของฟังก์ชัน y = f(|x|) อย่างระมัดระวัง

2) ปล่อยส่วนของกราฟที่อยู่เหนือหรือบนแกน 0x ไว้ไม่เปลี่ยนแปลง

3) แสดงส่วนของกราฟที่อยู่ด้านล่างแกน 0x แบบสมมาตรสัมพันธ์กับแกน 0x

4) เป็นกราฟสุดท้าย ให้เลือกการรวมกันของเส้นโค้งที่ได้รับในจุด (2) และ (3)

ตัวอย่างที่ 4 วาดกราฟของฟังก์ชัน y = |-x 2 + 2|x| – 1|.

1) โปรดทราบว่า x 2 = |x| 2. ซึ่งหมายความว่าแทนที่จะเป็นฟังก์ชันเดิม y = -x 2 + 2|x| – 1

คุณสามารถใช้ฟังก์ชัน y = -|x| 2 + 2|x| – 1 เนื่องจากกราฟตรงกัน

เราสร้างกราฟ y = -|x| 2 + 2|x| – 1. สำหรับสิ่งนี้ เราใช้อัลกอริทึม 2

ก) สร้างกราฟฟังก์ชัน y = -x 2 + 2x – 1 (รูปที่ 6).

b) เราปล่อยส่วนของกราฟที่อยู่ในครึ่งระนาบด้านขวาไว้

c) เราแสดงส่วนผลลัพธ์ของกราฟแบบสมมาตรกับแกน 0y

d) กราฟผลลัพธ์จะแสดงเป็นเส้นประในรูป (รูปที่ 7).

2) ไม่มีจุดที่อยู่เหนือแกน 0x เราปล่อยให้จุดบนแกน 0x ไม่เปลี่ยนแปลง

3) ส่วนของกราฟที่อยู่ด้านล่างแกน 0x จะแสดงแบบสมมาตรสัมพันธ์กับ 0x

4) กราฟผลลัพธ์จะแสดงในรูปด้วยเส้นประ (รูปที่ 8).

ตัวอย่างที่ 5 สร้างกราฟฟังก์ชัน y = |(2|x| – 4) / (|x| + 3)|

1) ก่อนอื่นคุณต้องพล็อตฟังก์ชัน y = (2|x| – 4) / (|x| + 3) เมื่อต้องการทำเช่นนี้ เรากลับไปที่อัลกอริทึม 2

a) พลอตฟังก์ชัน y = (2x – 4) / (x + 3) อย่างระมัดระวัง (รูปที่ 9).

โปรดทราบว่าฟังก์ชันนี้เป็นเศษส่วนเชิงเส้นและกราฟของมันคือไฮเปอร์โบลา ในการพล็อตเส้นโค้ง คุณต้องหาเส้นกำกับของกราฟก่อน แนวนอน – y = 2/1 (อัตราส่วนของสัมประสิทธิ์ของ x ในตัวเศษและส่วนของเศษส่วน), แนวตั้ง – x = -3

2) เราจะปล่อยให้ส่วนของกราฟที่อยู่เหนือแกน 0x หรือบนนั้นไม่เปลี่ยนแปลง

3) ส่วนของกราฟที่อยู่ด้านล่างแกน 0x จะแสดงแบบสมมาตรสัมพันธ์กับ 0x

4) กราฟสุดท้ายจะแสดงในรูป (รูปที่ 11).

blog.site เมื่อคัดลอกเนื้อหาทั้งหมดหรือบางส่วน จำเป็นต้องมีลิงก์ไปยังแหล่งที่มาดั้งเดิม

ก่อนหน้านี้ เราได้ศึกษาฟังก์ชันอื่นๆ เช่น เชิงเส้น ให้เราจำรูปแบบมาตรฐานของมัน:

ดังนั้นความแตกต่างพื้นฐานที่ชัดเจน - ในฟังก์ชันเชิงเส้น เอ็กซ์ยืนอยู่ในระดับหนึ่ง และในหน้าที่ใหม่ เรากำลังเริ่มศึกษา เอ็กซ์ยืนหยัดเป็นกำลังสอง

โปรดจำไว้ว่ากราฟของฟังก์ชันเชิงเส้นเป็นเส้นตรง และกราฟของฟังก์ชันดังที่เราเห็นคือเส้นโค้งที่เรียกว่าพาราโบลา

เริ่มต้นด้วยการค้นหาว่าสูตรมาจากไหน คำอธิบายคือ: หากเราได้รับรูปสี่เหลี่ยมจัตุรัสที่มีด้าน จากนั้นเราสามารถคำนวณพื้นที่ของมันได้ดังนี้:

ถ้าเราเปลี่ยนความยาวของด้านของสี่เหลี่ยมจัตุรัส พื้นที่ของมันก็จะเปลี่ยนไป

นี่จึงเป็นเหตุผลหนึ่งว่าทำไมจึงมีการศึกษาฟังก์ชันนี้

จำได้ว่าเป็นตัวแปร เอ็กซ์- นี่คือตัวแปรอิสระหรือการโต้แย้ง ในการตีความทางกายภาพ อาจเป็นได้ เช่น เวลา ในทางกลับกัน ระยะทางเป็นตัวแปรขึ้นอยู่กับเวลา ตัวแปรตามหรือฟังก์ชันเป็นตัวแปร ที่.

นี่คือกฎของการโต้ตอบตามค่าแต่ละค่า เอ็กซ์มีการกำหนดค่าเดียว ที่.

กฎหมายการติดต่อสื่อสารใดๆ จะต้องเป็นไปตามข้อกำหนดของความเป็นเอกลักษณ์ตั้งแต่การโต้แย้งไปจนถึงการทำงาน ในการตีความทางกายภาพ สิ่งนี้ดูค่อนข้างชัดเจนโดยใช้ตัวอย่างการขึ้นอยู่กับระยะทางตรงเวลา: ในแต่ละช่วงเวลาเราอยู่ห่างจากจุดเริ่มต้น และเป็นไปไม่ได้ที่จะอยู่ห่างจากจุดเริ่มต้นทั้ง 10 และ 20 กิโลเมตร ของการเดินทางในเวลาเดียวกันที่เวลา t

ในเวลาเดียวกัน ค่าฟังก์ชันแต่ละค่าสามารถทำได้โดยใช้ค่าอาร์กิวเมนต์หลายค่า

ดังนั้นเราจึงจำเป็นต้องสร้างกราฟของฟังก์ชัน ด้วยเหตุนี้เราจึงต้องสร้างตาราง จากนั้นศึกษาฟังก์ชันและคุณสมบัติของมันโดยใช้กราฟ แต่ก่อนที่จะสร้างกราฟตามประเภทของฟังก์ชัน เราสามารถพูดบางอย่างเกี่ยวกับคุณสมบัติของมันได้: เห็นได้ชัดว่า ที่ไม่สามารถรับค่าลบได้เนื่องจาก

เรามาสร้างตารางกันดีกว่า:

ข้าว. 1

จากกราฟสามารถสังเกตคุณสมบัติต่อไปนี้ได้ง่าย:

แกน ที่- นี่คือแกนสมมาตรของกราฟ

จุดยอดของพาราโบลาคือจุด (0; 0);

เราเห็นว่าฟังก์ชันยอมรับเฉพาะค่าที่ไม่เป็นลบเท่านั้น

ในช่วงที่ ฟังก์ชันจะลดลง และตามช่วงเวลาที่ฟังก์ชันเพิ่มขึ้น

ฟังก์ชันจะได้ค่าที่น้อยที่สุดที่จุดยอด ;

ไม่มีค่ามากที่สุดของฟังก์ชัน

ตัวอย่างที่ 1

เงื่อนไข:

สารละลาย:

เนื่องจาก เอ็กซ์ตามการเปลี่ยนแปลงเงื่อนไขในช่วงเวลาที่กำหนด เราสามารถพูดเกี่ยวกับฟังก์ชันที่เพิ่มขึ้นและการเปลี่ยนแปลงในช่วงเวลานั้นได้ ฟังก์ชันมีค่าต่ำสุดและค่าสูงสุดในช่วงเวลานี้

ข้าว. 2. กราฟของฟังก์ชัน y = x 2 , x ∈

ตัวอย่างที่ 2

เงื่อนไข:ค้นหาค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชัน:

สารละลาย:

เอ็กซ์เปลี่ยนแปลงไปตามช่วงเวลา ซึ่งหมายถึง ที่ลดลงตามช่วงเวลา ในขณะที่ และเพิ่มขึ้นตามช่วงเวลา ในขณะที่

ดังนั้นขีดจำกัดของการเปลี่ยนแปลง เอ็กซ์และขีดจำกัดของการเปลี่ยนแปลง ที่ดังนั้นในช่วงเวลาที่กำหนด จะมีทั้งค่าต่ำสุดของฟังก์ชันและค่าสูงสุด

ข้าว. 3. กราฟของฟังก์ชัน y = x 2 , x ∈ [-3; 2]

ให้เราอธิบายความจริงที่ว่าค่าฟังก์ชันเดียวกันสามารถทำได้โดยใช้ค่าอาร์กิวเมนต์หลายค่า

ให้เราเลือกระบบพิกัดสี่เหลี่ยมบนระนาบและพล็อตค่าของอาร์กิวเมนต์บนแกน abscissa เอ็กซ์และบนแกนกำหนด - ค่าของฟังก์ชัน ย = ฉ(x).

กราฟฟังก์ชัน ย = ฉ(x)คือเซตของจุดทั้งหมดที่มี abscissas อยู่ในโดเมนของคำจำกัดความของฟังก์ชัน และลำดับจะเท่ากับค่าที่สอดคล้องกันของฟังก์ชัน

กล่าวอีกนัยหนึ่ง กราฟของฟังก์ชัน y = f (x) คือเซตของจุดทุกจุดของระนาบ พิกัด เอ็กซ์, ที่ซึ่งสนองความสัมพันธ์ ย = ฉ(x).



ในรูป 45 และ 46 แสดงกราฟของฟังก์ชัน y = 2x + 1และ y = x 2 - 2x.

พูดอย่างเคร่งครัด เราควรแยกแยะระหว่างกราฟของฟังก์ชัน (คำจำกัดความทางคณิตศาสตร์ที่แน่นอนซึ่งให้ไว้ข้างต้น) และเส้นโค้งที่วาด ซึ่งมักจะให้เฉพาะภาพร่างของกราฟที่แม่นยำไม่มากก็น้อยเท่านั้น (และถึงอย่างนั้น ตามกฎแล้ว ไม่ใช่กราฟทั้งหมด แต่เป็นเพียงส่วนที่อยู่ในส่วนสุดท้ายของระนาบ) อย่างไรก็ตาม ต่อไปนี้ โดยทั่วไปเราจะพูดว่า "กราฟ" มากกว่า "ภาพร่างกราฟ"

เมื่อใช้กราฟ คุณสามารถค้นหาค่าของฟังก์ชัน ณ จุดหนึ่งได้ กล่าวคือถ้าประเด็น x = กอยู่ในขอบเขตของคำจำกัดความของฟังก์ชัน ย = ฉ(x)แล้วจึงไปหาหมายเลข ฉ(ก)(เช่น ค่าฟังก์ชัน ณ จุด x = ก) คุณควรทำเช่นนี้ จำเป็นต้องผ่านจุดแอบซิสซา x = กวาดเส้นตรงขนานกับแกนพิกัด เส้นนี้จะตัดกราฟของฟังก์ชัน ย = ฉ(x)ณ จุดหนึ่ง; พิกัดของจุดนี้จะเท่ากับตามคำจำกัดความของกราฟ ฉ(ก)(รูปที่ 47)



ตัวอย่างเช่น สำหรับฟังก์ชัน ฉ(x) = x 2 - 2xจากกราฟ (รูปที่ 46) เราจะพบว่า f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 เป็นต้น

กราฟฟังก์ชันแสดงให้เห็นพฤติกรรมและคุณสมบัติของฟังก์ชันอย่างชัดเจน เช่น จากการพิจารณาตามรูป 46 ชัดเจนว่าฟังก์ชันนี้ y = x 2 - 2xรับค่าบวกเมื่อ เอ็กซ์< 0 และที่ x > 2, ลบ - ที่ 0< x < 2; наименьшее значение функция y = x 2 - 2xยอมรับที่ x = 1.

การสร้างกราฟฟังก์ชัน ฉ(x)คุณต้องค้นหาจุดทั้งหมดของเครื่องบินพิกัด เอ็กซ์,ที่ซึ่งเป็นไปตามสมการ ย = ฉ(x)- ในกรณีส่วนใหญ่ สิ่งนี้เป็นไปไม่ได้ เนื่องจากมีจุดดังกล่าวจำนวนอนันต์ ดังนั้นกราฟของฟังก์ชันจึงแสดงออกมาโดยประมาณ - โดยมีความแม่นยำไม่มากก็น้อย วิธีที่ง่ายที่สุดคือวิธีการพล็อตกราฟโดยใช้หลายจุด ประกอบด้วยข้อเท็จจริงที่โต้แย้งว่า เอ็กซ์ให้ค่าจำนวนจำกัด - พูด x 1, x 2, x 3,..., xk และสร้างตารางที่มีค่าฟังก์ชันที่เลือก

ตารางมีลักษณะดังนี้:



เมื่อรวบรวมตารางดังกล่าวแล้ว เราสามารถร่างจุดต่างๆ บนกราฟของฟังก์ชันได้ ย = ฉ(x)- จากนั้นเมื่อเชื่อมต่อจุดเหล่านี้ด้วยเส้นเรียบเราจะได้มุมมองกราฟของฟังก์ชันโดยประมาณ ย = ฉ(x)

อย่างไรก็ตาม ควรสังเกตว่าวิธีการพล็อตแบบหลายจุดนั้นไม่น่าเชื่อถืออย่างมาก ในความเป็นจริง พฤติกรรมของกราฟระหว่างจุดที่ตั้งใจไว้และพฤติกรรมนอกส่วนระหว่างจุดที่สุดขั้วที่ได้มานั้นยังไม่เป็นที่ทราบแน่ชัด

ตัวอย่างที่ 1- การสร้างกราฟฟังก์ชัน ย = ฉ(x)มีคนรวบรวมตารางอาร์กิวเมนต์และค่าฟังก์ชัน:




ห้าจุดที่สอดคล้องกันจะแสดงอยู่ในรูปที่. 48.



จากตำแหน่งของจุดเหล่านี้ เขาสรุปว่ากราฟของฟังก์ชันเป็นเส้นตรง (แสดงในรูปที่ 48 มีเส้นประ) ข้อสรุปนี้ถือว่าเชื่อถือได้หรือไม่? เว้นแต่จะมีข้อพิจารณาเพิ่มเติมเพื่อสนับสนุนข้อสรุปนี้ ก็แทบจะไม่ถือว่าเชื่อถือได้ เชื่อถือได้.

เพื่อยืนยันข้อความของเรา ให้พิจารณาฟังก์ชัน

.

การคำนวณแสดงให้เห็นว่าค่าของฟังก์ชันนี้ที่จุด -2, -1, 0, 1, 2 อธิบายไว้ในตารางด้านบนทุกประการ อย่างไรก็ตาม กราฟของฟังก์ชันนี้ไม่ใช่เส้นตรงเลย (ดังแสดงในรูปที่ 49) อีกตัวอย่างหนึ่งก็คือฟังก์ชัน y = x + l + ซินπx;ความหมายของมันมีอธิบายไว้ในตารางด้านบนด้วย

ตัวอย่างเหล่านี้แสดงให้เห็นว่าในรูปแบบ "บริสุทธิ์" วิธีการพล็อตกราฟโดยใช้จุดหลายจุดนั้นไม่น่าเชื่อถือ ดังนั้น หากต้องการพล็อตกราฟของฟังก์ชันที่กำหนด ให้ดำเนินการดังนี้ ขั้นแรก ให้ศึกษาคุณสมบัติของฟังก์ชันนี้ด้วยความช่วยเหลือซึ่งคุณสามารถสร้างภาพร่างของกราฟได้ จากนั้นโดยการคำนวณค่าของฟังก์ชันในหลาย ๆ จุด (ตัวเลือกซึ่งขึ้นอยู่กับคุณสมบัติที่กำหนดของฟังก์ชัน) จะพบจุดที่สอดคล้องกันของกราฟ และสุดท้าย เส้นโค้งจะถูกลากผ่านจุดที่สร้างขึ้นโดยใช้คุณสมบัติของฟังก์ชันนี้

เราจะดูคุณสมบัติบางอย่าง (ที่ง่ายที่สุดและใช้บ่อยที่สุด) ของฟังก์ชันที่ใช้ในการค้นหาภาพร่างกราฟในภายหลัง แต่ตอนนี้เราจะดูวิธีการที่ใช้ทั่วไปในการสร้างกราฟ


กราฟของฟังก์ชัน y = |f(x)|

มักจำเป็นต้องพล็อตฟังก์ชัน ย = |ฉ(x)|, ที่ไหน ฉ(เอ็กซ์) -ฟังก์ชันที่กำหนด ให้เราเตือนคุณว่าสิ่งนี้เสร็จสิ้นอย่างไร เราสามารถเขียนค่าสัมบูรณ์ของตัวเลขได้โดยการกำหนดค่าสัมบูรณ์

ซึ่งหมายความว่ากราฟของฟังก์ชัน y =|ฉ(x)|หาได้จากกราฟฟังก์ชัน ย = ฉ(x)ดังนี้ จุดทั้งหมดบนกราฟของฟังก์ชัน ย = ฉ(x)ซึ่งมีลำดับที่ไม่เป็นลบก็ควรคงไว้ไม่เปลี่ยนแปลง เพิ่มเติม แทนที่จะเป็นจุดของกราฟฟังก์ชัน ย = ฉ(x)หากมีพิกัดลบ คุณควรสร้างจุดที่สอดคล้องกันบนกราฟของฟังก์ชัน ย = -ฉ(x)(เช่น ส่วนหนึ่งของกราฟของฟังก์ชัน
ย = ฉ(x)ซึ่งอยู่ใต้แกน เอ็กซ์,ควรสะท้อนรอบแกนอย่างสมมาตร เอ็กซ์).



ตัวอย่างที่ 2กราฟฟังก์ชัน ย = |x|.

ลองหากราฟของฟังก์ชันกัน ย = x(รูปที่ 50, ก) และส่วนหนึ่งของกราฟนี้ที่ เอ็กซ์< 0 (นอนอยู่ใต้แกน เอ็กซ์) สะท้อนอย่างสมมาตรสัมพันธ์กับแกน เอ็กซ์- ผลลัพธ์ที่ได้คือกราฟของฟังก์ชัน ย = |x|(รูปที่ 50,ข).

ตัวอย่างที่ 3- กราฟฟังก์ชัน y = |x 2 - 2x|


ก่อนอื่น เรามาพลอตฟังก์ชันกันก่อน y = x 2 - 2xกราฟของฟังก์ชันนี้คือพาราโบลา ซึ่งมีกิ่งก้านชี้ขึ้นด้านบน จุดยอดของพาราโบลามีพิกัด (1; -1) กราฟของมันจะตัดแกน x ที่จุด 0 และ 2 ในช่วงเวลา (0; 2) ฟังก์ชันรับค่าลบ ดังนั้นส่วนนี้ของกราฟจึงสะท้อนอย่างสมมาตรสัมพันธ์กับแกนแอบซิสซา รูปที่ 51 แสดงกราฟของฟังก์ชัน y = |x 2 -2x|ขึ้นอยู่กับกราฟของฟังก์ชัน y = x 2 - 2x

กราฟของฟังก์ชัน y = f(x) + g(x)

พิจารณาปัญหาของการสร้างกราฟของฟังก์ชัน y = ฉ(x) + ก(x)ถ้าให้กราฟฟังก์ชันมา ย = ฉ(x)และ ย = ก(x).

โปรดทราบว่าโดเมนของคำจำกัดความของฟังก์ชัน y = |f(x) + g(x)| คือเซตของค่าทั้งหมดของ x ที่กำหนดทั้งฟังก์ชัน y = f(x) และ y = g(x) นั่นคือ โดเมนของคำจำกัดความนี้คือจุดตัดของโดเมนของคำจำกัดความ ฟังก์ชัน f(x) และก(x)

ให้จุด (x 0 , ย 1) และ (x 0, ย 2) ตามลำดับเป็นของกราฟของฟังก์ชัน ย = ฉ(x)และ ย = ก(x)นั่นคือ y 1 = ฉ(x 0), y 2 = ก(x 0)จากนั้นจุด (x0;. y1 + y2) จะเป็นของกราฟของฟังก์ชัน y = ฉ(x) + ก(x)(สำหรับ ฉ(x 0) + ก(x 0) = ย 1 +y2- และจุดใดๆ บนกราฟของฟังก์ชัน y = ฉ(x) + ก(x)สามารถรับได้ด้วยวิธีนี้ ดังนั้นกราฟของฟังก์ชัน y = ฉ(x) + ก(x)หาได้จากกราฟฟังก์ชัน ย = ฉ(x)- และ ย = ก(x)แทนที่แต่ละจุด ( xn,y 1) ฟังก์ชั่นกราฟิก ย = ฉ(x)จุด (x n, y 1 + y 2),ที่ไหน y 2 = ก.(x n) กล่าวคือ โดยเลื่อนแต่ละจุด ( xn, y1) กราฟฟังก์ชัน ย = ฉ(x)ตามแนวแกน ที่ตามจำนวนเงิน y 1 = ก.(x n- ในกรณีนี้จะพิจารณาเฉพาะประเด็นดังกล่าวเท่านั้น เอ็กซ์ n ซึ่งทั้งสองฟังก์ชันถูกกำหนดไว้ ย = ฉ(x)และ ย = ก(x).

วิธีการพล็อตฟังก์ชันนี้ y = ฉ(x) + ก(x) เรียกว่า การบวกกราฟฟังก์ชัน ย = ฉ(x)และ ย = ก(x)

ตัวอย่างที่ 4- ในรูปกราฟของฟังก์ชันถูกสร้างขึ้นโดยใช้วิธีการบวกกราฟ
y = x + ซินx.

เมื่อพล็อตฟังก์ชัน y = x + ซินxเราคิดอย่างนั้น ฉ(x) = x,ก(x) = บาปxในการพล็อตกราฟฟังก์ชัน เราเลือกจุดที่มี abscissas -1.5π, -, -0.5, 0, 0.5,, 1.5, 2 ค่าต่างๆ f(x) = x, g(x) = sinx, y = x + sinxมาคำนวณที่จุดที่เลือกแล้ววางผลลัพธ์ลงในตาราง