ชีวประวัติ ลักษณะเฉพาะ การวิเคราะห์

ลอการิทึมของ 8 ถึงฐาน 4 เท่ากับ เอกลักษณ์ลอการิทึมพื้นฐาน

ดังนั้นเราจึงมีพลังของทั้งสอง หากคุณนำตัวเลขจากบรรทัดล่างสุด คุณจะพบพลังที่คุณจะต้องยกสองขึ้นเพื่อให้ได้ตัวเลขนี้ได้อย่างง่ายดาย เช่น หากต้องการได้ 16 คุณต้องยกกำลัง 2 ขึ้นมา และเพื่อให้ได้ 64 คุณต้องยกสองยกกำลังหก ดังที่เห็นได้จากตาราง

และตอนนี้ - จริงๆ แล้ว คำจำกัดความของลอการิทึม:

ลอการิทึมฐานของ x คือกำลังที่ต้องยก a ขึ้นจึงจะได้ x

ชื่อ: log a x = b โดยที่ a คือฐาน x คืออาร์กิวเมนต์ b คือค่าลอการิทึมที่เท่ากับจริง

ตัวอย่างเช่น 2 3 = 8 ⇒ log 2 8 = 3 (ลอการิทึมฐาน 2 ของ 8 คือ 3 เพราะ 2 3 = 8) ด้วยบันทึกความสำเร็จเดียวกัน 2 64 = 6 เนื่องจาก 2 6 = 64

การดำเนินการค้นหาลอการิทึมของตัวเลขจากฐานที่กำหนดเรียกว่าลอการิทึม เรามาเพิ่มบรรทัดใหม่ให้กับตารางของเรา:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
บันทึก 2 2 = 1บันทึก 2 4 = 2 บันทึก 2 8 = 3บันทึก 2 16 = 4 บันทึก 2 32 = 5บันทึก 2 64 = 6

น่าเสียดายที่ไม่ใช่ทุกลอการิทึมจะคำนวณได้ง่ายนัก เช่น ลองค้นหาบันทึก 2 5 เลข 5 ไม่ได้อยู่ในตาราง แต่ตรรกะกำหนดว่าลอการิทึมจะอยู่ที่ไหนสักแห่งบนเซ็กเมนต์ เพราะ 2 2< 5 < 2 3 , а чем ระดับมากขึ้นสองยิ่งจำนวนมากขึ้น

ตัวเลขดังกล่าวเรียกว่าจำนวนอตรรกยะ: ตัวเลขที่อยู่หลังจุดทศนิยมสามารถเขียนได้ไม่จำกัด และจะไม่มีวันซ้ำกัน หากลอการิทึมกลายเป็นแบบไม่ลงตัว ก็ควรปล่อยไว้อย่างนั้นดีกว่า: log 2 5, log 3 8, log 5 100

สิ่งสำคัญคือต้องเข้าใจว่าลอการิทึมเป็นนิพจน์ที่มีตัวแปรสองตัว (ฐานและอาร์กิวเมนต์) ในตอนแรก หลายคนสับสนว่าพื้นฐานอยู่ที่ไหนและข้อโต้แย้งอยู่ที่ไหน เพื่อหลีกเลี่ยงความเข้าใจผิดที่น่ารำคาญ เพียงแค่ดูภาพ:

ก่อนหน้าเราไม่มีอะไรมากไปกว่าคำจำกัดความของลอการิทึม จดจำ: ลอการิทึมคือกำลังซึ่งจะต้องสร้างฐานเพื่อให้ได้ข้อโต้แย้ง เป็นฐานที่ยกกำลังขึ้น - ในภาพเน้นด้วยสีแดง ปรากฎว่าฐานอยู่ด้านล่างเสมอ! ฉันบอกกฎที่ยอดเยี่ยมนี้แก่นักเรียนในบทเรียนแรก - และไม่มีความสับสนเกิดขึ้น

เราได้ทราบคำจำกัดความแล้ว - สิ่งที่เหลืออยู่คือการเรียนรู้วิธีนับลอการิทึม เช่น กำจัดเครื่องหมาย "บันทึก" อันดับแรก เราสังเกตว่ามีข้อเท็จจริงสำคัญสองประการตามคำจำกัดความนี้:

  1. ข้อโต้แย้งและเหตุผลจะต้องเป็นเช่นนั้นเสมอ มากกว่าศูนย์- ตามมาจากคำจำกัดความของปริญญา ตัวบ่งชี้ที่มีเหตุผลซึ่งคำจำกัดความของลอการิทึมลงมา
  2. ฐานจะต้องแตกต่างจากฐานหนึ่ง เนื่องจากระดับหนึ่งถึงระดับใดยังคงเป็นหนึ่ง ด้วยเหตุนี้ คำถามที่ว่า “คนๆ หนึ่งจะต้องเพิ่มพลังอะไรเพื่อให้ได้สอง” จึงไม่มีความหมาย ไม่มีปริญญาขนาดนั้น!

ข้อจำกัดดังกล่าวเรียกว่า ภูมิภาค ค่าที่ยอมรับได้ (ODZ) ปรากฎว่า ODZ ของลอการิทึมมีลักษณะดังนี้: log a x = b ⇒ x > 0, a > 0, a ≠ 1

โปรดทราบว่าไม่มีข้อจำกัดเกี่ยวกับจำนวน b (ค่าของลอการิทึม) ตัวอย่างเช่น ลอการิทึมอาจเป็นลบ: log 2 0.5 = −1 เพราะ 0.5 = 2 −1

อย่างไรก็ตาม ตอนนี้เรากำลังพิจารณาอยู่เท่านั้น นิพจน์ตัวเลขโดยไม่จำเป็นต้องรู้ CVD ของลอการิทึม ผู้เขียนงานได้คำนึงถึงข้อจำกัดทั้งหมดแล้ว แต่เมื่อสมการลอการิทึมและอสมการเข้ามามีบทบาท ข้อกำหนด DL จะกลายเป็นข้อบังคับ ท้ายที่สุดแล้ว พื้นฐานและการโต้แย้งอาจมีโครงสร้างที่แข็งแกร่งมากซึ่งไม่จำเป็นต้องสอดคล้องกับข้อจำกัดข้างต้น

ทีนี้ลองมาพิจารณากัน โครงการทั่วไปการคำนวณลอการิทึม ประกอบด้วยสามขั้นตอน:

  1. เขียนฐาน a และอาร์กิวเมนต์ x เป็นกำลังโดยมีฐานขั้นต่ำที่เป็นไปได้มากกว่า 1 ระหว่างทางควรกำจัดทศนิยมออกไปจะดีกว่า
  2. แก้สมการของตัวแปร b: x = a b ;
  3. ผลลัพธ์หมายเลข b จะเป็นคำตอบ

แค่นั้นแหละ! หากลอการิทึมกลายเป็นจำนวนตรรกยะ สิ่งนี้จะมองเห็นได้ในขั้นตอนแรก ข้อกำหนดที่ว่าฐานต้องมากกว่าหนึ่งมีความสำคัญมาก ซึ่งจะช่วยลดโอกาสที่จะเกิดข้อผิดพลาดและทำให้การคำนวณง่ายขึ้นอย่างมาก เช่นเดียวกับเศษส่วนทศนิยม: หากคุณแปลงเป็นเศษส่วนธรรมดาทันที จะมีข้อผิดพลาดน้อยลงมาก

มาดูกันว่าโครงร่างนี้ทำงานอย่างไรโดยใช้ตัวอย่างเฉพาะ:

งาน. คำนวณลอการิทึม: บันทึก 5 25

  1. ลองนึกภาพฐานและอาร์กิวเมนต์เป็นกำลังของห้า: 5 = 5 1 ; 25 = 5 2 ;
  2. มาสร้างและแก้สมการกัน:
    บันทึก 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. เราได้รับคำตอบ: 2.

งาน. คำนวณลอการิทึม:

งาน. คำนวณลอการิทึม: บันทึก 4 64

  1. ลองนึกภาพฐานและอาร์กิวเมนต์เป็นกำลังสอง: 4 = 2 2 ; 64 = 2 6 ;
  2. มาสร้างและแก้สมการกัน:
    บันทึก 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. เราได้รับคำตอบ: 3.

งาน. คำนวณลอการิทึม: log 16 1

  1. ลองนึกภาพฐานและอาร์กิวเมนต์เป็นกำลังสอง: 16 = 2 4 ; 1 = 2 0 ;
  2. มาสร้างและแก้สมการกัน:
    บันทึก 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. เราได้รับคำตอบ: 0.

งาน. คำนวณลอการิทึม: บันทึก 7 14

  1. ลองนึกภาพฐานและข้อโต้แย้งเป็นกำลังของเจ็ด: 7 = 7 1 ; 14 ไม่สามารถแสดงเป็นกำลังของ 7 ได้ เนื่องจาก 7 1< 14 < 7 2 ;
  2. จากย่อหน้าก่อนหน้า ตามมาว่าไม่นับลอการิทึม
  3. คำตอบคือไม่มีการเปลี่ยนแปลง: บันทึก 7 14

บันทึกเล็กๆ น้อยๆ ถึง ตัวอย่างสุดท้าย- คุณจะแน่ใจได้อย่างไรว่าตัวเลขนั้นไม่ใช่กำลังที่แน่นอนของอีกจำนวนหนึ่ง? มันง่ายมาก - เพียงแค่แยกมันออกเป็น ปัจจัยสำคัญ- หากการขยายตัวมีปัจจัยที่แตกต่างกันอย่างน้อยสองปัจจัย ตัวเลขจะไม่ใช่กำลังที่แน่นอน

งาน. ค้นหาว่าตัวเลขนั้นเป็นเลขยกกำลังที่แน่นอนหรือไม่: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - องศาที่แน่นอน เพราะ มีตัวคูณเพียงตัวเดียวเท่านั้น
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - ไม่ใช่กำลังที่แน่นอน เนื่องจากมีปัจจัยสองประการ: 3 และ 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - ระดับที่แน่นอน;
35 = 7 · 5 - ไม่ใช่กำลังที่แน่นอนอีกครั้ง
14 = 7 · 2 - ไม่ใช่ระดับที่แน่นอนอีกครั้ง

ให้เราสังเกตด้วยว่าเราเอง หมายเลขเฉพาะมีระดับที่แน่นอนของตัวเองอยู่เสมอ

ลอการิทึมทศนิยม

ลอการิทึมบางตัวเป็นเรื่องธรรมดามากจนมีชื่อและสัญลักษณ์พิเศษ

ลอการิทึมฐานสิบของ x คือลอการิทึมของฐาน 10 เช่น เลขยกกำลังที่ต้องยกเลข 10 เพื่อให้ได้เลข x ชื่อ: lg x.

ตัวอย่างเช่น บันทึก 10 = 1; แอลจี 100 = 2; lg 1,000 = 3 - ฯลฯ

จากนี้ไป เมื่อวลีเช่น "Find lg 0.01" ปรากฏในหนังสือเรียน โปรดทราบว่านี่ไม่ใช่การพิมพ์ผิด นี้ ลอการิทึมทศนิยม- อย่างไรก็ตาม หากคุณไม่คุ้นเคยกับสัญกรณ์นี้ คุณสามารถเขียนใหม่ได้ตลอดเวลา:
บันทึก x = บันทึก 10 x

ทุกอย่างที่เป็นจริงสำหรับลอการิทึมธรรมดาก็เป็นจริงสำหรับลอการิทึมฐานสิบเช่นกัน

ลอการิทึมธรรมชาติ

มีลอการิทึมอื่นที่มีการกำหนดของตัวเอง ในบางแง่ มันสำคัญกว่าทศนิยมด้วยซ้ำ มันเกี่ยวกับเกี่ยวกับลอการิทึมธรรมชาติ

ลอการิทึมธรรมชาติของ x คือลอการิทึมของฐาน e เช่น ยกกำลังที่ต้องยกเลข e เพื่อให้ได้เลข x ชื่อ: ln x .

หลายคนจะถามว่า: ตัวเลข e คืออะไร? นี้ จำนวนอตรรกยะค่าที่แน่นอนของมันเป็นไปไม่ได้ที่จะค้นหาและจดบันทึก ฉันจะให้เฉพาะตัวเลขแรกเท่านั้น:
อี = 2.718281828459...

เราจะไม่ลงรายละเอียดว่าหมายเลขนี้คืออะไรและเหตุใดจึงจำเป็น เพียงจำไว้ว่า e เป็นฐานของลอการิทึมธรรมชาติ:
ln x = บันทึก อี x

ดังนั้น ln e = 1 ; ใน อี 2 = 2; ใน อี 16 = 16 - เป็นต้น ในทางกลับกัน ln 2 เป็นจำนวนอตรรกยะ โดยทั่วไปลอการิทึมธรรมชาติของค่าใดๆ จำนวนตรรกยะไม่มีเหตุผล ยกเว้น อย่างหนึ่ง: ln 1 = 0

สำหรับ ลอการิทึมธรรมชาติกฎทั้งหมดที่เป็นจริงสำหรับลอการิทึมสามัญนั้นถูกต้อง

ลอการิทึมคืออะไร?

ความสนใจ!
มีเพิ่มเติม
วัสดุมาตราพิเศษ 555
สำหรับผู้ที่ "ไม่ค่อย..." มากนัก
และสำหรับผู้ที่ “มากๆ…”)

ลอการิทึมคืออะไร? วิธีการแก้ลอการิทึม? คำถามเหล่านี้ทำให้บัณฑิตหลายคนสับสน ตามเนื้อผ้า หัวข้อลอการิทึมถือว่าซับซ้อน เข้าใจยาก และน่ากลัว โดยเฉพาะสมการที่มีลอการิทึม

นี่ไม่เป็นความจริงอย่างแน่นอน อย่างแน่นอน! ไม่เชื่อฉันเหรอ? ดี. ตอนนี้ในเวลาเพียง 10 - 20 นาที คุณ:

1. คุณจะเข้าใจ ลอการิทึมคืออะไร.

2. เรียนรู้การแก้ปัญหาทั้งชั้นเรียน สมการเลขชี้กำลัง- แม้ว่าคุณจะไม่ได้ยินอะไรเกี่ยวกับพวกเขาก็ตาม

3. เรียนรู้การคำนวณลอการิทึมอย่างง่าย

ยิ่งไปกว่านั้น สำหรับสิ่งนี้ คุณเพียงแค่ต้องรู้ตารางสูตรคูณและวิธีบวกเลขยกกำลังเท่านั้น...

ฉันรู้สึกเหมือนคุณมีข้อสงสัย... เอาล่ะ ทำเครื่องหมายเวลาไว้! ไปกันเลย!

ขั้นแรก ให้แก้สมการนี้ในหัวของคุณ:

หากคุณชอบเว็บไซต์นี้...

ฉันมีเว็บไซต์ที่น่าสนใจอีกสองสามแห่งสำหรับคุณ)

คุณสามารถฝึกแก้ตัวอย่างและค้นหาระดับของคุณ การทดสอบด้วยการยืนยันทันที มาเรียนรู้กันเถอะ - ด้วยความสนใจ!)

คุณสามารถทำความคุ้นเคยกับฟังก์ชันและอนุพันธ์ได้

\(a^(b)=c\) \(\ลูกศรซ้าย\) \(\log_(a)(c)=b\)

มาอธิบายให้ง่ายกว่านี้กันดีกว่า ตัวอย่างเช่น \(\log_(2)(8)\) เท่ากับพลังซึ่งจะต้องยก \(2\) ขึ้นเพื่อให้ได้ \(8\) จากนี้จะเห็นชัดเจนว่า \(\log_(2)(8)=3\)

ตัวอย่าง:

\(\log_(5)(25)=2\)

เพราะ \(5^(2)=25\)

\(\log_(3)(81)=4\)

เพราะ \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

เพราะ \(2^(-5)=\)\(\frac(1)(32)\)

อาร์กิวเมนต์และฐานของลอการิทึม

ลอการิทึมใดๆ มี “กายวิภาคศาสตร์” ดังต่อไปนี้:

อาร์กิวเมนต์ของลอการิทึมมักจะเขียนที่ระดับของมัน และฐานจะเขียนเป็นตัวห้อยใกล้กับเครื่องหมายลอการิทึม และรายการนี้อ่านได้ดังนี้: "ลอการิทึมของยี่สิบห้าถึงฐานห้า"

วิธีการคำนวณลอการิทึม?

ในการคำนวณลอการิทึมคุณต้องตอบคำถาม: ควรยกฐานให้ยกกำลังเท่าใดจึงจะได้รับอาร์กิวเมนต์?

ตัวอย่างเช่น, คำนวณลอการิทึม: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) จ) \(\log_(3)(\sqrt(3))\)

a) \(4\) ต้องยกกำลังเท่าใดจึงจะได้ \(16\)? เห็นได้ชัดว่าคนที่สอง นั่นเป็นเหตุผล:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(\sqrt(5)\) ต้องยกกำลังเท่าใดจึงจะได้ \(1\)? พลังอะไรที่ทำให้ใครก็ตามเป็นอันดับหนึ่ง? แน่นอนเป็นศูนย์!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) ต้องยกกำลังเท่าใดจึงจะได้ \(\sqrt(7)\)? ประการแรก จำนวนใดๆ ที่กำลังยกกำลังแรกจะเท่ากับตัวมันเอง

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(3\) ต้องยกกำลังเท่าใดจึงจะได้ \(\sqrt(3)\)? จากที่เรารู้ว่ามันคืออะไร พลังเศษส่วนและนั่นหมายความว่า รากที่สองคือพลังของ \(\frac(1)(2)\)

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

ตัวอย่าง : คำนวณลอการิทึม \(\log_(4\sqrt(2))(8)\)

สารละลาย :

\(\log_(4\sqrt(2))(8)=x\)

เราจำเป็นต้องหาค่าลอการิทึม แสดงว่ามันคือ x ตอนนี้ลองใช้คำจำกัดความของลอการิทึม:
\(\log_(a)(c)=b\) \(\ลูกศรซ้าย\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

อะไรเชื่อมต่อ \(4\sqrt(2)\) และ \(8\)? สอง เนื่องจากตัวเลขทั้งสองสามารถแสดงด้วยสองได้:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

ทางด้านซ้าย เราใช้คุณสมบัติของดีกรี: \(a^(m)\cdot a^(n)=a^(m+n)\) และ \((a^(m))^(n)= เป็น^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

ฐานเท่ากัน เราจะก้าวไปสู่ความเท่าเทียมกันของตัวบ่งชี้

\(\frac(5x)(2)\) \(=3\)


คูณทั้งสองข้างของสมการด้วย \(\frac(2)(5)\)


ผลลัพธ์ที่ได้คือค่าของลอการิทึม

คำตอบ : \(\log_(4\sqrt(2))(8)=1,2\)

เหตุใดลอการิทึมจึงถูกประดิษฐ์ขึ้น?

เพื่อให้เข้าใจสิ่งนี้ เรามาแก้สมการกัน: \(3^(x)=9\) เพียงจับคู่ \(x\) เพื่อให้สมการทำงานได้ แน่นอน \(x=2\)

ตอนนี้แก้สมการ: \(3^(x)=8\).ทำไม เท่ากับ x- นั่นคือประเด็น

คนที่ฉลาดที่สุดจะพูดว่า: “X น้อยกว่าสองนิดหน่อย” จะเขียนตัวเลขนี้ได้อย่างไร? เพื่อตอบคำถามนี้ จึงมีการประดิษฐ์ลอการิทึมขึ้น ต้องขอบคุณเขาที่ทำให้คำตอบตรงนี้สามารถเขียนได้เป็น \(x=\log_(3)(8)\)

ฉันอยากจะเน้นว่า \(\log_(3)(8)\) ชอบ ลอการิทึมใดๆ ก็เป็นเพียงตัวเลข- ใช่ มันดูแปลกแต่มันสั้น เพราะถ้าเราอยากจะเขียนมันออกมาในรูปแบบ ทศนิยมจากนั้นจะมีลักษณะดังนี้: \(1.892789260714....\)

ตัวอย่าง : แก้สมการ \(4^(5x-4)=10\)

สารละลาย :

\(4^(5x-4)=10\)

\(4^(5x-4)\) และ \(10\) ไม่สามารถนำมาเป็นฐานเดียวกันได้ ซึ่งหมายความว่าคุณไม่สามารถทำได้หากไม่มีลอการิทึม

ลองใช้คำจำกัดความของลอการิทึม:
\(a^(b)=c\) \(\ลูกศรซ้าย\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

ลองพลิกสมการเพื่อให้ X อยู่ทางซ้าย

\(5x-4=\log_(4)(10)\)

ก่อนเรา. ลองย้าย \(4\) ไปทางขวากัน

และอย่ากลัวลอการิทึม ให้ปฏิบัติเหมือนเลขธรรมดา

\(5x=\log_(4)(10)+4\)

หารสมการด้วย 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


นี่คือรากของเรา ใช่ มันดูผิดปกติแต่พวกเขาไม่ได้เลือกคำตอบ

คำตอบ : \(\frac(\log_(4)(10)+4)(5)\)

ลอการิทึมทศนิยมและลอการิทึมธรรมชาติ

ตามที่ระบุไว้ในคำจำกัดความของลอการิทึม ฐานของมันคือค่าใดก็ได้ จำนวนบวกยกเว้นหน่วย \((a>0, a\neq1)\) และในบรรดาฐานที่เป็นไปได้ทั้งหมด มี 2 ฐานที่เกิดขึ้นบ่อยมากจนมีการประดิษฐ์สัญกรณ์สั้นพิเศษสำหรับลอการิทึม:

ลอการิทึมธรรมชาติ: ลอการิทึมที่มีฐานเป็นเลขของออยเลอร์ \(e\) (เท่ากับประมาณ \(2.7182818…\)) และลอการิทึมเขียนเป็น \(\ln(a)\)

นั่นคือ \(\ln(a)\) เหมือนกับ \(\log_(e)(a)\)

ลอการิทึมทศนิยม: ลอการิทึมที่มีฐานเป็น 10 จะถูกเขียนเป็น \(\lg(a)\)

นั่นคือ \(\lg(a)\) เหมือนกับ \(\log_(10)(a)\)โดยที่ \(a\) คือตัวเลขจำนวนหนึ่ง

เอกลักษณ์ลอการิทึมพื้นฐาน

ลอการิทึมมีคุณสมบัติหลายอย่าง หนึ่งในนั้นเรียกว่า “พื้นฐาน เอกลักษณ์ลอการิทึม" และมีลักษณะดังนี้:

\(a^(\log_(ก)(c))=c\)

คุณสมบัตินี้เป็นไปตามคำจำกัดความโดยตรง เรามาดูกันว่าสูตรนี้เกิดขึ้นได้อย่างไร

มาจำกัน หมายเหตุสั้น ๆคำจำกัดความของลอการิทึม:

ถ้า \(a^(b)=c\) ดังนั้น \(\log_(a)(c)=b\)

นั่นคือ \(b\) เหมือนกับ \(\log_(a)(c)\) จากนั้นเราสามารถเขียน \(\log_(a)(c)\) แทน \(b\) ในสูตร \(a^(b)=c\) ปรากฎว่า \(a^(\log_(a)(c))=c\) - ข้อมูลประจำตัวลอการิทึมหลัก

คุณสามารถค้นหาคุณสมบัติอื่นๆ ของลอการิทึมได้ ด้วยความช่วยเหลือของพวกเขา คุณสามารถลดความซับซ้อนและคำนวณค่าของนิพจน์ด้วยลอการิทึมซึ่งยากต่อการคำนวณโดยตรง

ตัวอย่าง : ค้นหาค่าของนิพจน์ \(36^(\log_(6)(5))\)

สารละลาย :

คำตอบ : \(25\)

จะเขียนตัวเลขเป็นลอการิทึมได้อย่างไร?

ตามที่กล่าวไว้ข้างต้น ลอการิทึมใดๆ เป็นเพียงตัวเลข การสนทนาก็เป็นจริงเช่นกัน โดยตัวเลขใดๆ ก็ตามสามารถเขียนเป็นลอการิทึมได้ ตัวอย่างเช่น เรารู้ว่า \(\log_(2)(4)\) เท่ากับสอง จากนั้นคุณสามารถเขียน \(\log_(2)(4)\) แทนสองได้

แต่ \(\log_(3)(9)\) ก็เท่ากับ \(2\) เช่นกัน ซึ่งหมายความว่าเราสามารถเขียน \(2=\log_(3)(9)\) ได้เช่นกัน ในทำนองเดียวกันด้วย \(\log_(5)(25)\) และด้วย \(\log_(9)(81)\) ฯลฯ นั่นคือปรากฎว่า

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

ดังนั้น หากจำเป็น เราก็สามารถเขียนสองตัวเป็นลอการิทึมโดยมีฐานใดๆ ก็ได้ (ไม่ว่าจะเป็นในสมการ ในนิพจน์ หรือในอสมการ) เราก็แค่เขียนฐานกำลังสองเป็นอาร์กิวเมนต์

เช่นเดียวกับทริปเปิล โดยสามารถเขียนเป็น \(\log_(2)(8)\) หรือเป็น \(\log_(3)(27)\) หรือเป็น \(\log_(4)( 64) \)... ที่นี่เราเขียนฐานในคิวบ์เป็นอาร์กิวเมนต์:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

และด้วยสี่:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

และด้วยลบหนึ่ง:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

และหนึ่งในสาม:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

จำนวนใดๆ \(a\) สามารถแสดงเป็นลอการิทึมที่มีฐาน \(b\): \(a=\log_(b)(b^(a))\)

ตัวอย่าง : ค้นหาความหมายของสำนวน \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

สารละลาย :

คำตอบ : \(1\)

ดังที่คุณทราบ เมื่อคูณนิพจน์ด้วยกำลัง เลขยกกำลังจะรวมกันเสมอ (a b *a c = a b+c) กฎทางคณิตศาสตร์นี้ได้รับมาจากอาร์คิมิดีส และต่อมาในศตวรรษที่ 8 นักคณิตศาสตร์วีราเซนได้สร้างตารางเลขชี้กำลังจำนวนเต็ม พวกเขาเป็นผู้ทำหน้าที่ในการค้นพบลอการิทึมเพิ่มเติม ตัวอย่างการใช้ฟังก์ชันนี้สามารถพบได้เกือบทุกที่ที่คุณต้องการลดความซับซ้อนของการคูณที่ยุ่งยากด้วยการบวกง่ายๆ หากคุณใช้เวลา 10 นาทีในการอ่านบทความนี้ เราจะอธิบายว่าลอการิทึมคืออะไรและจะทำงานร่วมกับลอการิทึมได้อย่างไร ในภาษาที่ง่ายและเข้าถึงได้

ความหมายในวิชาคณิตศาสตร์

ลอการิทึมคือนิพจน์ในรูปแบบต่อไปนี้: log a b=c นั่นคือลอการิทึมของจำนวนที่ไม่เป็นลบ (นั่นคือบวกใดๆ) “b” ไปยังฐาน “a” ถือเป็นกำลัง “c ” ซึ่งจำเป็นต้องเพิ่มฐาน “a” เพื่อให้ได้ค่า "b" ในที่สุด ลองวิเคราะห์ลอการิทึมโดยใช้ตัวอย่างสมมติว่ามีบันทึกนิพจน์ 2 8 จะหาคำตอบได้อย่างไร? ง่ายมาก คุณต้องค้นหากำลังโดยตั้งแต่ 2 ถึงกำลังที่ต้องการ คุณจะได้ 8 หลังจากคำนวณในหัวแล้ว เราก็จะได้เลข 3! และนั่นก็จริง เพราะ 2 ยกกำลัง 3 ให้คำตอบเป็น 8

ประเภทของลอการิทึม

สำหรับนักเรียนและนักเรียนหลายคนหัวข้อนี้ดูซับซ้อนและเข้าใจยาก แต่จริงๆ แล้วลอการิทึมไม่ได้น่ากลัวนัก สิ่งสำคัญคือการเข้าใจความหมายทั่วไปและจดจำคุณสมบัติและกฎบางอย่าง มีสาม แต่ละสายพันธุ์นิพจน์ลอการิทึม:

  1. ลอการิทึมธรรมชาติ ln a โดยที่ฐานคือเลขออยเลอร์ (e = 2.7)
  2. ทศนิยม a โดยที่ฐานคือ 10
  3. ลอการิทึมของจำนวนใดๆ b ถึงฐาน a>1

แต่ละคนมีการตัดสินใจ ในลักษณะมาตรฐานซึ่งรวมถึงการทำให้ง่ายขึ้น การลดลง และการลดลงตามมาเป็นลอการิทึมหนึ่งตัวโดยใช้ทฤษฎีบทลอการิทึม เพื่อให้ได้ค่าลอการิทึมที่ถูกต้องคุณควรจำคุณสมบัติของลอการิทึมและลำดับของการกระทำเมื่อทำการแก้ไข

กฎและข้อจำกัดบางประการ

ในทางคณิตศาสตร์ มีกฎ-ข้อจำกัดหลายประการที่ได้รับการยอมรับว่าเป็นสัจพจน์ กล่าวคือ กฎเกณฑ์เหล่านั้นไม่อยู่ภายใต้การอภิปรายและเป็นความจริง ตัวอย่างเช่น ตัวเลขไม่สามารถหารด้วยศูนย์ได้ และไม่สามารถแยกรากออกได้เช่นกัน แม้แต่ปริญญาจาก ตัวเลขติดลบ- ลอการิทึมยังมีกฎของตัวเอง ซึ่งคุณสามารถเรียนรู้การทำงานได้อย่างง่ายดาย แม้จะมีนิพจน์ลอการิทึมที่ยาวและมีความจุมาก:

  • ฐาน "a" จะต้องมากกว่าศูนย์เสมอและไม่เท่ากับ 1 มิฉะนั้นนิพจน์จะสูญเสียความหมายเนื่องจาก "1" และ "0" ในระดับใดก็ตามจะเท่ากับค่าของพวกเขาเสมอ
  • ถ้า a > 0 แล้วก็ b >0 ปรากฎว่า “c” ต้องมากกว่าศูนย์ด้วย

วิธีการแก้ลอการิทึม?

ตัวอย่างเช่น มอบหมายงานให้ค้นหาคำตอบของสมการ 10 x = 100 ซึ่งง่ายมาก คุณต้องเลือกยกกำลังโดยเพิ่มเลขสิบที่เราได้ 100 แน่นอนว่านี่คือ 10 2 = 100.

ทีนี้ลองแสดงนิพจน์นี้ในรูปแบบลอการิทึม เราได้บันทึก 10 100 = 2 เมื่อแก้ลอการิทึม การกระทำทั้งหมดจะมาบรรจบกันจริงเพื่อค้นหาพลังที่จำเป็นในการเข้าสู่ฐานของลอการิทึมเพื่อให้ได้ตัวเลขที่กำหนด

หากต้องการระบุค่าของระดับที่ไม่รู้จักอย่างแม่นยำ คุณต้องเรียนรู้วิธีทำงานกับตารางองศา ดูเหมือนว่านี้:

อย่างที่คุณเห็น เลขยกกำลังบางตัวสามารถเดาได้โดยสังหรณ์ใจ หากคุณมีความคิดทางเทคนิคและความรู้เกี่ยวกับตารางสูตรคูณ อย่างไรก็ตามสำหรับ ค่าขนาดใหญ่คุณจะต้องมีตารางองศา มันสามารถใช้ได้แม้กับผู้ที่ไม่รู้อะไรเลยเกี่ยวกับความซับซ้อน หัวข้อทางคณิตศาสตร์- คอลัมน์ด้านซ้ายประกอบด้วยตัวเลข (ฐาน a) แถวบนสุดของตัวเลขคือค่ายกกำลัง c ที่ทำให้ตัวเลข a เพิ่มขึ้น ที่ทางแยก เซลล์จะมีค่าตัวเลขที่เป็นคำตอบ (ac =b) ตัวอย่างเช่น สมมติว่าเซลล์แรกสุดที่มีหมายเลข 10 แล้วยกกำลังสอง เราจะได้ค่า 100 ซึ่งระบุไว้ที่จุดตัดของทั้งสองเซลล์ของเรา ทุกอย่างเรียบง่ายจนแม้แต่นักมนุษยนิยมที่แท้จริงที่สุดก็ยังเข้าใจ!

สมการและอสมการ

ปรากฎว่าภายใต้เงื่อนไขบางประการ เลขชี้กำลังคือลอการิทึม ดังนั้น นิพจน์ตัวเลขทางคณิตศาสตร์ใดๆ จึงสามารถเขียนเป็นความเท่าเทียมกันของลอการิทึมได้ ตัวอย่างเช่น 3 4 =81 สามารถเขียนเป็นลอการิทึมฐาน 3 ของ 81 เท่ากับสี่ (บันทึก 3 81 = 4) สำหรับกำลังลบ กฎจะเหมือนกัน: 2 -5 = 1/32 เราเขียนมันเป็นลอการิทึม เราจะได้บันทึก 2 (1/32) = -5 ส่วนที่น่าสนใจที่สุดส่วนหนึ่งของคณิตศาสตร์คือหัวข้อ "ลอการิทึม" เราจะดูตัวอย่างและคำตอบของสมการด้านล่างทันทีหลังจากศึกษาคุณสมบัติของพวกมัน ตอนนี้เรามาดูกันว่าอสมการมีลักษณะอย่างไรและจะแยกแยะพวกมันออกจากสมการได้อย่างไร

รับนิพจน์ในรูปแบบต่อไปนี้: log 2 (x-1) > 3 - มันคือ อสมการลอการิทึมเนื่องจากค่าที่ไม่รู้จัก "x" อยู่ภายใต้เครื่องหมายของลอการิทึม และในนิพจน์จะมีการเปรียบเทียบปริมาณสองปริมาณ: ลอการิทึมของจำนวนที่ต้องการถึงฐานสองมากกว่าจำนวนสาม

ความแตกต่างที่สำคัญที่สุดระหว่างสมการลอการิทึมและอสมการคือสมการที่มีลอการิทึม (เช่น ลอการิทึม 2 x = √9) บ่งบอกถึงคำตอบที่เจาะจงตั้งแต่หนึ่งคำตอบขึ้นไป ค่าตัวเลขในขณะที่แก้ไขความไม่เท่าเทียมกันจะมีการกำหนดทั้งช่วงของค่าที่อนุญาตและจุดพักของฟังก์ชันนี้ ด้วยเหตุนี้ คำตอบจึงไม่ใช่ชุดตัวเลขธรรมดาๆ ดังเช่นในคำตอบของสมการ แต่เป็นชุดต่อเนื่องหรือชุดตัวเลข

ทฤษฎีบทพื้นฐานเกี่ยวกับลอการิทึม

เมื่อแก้ไขงานดั้งเดิมในการค้นหาค่าลอการิทึมอาจไม่ทราบคุณสมบัติของมัน อย่างไรก็ตาม ในเรื่องสมการลอการิทึมหรืออสมการ ก่อนอื่น จำเป็นต้องทำความเข้าใจให้ชัดเจนและนำไปใช้ในทางปฏิบัติทั้งหมด คุณสมบัติพื้นฐานลอการิทึม เราจะดูตัวอย่างสมการในภายหลัง เรามาดูรายละเอียดคุณสมบัติแต่ละอย่างกันก่อน

  1. ข้อมูลประจำตัวหลักมีลักษณะดังนี้: a logaB =B ใช้เฉพาะเมื่อ a มากกว่า 0 ไม่เท่ากับ 1 และ B มากกว่าศูนย์
  2. ลอการิทึมของผลิตภัณฑ์สามารถแสดงได้ในสูตรต่อไปนี้: log d (s 1 * s 2) = log d s 1 + log d s 2 ในกรณีนี้เงื่อนไขบังคับคือ: d, s 1 และ s 2 > 0; ก≠1. คุณสามารถพิสูจน์สูตรลอการิทึมนี้พร้อมตัวอย่างและวิธีแก้ได้ ให้บันทึก a s 1 = f 1 และบันทึก a s 2 = f 2 จากนั้น a f1 = s 1, a f2 = s 2 เราจะได้ว่า s 1 * s 2 = a f1 *a f2 = a f1+f2 (คุณสมบัติของ องศา ) จากนั้นตามคำจำกัดความ: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2 ซึ่งเป็นสิ่งที่จำเป็นต้องพิสูจน์
  3. ลอการิทึมของผลหารมีลักษณะดังนี้: log a (s 1/ s 2) = log a s 1 - log a s 2
  4. ทฤษฎีบทในรูปแบบของสูตรเกิดขึ้น มุมมองถัดไป: บันทึก a q b n = n/q บันทึก a b

สูตรนี้เรียกว่า “คุณสมบัติของระดับลอการิทึม” มันคล้ายกับคุณสมบัติขององศาปกติ และไม่น่าแปลกใจเลย เพราะคณิตศาสตร์ทั้งหมดมีพื้นฐานมาจากสมมุติฐานตามธรรมชาติ มาดูหลักฐานกัน

ให้บันทึก a b = t จะได้ว่า t =b ถ้าเรายกกำลังทั้งสองส่วน m: a tn = bn ;

แต่เนื่องจาก tn = (a q) nt/q = bn ดังนั้น ให้บันทึก a q bn = (n*t)/t จากนั้นให้บันทึก a q bn = n/q บันทึก a b ทฤษฎีบทได้รับการพิสูจน์แล้ว

ตัวอย่างปัญหาและความไม่เท่าเทียมกัน

ประเภทปัญหาที่พบบ่อยที่สุดในลอการิทึมคือตัวอย่างของสมการและอสมการ มีอยู่ในหนังสือโจทย์ปัญหาเกือบทั้งหมด และยังเป็นส่วนบังคับของการสอบคณิตศาสตร์ด้วย เพื่อเข้าศึกษาต่อในมหาวิทยาลัยหรือสอบผ่าน การสอบเข้าในวิชาคณิตศาสตร์คุณจำเป็นต้องรู้วิธีการแก้ปัญหาดังกล่าวอย่างถูกต้อง

น่าเสียดายที่ไม่มีแผนหรือแผนงานเดียวสำหรับการแก้ไขและกำหนด ค่าที่ไม่รู้จักไม่มีสิ่งที่เรียกว่าลอการิทึม แต่กฎบางอย่างสามารถนำไปใช้กับอสมการทางคณิตศาสตร์หรือสมการลอการิทึมทุกรูปแบบได้ ก่อนอื่น คุณควรค้นหาว่านิพจน์นั้นสามารถทำให้ง่ายขึ้นหรือนำไปสู่ได้หรือไม่ ลักษณะทั่วไป- ลดความซับซ้อนของอันยาว นิพจน์ลอการิทึมเป็นไปได้หากคุณใช้คุณสมบัติอย่างถูกต้อง มาทำความรู้จักกับพวกเขาได้อย่างรวดเร็ว

เมื่อตัดสินใจ สมการลอการิทึมเราต้องกำหนดประเภทของลอการิทึมที่เรามี: นิพจน์ตัวอย่างอาจมีลอการิทึมธรรมชาติหรือทศนิยม

นี่คือตัวอย่าง ln100, ln1026 วิธีแก้ปัญหาขึ้นอยู่กับข้อเท็จจริงที่ว่าพวกเขาจำเป็นต้องกำหนดกำลังที่ฐาน 10 จะเท่ากับ 100 และ 1,026 ตามลำดับ ในการแก้ลอการิทึมธรรมชาติ คุณต้องใช้อัตลักษณ์ลอการิทึมหรือคุณสมบัติของพวกมัน ลองดูวิธีแก้ปัญหาพร้อมตัวอย่าง ปัญหาลอการิทึมประเภทต่างๆ

วิธีใช้สูตรลอการิทึม: พร้อมตัวอย่างและวิธีแก้ไข

ลองมาดูตัวอย่างการใช้ทฤษฎีบทพื้นฐานเกี่ยวกับลอการิทึมกัน

  1. คุณสมบัติของลอการิทึมของผลิตภัณฑ์สามารถใช้ในงานที่จำเป็นต้องขยายได้ คุ้มค่ามากตัวเลข b มากขึ้น ปัจจัยสำคัญ- เช่น log 2 4 + log 2 128 = log 2 (4*128) = log 2 512 คำตอบคือ 9
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1.5 - อย่างที่คุณเห็น การใช้คุณสมบัติที่สี่ของกำลังลอการิทึม เราจัดการเพื่อแก้นิพจน์ที่ดูเหมือนซับซ้อนและแก้ไขไม่ได้ คุณเพียงแค่ต้องแยกตัวประกอบฐานแล้วนำค่าเลขชี้กำลังออกจากเครื่องหมายของลอการิทึม

งานที่ได้รับมอบหมายจากการสอบ Unified State

ลอการิทึมมักพบใน การสอบเข้าโดยเฉพาะปัญหาลอการิทึมมากมายในการสอบ Unified State ( การสอบของรัฐสำหรับผู้ออกจากโรงเรียนทุกคน) โดยปกติแล้วงานเหล่านี้ไม่เพียงมีอยู่ในส่วน A เท่านั้น (งานที่ง่ายที่สุด ส่วนทดสอบการสอบ) แต่ยังอยู่ในส่วน C (งานที่ซับซ้อนและใหญ่โตที่สุด) การสอบต้องใช้ความรู้ที่ถูกต้องและครบถ้วนในหัวข้อ “ลอการิทึมธรรมชาติ”

ตัวอย่างและวิธีแก้ปัญหานำมาจากทางการ ตัวเลือกการสอบ Unified State- เรามาดูกันว่างานดังกล่าวจะแก้ไขอย่างไร

ให้บันทึก 2 (2x-1) = 4 วิธีแก้ไข:
ลองเขียนนิพจน์ใหม่ โดยลดความซับซ้อนของลอการิทึมเล็กๆ น้อยๆ 2 (2x-1) = 2 2 โดยนิยามของลอการิทึม เราจะได้ 2x-1 = 2 4 ดังนั้น 2x = 17; x = 8.5

  • วิธีที่ดีที่สุดคือลดลอการิทึมทั้งหมดให้เป็นฐานเดียวกันเพื่อไม่ให้โจทย์ยุ่งยากและสับสน
  • นิพจน์ทั้งหมดภายใต้เครื่องหมายลอการิทึมจะแสดงเป็นค่าบวก ดังนั้น เมื่อเลขชี้กำลังของนิพจน์ที่อยู่ใต้เครื่องหมายลอการิทึมและเมื่อฐานถูกนำออกมาเป็นตัวคูณ นิพจน์ที่เหลืออยู่ภายใต้ลอการิทึมจะต้องเป็นค่าบวก