ชีวประวัติ ลักษณะเฉพาะ การวิเคราะห์

สูตรพื้นที่พีทาโกรัส ประวัติความเป็นมาของทฤษฎีบทพีทาโกรัส

ระดับรายการ

ความก้าวหน้าทางคณิตศาสตร์ ทฤษฎีโดยละเอียดพร้อมตัวอย่าง (2019)

ลำดับหมายเลข

เรามานั่งลงและเริ่มเขียนตัวเลขกันดีกว่า ตัวอย่างเช่น:
คุณสามารถเขียนตัวเลขใดก็ได้ และอาจมีได้มากเท่าที่คุณต้องการ (ในกรณีของเราก็มีอยู่แล้ว) ไม่ว่าเราจะเขียนตัวเลขไปกี่จำนวน เราก็บอกได้เสมอว่าอันไหนเป็นอันดับแรก อันไหนเป็นที่สอง และต่อๆ ไปจนถึงตัวสุดท้าย นั่นคือ เราสามารถนับเลขได้ นี่คือตัวอย่างลำดับตัวเลข:

ลำดับหมายเลข
ตัวอย่างเช่น สำหรับลำดับของเรา:

หมายเลขที่กำหนดจะเฉพาะกับหมายเลขเดียวในลำดับเท่านั้น กล่าวอีกนัยหนึ่ง ไม่มีตัวเลขสามวินาทีในลำดับ ตัวเลขที่สอง (เช่นตัวเลขที่ th) จะเหมือนกันเสมอ
จำนวนที่มีจำนวนเรียกว่าเทอมที่ 3 ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

ในกรณีของเรา:

สมมติว่าเรามีลำดับตัวเลขซึ่งความแตกต่างระหว่างตัวเลขที่อยู่ติดกันเท่ากันและเท่ากัน
ตัวอย่างเช่น:

ฯลฯ
ลำดับตัวเลขนี้เรียกว่าความก้าวหน้าทางคณิตศาสตร์
คำว่า "ความก้าวหน้า" ถูกนำมาใช้โดยนักเขียนชาวโรมันชื่อ Boethius ย้อนกลับไปในศตวรรษที่ 6 และเป็นที่เข้าใจกันมากขึ้น ในความหมายกว้างๆเหมือนกับลำดับจำนวนอนันต์ ชื่อ "เลขคณิต" โอนมาจากทฤษฎีสัดส่วนต่อเนื่องที่ชาวกรีกโบราณศึกษา

นี่คือลำดับตัวเลข ซึ่งสมาชิกแต่ละตัวจะเท่ากับลำดับก่อนหน้าที่บวกเข้ากับหมายเลขเดียวกัน จำนวนนี้เรียกว่าผลต่างของความก้าวหน้าทางคณิตศาสตร์และถูกกำหนดไว้

พยายามพิจารณาว่าลำดับตัวเลขใดเป็นความก้าวหน้าทางคณิตศาสตร์ และลำดับใดไม่ใช่:

ก)
ข)
ค)
ง)

เข้าใจแล้ว? ลองเปรียบเทียบคำตอบของเรา:
เป็นความก้าวหน้าทางคณิตศาสตร์ - b, c
ไม่ใช่ความก้าวหน้าทางคณิตศาสตร์ - a, d

กลับไปที่ ได้รับความก้าวหน้า() และพยายามค้นหาค่าของสมาชิกตัวที่ 3 มีอยู่ สองวิธีที่จะค้นหามัน

1. วิธีการ

เราสามารถบวกเลขความก้าวหน้าเข้ากับค่าก่อนหน้าได้จนกว่าเราจะถึงระยะที่ 3 ของความก้าวหน้า เป็นการดีที่เราไม่มีอะไรจะสรุปมากนัก - มีเพียงสามค่าเท่านั้น:

ดังนั้นเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์ที่อธิบายไว้จึงเท่ากับ

2. วิธีการ

จะเป็นอย่างไรถ้าเราจำเป็นต้องค้นหามูลค่าของระยะที่ 3 ของความก้าวหน้า? การบวกจะใช้เวลามากกว่าหนึ่งชั่วโมง และไม่ใช่ความจริงที่ว่าเราจะไม่ทำผิดพลาดเมื่อบวกตัวเลข
แน่นอนว่านักคณิตศาสตร์มีวิธีที่ไม่จำเป็นต้องเพิ่มผลต่างของความก้าวหน้าทางคณิตศาสตร์ให้กับค่าก่อนหน้า ลองดูภาพที่วาดให้ละเอียดยิ่งขึ้น... แน่นอนคุณได้สังเกตเห็นรูปแบบบางอย่างแล้ว ได้แก่:

ตัวอย่างเช่น ลองดูว่าค่าของเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์นี้ประกอบด้วยเท่าใด:


กล่าวอีกนัยหนึ่ง:

พยายามหาค่าของสมาชิกของความก้าวหน้าทางคณิตศาสตร์ที่กำหนดด้วยตัวเองด้วยวิธีนี้

คุณคำนวณหรือไม่? เปรียบเทียบบันทึกย่อของคุณกับคำตอบ:

โปรดทราบว่าคุณได้ตัวเลขเดียวกันกับวิธีก่อนหน้าทุกประการ เมื่อเราเพิ่มเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์เป็นค่าก่อนหน้าตามลำดับ
มาลอง "ลดความเป็นตัวตน" กัน สูตรนี้- พาเธอไปกันเถอะ มุมมองทั่วไปและเราได้รับ:

สมการความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์สามารถเพิ่มหรือลดลงได้

เพิ่มขึ้น- ความก้าวหน้าซึ่งแต่ละมูลค่าที่ตามมาของข้อกำหนดจะมากกว่าค่าก่อนหน้า
ตัวอย่างเช่น:

จากมากไปน้อย- ความก้าวหน้าซึ่งแต่ละค่าของข้อกำหนดที่ตามมาจะน้อยกว่าค่าก่อนหน้า
ตัวอย่างเช่น:

สูตรที่ได้รับใช้ในการคำนวณเงื่อนไขทั้งในเงื่อนไขที่เพิ่มขึ้นและลดลงของความก้าวหน้าทางคณิตศาสตร์
มาตรวจสอบสิ่งนี้ในทางปฏิบัติ
เราได้รับความก้าวหน้าทางคณิตศาสตร์ประกอบด้วย ตัวเลขต่อไปนี้: ลองตรวจสอบว่าเลขลำดับที่ 3 ของความก้าวหน้าทางคณิตศาสตร์นี้จะเป็นอย่างไรหากเราใช้สูตรของเราในการคำนวณ:


ตั้งแต่นั้นมา:

ดังนั้นเราจึงมั่นใจว่าสูตรดำเนินการทั้งในการลดลงและเพิ่มความก้าวหน้าทางคณิตศาสตร์
พยายามค้นหาเงื่อนไขที่ th และ th ของความก้าวหน้าทางคณิตศาสตร์นี้ด้วยตัวเอง

ลองเปรียบเทียบผลลัพธ์:

คุณสมบัติความก้าวหน้าทางคณิตศาสตร์

มาทำให้ปัญหาซับซ้อนขึ้น - เราจะได้คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์
สมมติว่าเราได้รับเงื่อนไขต่อไปนี้:
- ความก้าวหน้าทางคณิตศาสตร์ ค้นหาค่า
ง่าย ๆ ที่คุณพูดและเริ่มนับตามสูตรที่คุณรู้อยู่แล้ว:

ให้เอ่อแล้ว:

จริงอย่างแน่นอน ปรากฎว่าเราพบก่อนแล้วจึงบวกเข้ากับตัวเลขแรกแล้วได้สิ่งที่เรากำลังมองหา ถ้าความก้าวหน้าแสดงด้วยค่าเล็กๆ ก็ไม่มีอะไรซับซ้อน แต่จะเกิดอะไรขึ้นถ้าเราได้รับตัวเลขในเงื่อนไขล่ะ? ยอมรับว่ามีความเป็นไปได้ที่จะเกิดข้อผิดพลาดในการคำนวณ
ทีนี้ลองคิดดูว่าจะสามารถแก้ไขปัญหานี้ในขั้นตอนเดียวโดยใช้สูตรใดๆ ได้หรือไม่? ใช่แน่นอน และนั่นคือสิ่งที่เราจะพยายามนำเสนอออกมาในตอนนี้

ให้เราแสดงคำที่ต้องการของความก้าวหน้าทางคณิตศาสตร์เนื่องจากสูตรในการค้นหาที่เรารู้จัก - นี่เป็นสูตรเดียวกับที่เราได้รับตั้งแต่ต้น:
, แล้ว:

  • ระยะก่อนหน้าของความก้าวหน้าคือ:
  • ระยะต่อไปของความก้าวหน้าคือ:

เรามาสรุปข้อกำหนดก่อนหน้าและถัดไปของความก้าวหน้า:

ปรากฎว่าผลรวมของเงื่อนไขก่อนหน้าและเงื่อนไขถัดไปของความก้าวหน้าคือค่าสองเท่าของเงื่อนไขความก้าวหน้าที่อยู่ระหว่างพวกเขา กล่าวอีกนัยหนึ่ง เพื่อค้นหาค่าของระยะความก้าวหน้าโดยพิจารณาจากค่าก่อนหน้า และ ค่าที่ต่อเนื่องกันคุณต้องบวกมันเข้าแล้วหารด้วย

ใช่แล้ว เราได้เลขเดียวกัน มารักษาความปลอดภัยของวัสดุกันเถอะ คำนวณมูลค่าสำหรับความก้าวหน้าด้วยตัวเอง ไม่ยากเลย

ทำได้ดี! คุณรู้เกือบทุกอย่างเกี่ยวกับความก้าวหน้า! ยังคงต้องหาสูตรเพียงสูตรเดียวเท่านั้น ซึ่งตามตำนานสามารถอนุมานได้ง่าย ๆ ด้วยตัวเองโดยหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดตลอดกาล "ราชาแห่งนักคณิตศาสตร์" - Carl Gauss...

เมื่อคาร์ล เกาส์ อายุ 9 ขวบ ครูคนหนึ่งซึ่งยุ่งอยู่กับการตรวจงานของนักเรียนในชั้นเรียนอื่น ได้ถามปัญหาในชั้นเรียนดังนี้ “คำนวณผลรวมของทั้งหมด ตัวเลขธรรมชาติจาก ถึง (ตามแหล่งอื่น ๆ จนถึง) รวมอยู่ด้วย” ลองนึกภาพความประหลาดใจของครูเมื่อนักเรียนคนหนึ่งของเขา (นี่คือคาร์ล เกาส์) นาทีต่อมาให้คำตอบที่ถูกต้องกับงาน ในขณะที่เพื่อนร่วมชั้นของผู้บ้าระห่ำส่วนใหญ่ได้รับผลลัพธ์ที่ผิดหลังจากคำนวณมาเป็นเวลานาน...

คาร์ล เกาส์ วัยหนุ่มสังเกตเห็นรูปแบบบางอย่างที่คุณสามารถสังเกตได้ง่ายเช่นกัน
สมมติว่าเรามีความก้าวหน้าทางคณิตศาสตร์ที่ประกอบด้วยเทอมที่ -: เราจำเป็นต้องค้นหาผลรวมของเงื่อนไขเหล่านี้ของการก้าวหน้าทางคณิตศาสตร์ แน่นอนว่า เราสามารถรวมค่าทั้งหมดด้วยตนเอง แต่จะเกิดอะไรขึ้นถ้างานนั้นต้องการหาผลรวมของเงื่อนไขตามที่เกาส์กำลังมองหา?

ให้เราบรรยายถึงความก้าวหน้าที่มอบให้เรา ดูตัวเลขที่ไฮไลต์อย่างใกล้ชิดแล้วลองดำเนินการทางคณิตศาสตร์ต่างๆ กับตัวเลขเหล่านั้น


คุณลองแล้วหรือยัง? คุณสังเกตเห็นอะไร? ขวา! ผลรวมของพวกเขาเท่ากัน


ทีนี้บอกหน่อยเถอะว่าความก้าวหน้าที่มอบให้เรามีทั้งหมดกี่คู่? แน่นอนว่าครึ่งหนึ่งของตัวเลขทั้งหมดนั่นเอง
จากข้อเท็จจริงที่ว่าผลรวมของสองเทอมของการก้าวหน้าทางคณิตศาสตร์เท่ากัน และคู่ที่คล้ายกันเท่ากัน เราได้มาว่า จำนวนเงินทั้งหมดเท่ากับ:
.
ดังนั้น สูตรสำหรับผลรวมของเทอมแรกของความก้าวหน้าทางคณิตศาสตร์จะเป็นดังนี้:

ในปัญหาบางอย่างเราไม่รู้คำศัพท์ที่ 3 แต่เรารู้ถึงความแตกต่างของความก้าวหน้า ลองแทนสูตรของเทอมที่ 3 ลงในสูตรผลรวม
คุณได้อะไร?

ทำได้ดี! ตอนนี้เรากลับมาที่ปัญหาที่ Carl Gauss ถาม: คำนวณด้วยตัวคุณเองว่าผลรวมของตัวเลขที่เริ่มต้นจาก th เท่ากับเท่าใด และผลรวมของตัวเลขที่เริ่มต้นจาก th

คุณได้รับเท่าไหร่?
เกาส์พบว่าผลรวมของพจน์เท่ากัน และผลรวมของพจน์นั้น นั่นคือสิ่งที่คุณตัดสินใจ?

ในความเป็นจริง สูตรสำหรับผลรวมของเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์ได้รับการพิสูจน์โดยนักวิทยาศาสตร์ชาวกรีกโบราณ ไดโอแฟนตัส ย้อนกลับไปในศตวรรษที่ 3 และตลอดเวลานี้ คนที่มีไหวพริบได้ใช้คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์อย่างเต็มที่
ตัวอย่างเช่น ลองนึกภาพ อียิปต์โบราณและโครงการก่อสร้างที่ใหญ่ที่สุดในยุคนั้น - การก่อสร้างปิรามิด... ภาพแสดงด้านใดด้านหนึ่ง

คุณพูดว่าความก้าวหน้าอยู่ที่ไหน? มองให้ดีและหารูปแบบจำนวนบล็อกทรายในแต่ละแถวของกำแพงพีระมิด


ทำไมไม่ก้าวหน้าทางคณิตศาสตร์? คำนวณจำนวนบล็อกที่จำเป็นในการสร้างกำแพงด้านหนึ่งหากวางอิฐบล็อกไว้ที่ฐาน ฉันหวังว่าคุณจะไม่นับในขณะที่เลื่อนนิ้วไปบนหน้าจอ คุณจำสูตรสุดท้ายและทุกสิ่งที่เราพูดเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์ได้ไหม

ใน ในกรณีนี้ความคืบหน้ามีลักษณะดังนี้: .
ความแตกต่างความก้าวหน้าทางคณิตศาสตร์
จำนวนเงื่อนไขของการก้าวหน้าทางคณิตศาสตร์
เรามาแทนที่ข้อมูลของเราเป็นสูตรสุดท้าย (คำนวณจำนวนบล็อกได้ 2 วิธี)

วิธีที่ 1

วิธีที่ 2

และตอนนี้คุณสามารถคำนวณบนมอนิเตอร์ได้: เปรียบเทียบค่าที่ได้รับกับจำนวนบล็อกที่อยู่ในปิรามิดของเรา เข้าใจแล้ว? ทำได้ดีมาก คุณเชี่ยวชาญผลรวมของเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์แล้ว
แน่นอนว่าคุณไม่สามารถสร้างปิรามิดจากบล็อกที่ฐานได้ แต่จากอะไรล่ะ? ลองคำนวณว่าต้องใช้อิฐทรายจำนวนเท่าใดในการสร้างกำแพงด้วยเงื่อนไขนี้
คุณจัดการหรือไม่?
คำตอบที่ถูกต้องคือบล็อก:

การฝึกอบรม

งาน:

  1. Masha กำลังมีรูปร่างดีสำหรับฤดูร้อน เธอเพิ่มจำนวนท่าสควอชทุกวัน Masha จะทำ squats กี่ครั้งในหนึ่งสัปดาห์ถ้าเธอทำ squats ในการฝึกซ้อมครั้งแรก?
  2. ผลรวมของเลขคี่ทั้งหมดที่มีอยู่เป็นเท่าใด
  3. เมื่อจัดเก็บบันทึก ตัวบันทึกจะซ้อนกันในลักษณะที่แต่ละชั้นบนสุดมีบันทึกหนึ่งรายการน้อยกว่าบันทึกก่อนหน้า อิฐหนึ่งก้อนมีท่อนไม้อยู่กี่ท่อน ถ้ารากฐานของท่อนไม้เป็นท่อนไม้?

คำตอบ:

  1. ให้เรากำหนดพารามิเตอร์ของความก้าวหน้าทางคณิตศาสตร์ ในกรณีนี้
    (สัปดาห์ = วัน)

    คำตอบ:ในสองสัปดาห์ Masha ควรทำ squats วันละครั้ง

  2. เลขคี่ตัวแรก เลขสุดท้าย
    ความแตกต่างความก้าวหน้าทางคณิตศาสตร์
    อย่างไรก็ตาม จำนวนเลขคี่คือครึ่งหนึ่ง เราจะมาตรวจสอบข้อเท็จจริงนี้โดยใช้สูตรในการหาเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์:

    ตัวเลขประกอบด้วยเลขคี่
    ลองแทนที่ข้อมูลที่มีอยู่ลงในสูตร:

    คำตอบ:ผลรวมของเลขคี่ทั้งหมดที่อยู่ในนั้นมีค่าเท่ากัน

  3. เรามาจำปัญหาเกี่ยวกับปิรามิดกันดีกว่า สำหรับกรณีของเรา a เนื่องจากแต่ละเลเยอร์บนสุดจะลดลงหนึ่งบันทึก ดังนั้นโดยรวมแล้วจะมีหลายเลเยอร์ นั่นก็คือ
    ลองแทนที่ข้อมูลลงในสูตร:

    คำตอบ:มีท่อนซุงอยู่ในการก่ออิฐ

มาสรุปกัน

  1. - ลำดับตัวเลขที่ความแตกต่างระหว่างตัวเลขที่อยู่ติดกันเท่ากันและเท่ากัน มันอาจจะเพิ่มขึ้นหรือลดลงก็ได้
  2. การหาสูตรเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์เขียนโดยสูตร - โดยที่ คือจำนวนตัวเลขในความก้าวหน้า
  3. คุณสมบัติของสมาชิกของความก้าวหน้าทางคณิตศาสตร์- - โดยที่คือจำนวนตัวเลขที่กำลังดำเนินอยู่
  4. ผลรวมของเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์สามารถพบได้สองวิธี:

    โดยที่คือจำนวนค่า

ความก้าวหน้าทางคณิตศาสตร์ ระดับกลาง

ลำดับหมายเลข

ลองนั่งลงและเริ่มเขียนตัวเลขกัน ตัวอย่างเช่น:

คุณสามารถเขียนตัวเลขใดๆ ก็ได้ และจะมีได้มากเท่าที่คุณต้องการ แต่เราสามารถพูดได้เสมอว่าอันไหนเป็นอันดับแรก อันไหนเป็นที่สอง และอื่น ๆ นั่นคือเราสามารถนับพวกมันได้ นี่คือตัวอย่างลำดับตัวเลข

ลำดับหมายเลขคือชุดตัวเลขซึ่งแต่ละชุดสามารถกำหนดหมายเลขเฉพาะได้

กล่าวอีกนัยหนึ่ง แต่ละหมายเลขสามารถเชื่อมโยงกับจำนวนธรรมชาติจำนวนหนึ่งและเป็นจำนวนเฉพาะได้ และเราจะไม่กำหนดหมายเลขนี้ให้กับหมายเลขอื่นจากชุดนี้

ตัวเลขที่มีตัวเลขเรียกว่าสมาชิกตัวที่ 2 ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

จะสะดวกมากหากบางสูตรสามารถระบุเทอมที่ 3 ของลำดับได้ ยกตัวอย่างสูตร

กำหนดลำดับ:

และสูตรก็มีลำดับดังนี้:

ตัวอย่างเช่น ความก้าวหน้าทางคณิตศาสตร์คือลำดับ (เทอมแรกในที่นี้มีค่าเท่ากัน และผลต่างคือ) หรือ (, ส่วนต่าง)

สูตรเทอมที่ n

เราเรียกสูตรที่เกิดซ้ำซึ่งในการหาเทอมที่ 3 คุณจำเป็นต้องรู้คำก่อนหน้าหรือหลายคำก่อนหน้านี้:

หากต้องการค้นหาระยะที่ 3 ของความก้าวหน้าโดยใช้สูตรนี้ เราจะต้องคำนวณเก้าค่าก่อนหน้า เช่น ปล่อยให้มัน. แล้ว:

ตอนนี้ชัดเจนแล้วว่าสูตรคืออะไร?

ในแต่ละบรรทัดที่เราบวกเข้าไป คูณด้วยตัวเลขจำนวนหนึ่ง อันไหน? ง่ายมาก: นี่คือจำนวนสมาชิกปัจจุบันลบ:

ตอนนี้สะดวกขึ้นมากแล้วใช่ไหม? เราตรวจสอบ:

ตัดสินใจด้วยตัวเอง:

ในการก้าวหน้าทางคณิตศาสตร์ ให้ค้นหาสูตรสำหรับเทอมที่ n และค้นหาเทอมที่ร้อย

สารละลาย:

เทอมแรกมีค่าเท่ากัน ความแตกต่างคืออะไร? นี่คือสิ่งที่:

(เหตุนี้จึงเรียกว่าความแตกต่างเพราะเท่ากับผลต่างของระยะต่อเนื่องของการก้าวหน้า)

ดังนั้นสูตร:

จากนั้นเทอมที่ร้อยจะเท่ากับ:

ผลรวมของจำนวนธรรมชาติทั้งหมดตั้งแต่ ถึง คืออะไร?

ตามตำนานกล่าวว่า นักคณิตศาสตร์ผู้ยิ่งใหญ่คาร์ล เกาส์ เมื่อตอนอายุ 9 ขวบ คำนวณจำนวนนี้ได้ภายในไม่กี่นาที เขาสังเกตเห็นว่าผลรวมของเลขตัวแรกและตัวสุดท้ายเท่ากัน ผลรวมของเลขที่สองและเลขสุดท้ายเท่ากัน ผลรวมของเลขที่สามและเลข 3 จากท้ายสุดเท่ากัน เป็นต้น มีคู่ดังกล่าวทั้งหมดกี่คู่? ถูกต้อง ครึ่งหนึ่งของจำนวนทั้งหมดนั่นเอง ดังนั้น,

สูตรทั่วไปสำหรับผลรวมของเทอมแรกของความก้าวหน้าทางคณิตศาสตร์จะเป็น:

ตัวอย่าง:
หาผลรวมของทั้งหมด ตัวเลขสองหลัก, ทวีคูณ

สารละลาย:

ตัวเลขแรกคือสิ่งนี้ แต่ละอันที่ตามมาจะได้รับโดยการเพิ่ม วันที่ก่อนหน้า- ดังนั้นตัวเลขที่เราสนใจในรูปแบบ ความก้าวหน้าทางคณิตศาสตร์ด้วยเทอมแรกและความแตกต่าง

สูตรของเทอมที่ 3 สำหรับความก้าวหน้านี้:

มีคำศัพท์กี่คำที่อยู่ในความก้าวหน้าหากทุกคำต้องเป็นเลขสองหลัก?

ง่ายมาก: .

ระยะสุดท้ายของความก้าวหน้าจะเท่ากัน จากนั้นผลรวม:

คำตอบ: .

ตอนนี้ตัดสินใจด้วยตัวเอง:

  1. ทุกวันนักกีฬาจะวิ่งมากกว่าวันก่อนหน้า เขาจะวิ่งได้ทั้งหมดกี่กิโลเมตรในหนึ่งสัปดาห์ ถ้าในวันแรกเขาวิ่ง km m?
  2. นักปั่นจักรยานเดินทางหลายกิโลเมตรทุกวันมากกว่าวันก่อนหน้า วันแรกเดินทาง กม. เขาต้องเดินทางกี่วันจึงจะครบหนึ่งกิโลเมตร? วันสุดท้ายของการเดินทางเขาจะเดินทางกี่กิโลเมตร?
  3. ราคาตู้เย็นในร้านค้าลดลงเท่ากันทุกปี พิจารณาว่าราคาตู้เย็นลดลงเท่าใดในแต่ละปีหากขายเป็นรูเบิลหกปีต่อมาขายเป็นรูเบิล

คำตอบ:

  1. สิ่งที่สำคัญที่สุดคือการจดจำความก้าวหน้าทางคณิตศาสตร์และกำหนดพารามิเตอร์ ในกรณีนี้ (สัปดาห์ = วัน) คุณต้องพิจารณาผลรวมของเงื่อนไขแรกของความก้าวหน้านี้:
    .
    คำตอบ:
  2. นี่คือสิ่งที่ได้รับ: , จะต้องพบ
    แน่นอนว่าคุณต้องใช้สูตรผลรวมเดียวกันกับในปัญหาก่อนหน้านี้:
    .
    แทนค่า:

    เห็นได้ชัดว่ารูตไม่พอดี ดังนั้นคำตอบก็คือ
    ลองคำนวณเส้นทางที่เดินทางในวันสุดท้ายโดยใช้สูตรของเทอมที่ 3:
    (กม.)
    คำตอบ:

  3. ที่ให้ไว้: . หา: .
    ไม่มีอะไรง่ายไปกว่านี้แล้ว:
    (ถู).
    คำตอบ:

ความก้าวหน้าทางคณิตศาสตร์ สั้น ๆ เกี่ยวกับสิ่งสำคัญ

นี่คือลำดับตัวเลขซึ่งความแตกต่างระหว่างตัวเลขที่อยู่ติดกันจะเท่ากันและเท่ากัน

ความก้าวหน้าทางคณิตศาสตร์สามารถเพิ่ม () และลด ()

ตัวอย่างเช่น:

สูตรการหาเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์

เขียนตามสูตร โดยที่ คือ จำนวนตัวเลขที่กำลังดำเนินอยู่

คุณสมบัติของสมาชิกของความก้าวหน้าทางคณิตศาสตร์

ช่วยให้คุณสามารถค้นหาคำศัพท์ของความก้าวหน้าได้อย่างง่ายดายหากทราบคำศัพท์ใกล้เคียง - โดยที่จำนวนตัวเลขในความก้าวหน้าคือจำนวนใด

ผลรวมของเงื่อนไขความก้าวหน้าทางคณิตศาสตร์

มีสองวิธีในการค้นหาจำนวนเงิน:

จำนวนค่าอยู่ที่ไหน

จำนวนค่าอยู่ที่ไหน

ระดับรายการ

ความก้าวหน้าทางคณิตศาสตร์ ทฤษฎีโดยละเอียดพร้อมตัวอย่าง (2019)

ลำดับหมายเลข

เรามานั่งลงและเริ่มเขียนตัวเลขกันดีกว่า ตัวอย่างเช่น:
คุณสามารถเขียนตัวเลขใดก็ได้ และอาจมีได้มากเท่าที่คุณต้องการ (ในกรณีของเราก็มีอยู่แล้ว) ไม่ว่าเราจะเขียนตัวเลขไปกี่จำนวน เราก็บอกได้เสมอว่าอันไหนเป็นอันดับแรก อันไหนเป็นที่สอง และต่อๆ ไปจนถึงตัวสุดท้าย นั่นคือ เราสามารถนับเลขได้ นี่คือตัวอย่างลำดับตัวเลข:

ลำดับหมายเลข
ตัวอย่างเช่น สำหรับลำดับของเรา:

หมายเลขที่กำหนดจะเฉพาะกับหมายเลขเดียวในลำดับเท่านั้น กล่าวอีกนัยหนึ่ง ไม่มีตัวเลขสามวินาทีในลำดับ ตัวเลขที่สอง (เช่นตัวเลขที่ th) จะเหมือนกันเสมอ
จำนวนที่มีจำนวนเรียกว่าเทอมที่ 3 ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

ในกรณีของเรา:

สมมติว่าเรามีลำดับตัวเลขซึ่งความแตกต่างระหว่างตัวเลขที่อยู่ติดกันเท่ากันและเท่ากัน
ตัวอย่างเช่น:

ฯลฯ
ลำดับตัวเลขนี้เรียกว่าความก้าวหน้าทางคณิตศาสตร์
คำว่า "ความก้าวหน้า" ถูกนำมาใช้โดยนักเขียนชาวโรมันชื่อ Boethius ย้อนกลับไปในศตวรรษที่ 6 และเป็นที่เข้าใจในความหมายที่กว้างกว่าว่าเป็นลำดับตัวเลขที่ไม่มีที่สิ้นสุด ชื่อ "เลขคณิต" โอนมาจากทฤษฎีสัดส่วนต่อเนื่องที่ชาวกรีกโบราณศึกษา

นี่คือลำดับตัวเลข ซึ่งสมาชิกแต่ละตัวจะเท่ากับลำดับก่อนหน้าที่บวกเข้ากับหมายเลขเดียวกัน จำนวนนี้เรียกว่าผลต่างของความก้าวหน้าทางคณิตศาสตร์และถูกกำหนดไว้

พยายามพิจารณาว่าลำดับตัวเลขใดเป็นความก้าวหน้าทางคณิตศาสตร์ และลำดับใดไม่ใช่:

ก)
ข)
ค)
ง)

เข้าใจแล้ว? ลองเปรียบเทียบคำตอบของเรา:
เป็นความก้าวหน้าทางคณิตศาสตร์ - b, c
ไม่ใช่ความก้าวหน้าทางคณิตศาสตร์ - a, d

กลับไปที่ความก้าวหน้าที่กำหนด () แล้วลองค้นหาค่าของเทอมที่ 3 ของมัน มีอยู่ สองวิธีที่จะค้นหามัน

1. วิธีการ

เราสามารถบวกเลขความก้าวหน้าเข้ากับค่าก่อนหน้าได้จนกว่าเราจะถึงระยะที่ 3 ของความก้าวหน้า เป็นการดีที่เราไม่มีอะไรจะสรุปมากนัก - มีเพียงสามค่าเท่านั้น:

ดังนั้นเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์ที่อธิบายไว้จึงเท่ากับ

2. วิธีการ

จะเป็นอย่างไรถ้าเราจำเป็นต้องค้นหามูลค่าของระยะที่ 3 ของความก้าวหน้า? การบวกจะใช้เวลามากกว่าหนึ่งชั่วโมง และไม่ใช่ความจริงที่ว่าเราจะไม่ทำผิดพลาดเมื่อบวกตัวเลข
แน่นอนว่านักคณิตศาสตร์มีวิธีที่ไม่จำเป็นต้องเพิ่มผลต่างของความก้าวหน้าทางคณิตศาสตร์ให้กับค่าก่อนหน้า ลองดูภาพที่วาดให้ละเอียดยิ่งขึ้น... แน่นอนคุณได้สังเกตเห็นรูปแบบบางอย่างแล้ว ได้แก่:

ตัวอย่างเช่น ลองดูว่าค่าของเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์นี้ประกอบด้วยเท่าใด:


กล่าวอีกนัยหนึ่ง:

พยายามหาค่าของสมาชิกของความก้าวหน้าทางคณิตศาสตร์ที่กำหนดด้วยตัวเองด้วยวิธีนี้

คุณคำนวณหรือไม่? เปรียบเทียบบันทึกย่อของคุณกับคำตอบ:

โปรดทราบว่าคุณได้ตัวเลขเดียวกันกับวิธีก่อนหน้าทุกประการ เมื่อเราเพิ่มเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์เป็นค่าก่อนหน้าตามลำดับ
เรามาลอง "ลดความเป็นตัวตน" ของสูตรนี้ - มาวางไว้ในรูปแบบทั่วไปแล้วจะได้:

สมการความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์สามารถเพิ่มหรือลดลงได้

เพิ่มขึ้น- ความก้าวหน้าซึ่งแต่ละมูลค่าที่ตามมาของข้อกำหนดจะมากกว่าค่าก่อนหน้า
ตัวอย่างเช่น:

จากมากไปน้อย- ความก้าวหน้าซึ่งแต่ละค่าของข้อกำหนดที่ตามมาจะน้อยกว่าค่าก่อนหน้า
ตัวอย่างเช่น:

สูตรที่ได้รับใช้ในการคำนวณเงื่อนไขทั้งในเงื่อนไขที่เพิ่มขึ้นและลดลงของความก้าวหน้าทางคณิตศาสตร์
มาตรวจสอบสิ่งนี้ในทางปฏิบัติ
เราได้รับความก้าวหน้าทางคณิตศาสตร์ซึ่งประกอบด้วยตัวเลขต่อไปนี้: มาตรวจสอบกันว่าตัวเลขลำดับที่ 3 ของความก้าวหน้าทางคณิตศาสตร์นี้จะเป็นอย่างไรหากเราใช้สูตรของเราในการคำนวณ:


ตั้งแต่นั้นมา:

ดังนั้นเราจึงมั่นใจว่าสูตรดำเนินการทั้งในการลดลงและเพิ่มความก้าวหน้าทางคณิตศาสตร์
พยายามค้นหาเงื่อนไขที่ th และ th ของความก้าวหน้าทางคณิตศาสตร์นี้ด้วยตัวเอง

ลองเปรียบเทียบผลลัพธ์:

คุณสมบัติความก้าวหน้าทางคณิตศาสตร์

มาทำให้ปัญหาซับซ้อนขึ้น - เราจะได้คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์
สมมติว่าเราได้รับเงื่อนไขต่อไปนี้:
- ความก้าวหน้าทางคณิตศาสตร์ ค้นหาค่า
ง่าย ๆ ที่คุณพูดและเริ่มนับตามสูตรที่คุณรู้อยู่แล้ว:

ให้เอ่อแล้ว:

จริงอย่างแน่นอน ปรากฎว่าเราพบก่อนแล้วจึงบวกเข้ากับตัวเลขแรกแล้วได้สิ่งที่เรากำลังมองหา ถ้าความก้าวหน้าแสดงด้วยค่าเล็กๆ ก็ไม่มีอะไรซับซ้อน แต่จะเกิดอะไรขึ้นถ้าเราได้รับตัวเลขในเงื่อนไขล่ะ? ยอมรับว่ามีความเป็นไปได้ที่จะเกิดข้อผิดพลาดในการคำนวณ
ทีนี้ลองคิดดูว่าจะสามารถแก้ไขปัญหานี้ในขั้นตอนเดียวโดยใช้สูตรใดๆ ได้หรือไม่? ใช่แน่นอน และนั่นคือสิ่งที่เราจะพยายามนำเสนอออกมาในตอนนี้

ให้เราแสดงคำที่ต้องการของความก้าวหน้าทางคณิตศาสตร์เนื่องจากสูตรในการค้นหาที่เรารู้จัก - นี่เป็นสูตรเดียวกับที่เราได้รับตั้งแต่ต้น:
, แล้ว:

  • ระยะก่อนหน้าของความก้าวหน้าคือ:
  • ระยะต่อไปของความก้าวหน้าคือ:

เรามาสรุปข้อกำหนดก่อนหน้าและถัดไปของความก้าวหน้า:

ปรากฎว่าผลรวมของเงื่อนไขก่อนหน้าและเงื่อนไขถัดไปของความก้าวหน้าคือค่าสองเท่าของเงื่อนไขความก้าวหน้าที่อยู่ระหว่างพวกเขา กล่าวอีกนัยหนึ่ง หากต้องการค้นหาค่าของเทอมความก้าวหน้าด้วยค่าก่อนหน้าและค่าต่อเนื่องที่ทราบ คุณจะต้องบวกค่าเหล่านั้นแล้วหารด้วย

ใช่แล้ว เราได้เลขเดียวกัน มารักษาความปลอดภัยของวัสดุกันเถอะ คำนวณมูลค่าสำหรับความก้าวหน้าด้วยตัวเอง ไม่ยากเลย

ทำได้ดี! คุณรู้เกือบทุกอย่างเกี่ยวกับความก้าวหน้า! ยังคงต้องหาสูตรเพียงสูตรเดียวเท่านั้น ซึ่งตามตำนานสามารถอนุมานได้ง่าย ๆ ด้วยตัวเองโดยหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดตลอดกาล "ราชาแห่งนักคณิตศาสตร์" - Carl Gauss...

เมื่อ Carl Gauss อายุ 9 ขวบ ครูคนหนึ่งซึ่งยุ่งอยู่กับการตรวจสอบงานของนักเรียนในชั้นเรียนอื่น ได้ถามคำถามในชั้นเรียนดังนี้: “คำนวณผลรวมของจำนวนธรรมชาติทั้งหมดตั้งแต่ ถึง (ตามแหล่งข้อมูลอื่นถึง) รวม” ลองนึกภาพความประหลาดใจของครูเมื่อนักเรียนคนหนึ่งของเขา (นี่คือคาร์ล เกาส์) นาทีต่อมาให้คำตอบที่ถูกต้องกับงาน ในขณะที่เพื่อนร่วมชั้นของผู้บ้าระห่ำส่วนใหญ่ได้รับผลลัพธ์ที่ผิดหลังจากคำนวณมาเป็นเวลานาน...

คาร์ล เกาส์ วัยหนุ่มสังเกตเห็นรูปแบบบางอย่างที่คุณสามารถสังเกตได้ง่ายเช่นกัน
สมมติว่าเรามีความก้าวหน้าทางคณิตศาสตร์ที่ประกอบด้วยเทอมที่ -: เราจำเป็นต้องค้นหาผลรวมของเงื่อนไขเหล่านี้ของการก้าวหน้าทางคณิตศาสตร์ แน่นอนว่า เราสามารถรวมค่าทั้งหมดด้วยตนเอง แต่จะเกิดอะไรขึ้นถ้างานนั้นต้องการหาผลรวมของเงื่อนไขตามที่เกาส์กำลังมองหา?

ให้เราบรรยายถึงความก้าวหน้าที่มอบให้เรา ดูตัวเลขที่ไฮไลต์อย่างใกล้ชิดแล้วลองดำเนินการทางคณิตศาสตร์ต่างๆ กับตัวเลขเหล่านั้น


คุณลองแล้วหรือยัง? คุณสังเกตเห็นอะไร? ขวา! ผลรวมของพวกเขาเท่ากัน


ทีนี้บอกหน่อยเถอะว่าความก้าวหน้าที่มอบให้เรามีทั้งหมดกี่คู่? แน่นอนว่าครึ่งหนึ่งของตัวเลขทั้งหมดนั่นเอง
จากข้อเท็จจริงที่ว่าผลรวมของสองเทอมของการก้าวหน้าทางคณิตศาสตร์เท่ากัน และคู่ที่คล้ายกันเท่ากัน เราจึงได้ผลลัพธ์ว่าผลรวมทั้งหมดเท่ากับ:
.
ดังนั้น สูตรสำหรับผลรวมของเทอมแรกของความก้าวหน้าทางคณิตศาสตร์จะเป็นดังนี้:

ในปัญหาบางอย่างเราไม่รู้คำศัพท์ที่ 3 แต่เรารู้ถึงความแตกต่างของความก้าวหน้า ลองแทนสูตรของเทอมที่ 3 ลงในสูตรผลรวม
คุณได้อะไร?

ทำได้ดี! ตอนนี้เรากลับมาที่ปัญหาที่ Carl Gauss ถาม: คำนวณด้วยตัวคุณเองว่าผลรวมของตัวเลขที่เริ่มต้นจาก th เท่ากับเท่าใด และผลรวมของตัวเลขที่เริ่มต้นจาก th

คุณได้รับเท่าไหร่?
เกาส์พบว่าผลรวมของพจน์เท่ากัน และผลรวมของพจน์นั้น นั่นคือสิ่งที่คุณตัดสินใจ?

ในความเป็นจริง สูตรสำหรับผลรวมของเทอมของความก้าวหน้าทางคณิตศาสตร์ได้รับการพิสูจน์โดยนักวิทยาศาสตร์ชาวกรีกโบราณ ไดโอแฟนตัส ย้อนกลับไปในศตวรรษที่ 3 และตลอดเวลานี้ คนที่มีไหวพริบได้ใช้คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์อย่างเต็มที่
ตัวอย่างเช่น ลองนึกภาพอียิปต์โบราณและโครงการก่อสร้างที่ใหญ่ที่สุดในยุคนั้น - การก่อสร้างปิรามิด... รูปภาพแสดงด้านใดด้านหนึ่ง

คุณพูดว่าความก้าวหน้าอยู่ที่ไหน? มองให้ดีและหารูปแบบจำนวนบล็อกทรายในแต่ละแถวของกำแพงพีระมิด


ทำไมไม่ก้าวหน้าทางคณิตศาสตร์? คำนวณจำนวนบล็อกที่จำเป็นในการสร้างกำแพงด้านหนึ่งหากวางอิฐบล็อกไว้ที่ฐาน ฉันหวังว่าคุณจะไม่นับในขณะที่เลื่อนนิ้วไปบนหน้าจอ คุณจำสูตรสุดท้ายและทุกสิ่งที่เราพูดเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์ได้ไหม

ในกรณีนี้ ความคืบหน้าจะเป็นดังนี้:
ความแตกต่างความก้าวหน้าทางคณิตศาสตร์
จำนวนเงื่อนไขของการก้าวหน้าทางคณิตศาสตร์
เรามาแทนที่ข้อมูลของเราเป็นสูตรสุดท้าย (คำนวณจำนวนบล็อกได้ 2 วิธี)

วิธีที่ 1

วิธีที่ 2

และตอนนี้คุณสามารถคำนวณบนมอนิเตอร์ได้: เปรียบเทียบค่าที่ได้รับกับจำนวนบล็อกที่อยู่ในปิรามิดของเรา เข้าใจแล้ว? ทำได้ดีมาก คุณเชี่ยวชาญผลรวมของเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์แล้ว
แน่นอนว่าคุณไม่สามารถสร้างปิรามิดจากบล็อกที่ฐานได้ แต่จากอะไรล่ะ? ลองคำนวณว่าต้องใช้อิฐทรายจำนวนเท่าใดในการสร้างกำแพงด้วยเงื่อนไขนี้
คุณจัดการหรือไม่?
คำตอบที่ถูกต้องคือบล็อก:

การฝึกอบรม

งาน:

  1. Masha กำลังมีรูปร่างดีสำหรับฤดูร้อน เธอเพิ่มจำนวนท่าสควอชทุกวัน Masha จะทำ squats กี่ครั้งในหนึ่งสัปดาห์ถ้าเธอทำ squats ในการฝึกซ้อมครั้งแรก?
  2. ผลรวมของเลขคี่ทั้งหมดที่มีอยู่เป็นเท่าใด
  3. เมื่อจัดเก็บบันทึก ตัวบันทึกจะซ้อนกันในลักษณะที่แต่ละชั้นบนสุดมีบันทึกหนึ่งรายการน้อยกว่าบันทึกก่อนหน้า อิฐหนึ่งก้อนมีท่อนไม้อยู่กี่ท่อน ถ้ารากฐานของท่อนไม้เป็นท่อนไม้?

คำตอบ:

  1. ให้เรากำหนดพารามิเตอร์ของความก้าวหน้าทางคณิตศาสตร์ ในกรณีนี้
    (สัปดาห์ = วัน)

    คำตอบ:ในสองสัปดาห์ Masha ควรทำ squats วันละครั้ง

  2. เลขคี่ตัวแรก เลขสุดท้าย
    ความแตกต่างความก้าวหน้าทางคณิตศาสตร์
    อย่างไรก็ตาม จำนวนเลขคี่คือครึ่งหนึ่ง เราจะมาตรวจสอบข้อเท็จจริงนี้โดยใช้สูตรในการหาเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์:

    ตัวเลขประกอบด้วยเลขคี่
    ลองแทนที่ข้อมูลที่มีอยู่ลงในสูตร:

    คำตอบ:ผลรวมของเลขคี่ทั้งหมดที่อยู่ในนั้นมีค่าเท่ากัน

  3. เรามาจำปัญหาเกี่ยวกับปิรามิดกันดีกว่า สำหรับกรณีของเรา a เนื่องจากแต่ละเลเยอร์บนสุดจะลดลงหนึ่งบันทึก ดังนั้นโดยรวมแล้วจะมีหลายเลเยอร์ นั่นก็คือ
    ลองแทนที่ข้อมูลลงในสูตร:

    คำตอบ:มีท่อนซุงอยู่ในการก่ออิฐ

มาสรุปกัน

  1. - ลำดับตัวเลขที่ความแตกต่างระหว่างตัวเลขที่อยู่ติดกันเท่ากันและเท่ากัน มันอาจจะเพิ่มขึ้นหรือลดลงก็ได้
  2. การหาสูตรเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์เขียนโดยสูตร - โดยที่ คือจำนวนตัวเลขในความก้าวหน้า
  3. คุณสมบัติของสมาชิกของความก้าวหน้าทางคณิตศาสตร์- - โดยที่คือจำนวนตัวเลขที่กำลังดำเนินอยู่
  4. ผลรวมของเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์สามารถพบได้สองวิธี:

    โดยที่คือจำนวนค่า

ความก้าวหน้าทางคณิตศาสตร์ ระดับกลาง

ลำดับหมายเลข

ลองนั่งลงและเริ่มเขียนตัวเลขกัน ตัวอย่างเช่น:

คุณสามารถเขียนตัวเลขใดๆ ก็ได้ และจะมีได้มากเท่าที่คุณต้องการ แต่เราสามารถพูดได้เสมอว่าอันไหนเป็นอันดับแรก อันไหนเป็นที่สอง และอื่น ๆ นั่นคือเราสามารถนับพวกมันได้ นี่คือตัวอย่างลำดับตัวเลข

ลำดับหมายเลขคือชุดตัวเลขซึ่งแต่ละชุดสามารถกำหนดหมายเลขเฉพาะได้

กล่าวอีกนัยหนึ่ง แต่ละหมายเลขสามารถเชื่อมโยงกับจำนวนธรรมชาติจำนวนหนึ่งและเป็นจำนวนเฉพาะได้ และเราจะไม่กำหนดหมายเลขนี้ให้กับหมายเลขอื่นจากชุดนี้

ตัวเลขที่มีตัวเลขเรียกว่าสมาชิกตัวที่ 2 ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

จะสะดวกมากหากบางสูตรสามารถระบุเทอมที่ 3 ของลำดับได้ ยกตัวอย่างสูตร

กำหนดลำดับ:

และสูตรก็มีลำดับดังนี้:

ตัวอย่างเช่น ความก้าวหน้าทางคณิตศาสตร์คือลำดับ (เทอมแรกในที่นี้มีค่าเท่ากัน และผลต่างคือ) หรือ (, ส่วนต่าง)

สูตรเทอมที่ n

เราเรียกสูตรที่เกิดซ้ำซึ่งในการหาเทอมที่ 3 คุณจำเป็นต้องรู้คำก่อนหน้าหรือหลายคำก่อนหน้านี้:

หากต้องการค้นหาระยะที่ 3 ของความก้าวหน้าโดยใช้สูตรนี้ เราจะต้องคำนวณเก้าค่าก่อนหน้า เช่น ปล่อยให้มัน. แล้ว:

ตอนนี้ชัดเจนแล้วว่าสูตรคืออะไร?

ในแต่ละบรรทัดที่เราบวกเข้าไป คูณด้วยตัวเลขจำนวนหนึ่ง อันไหน? ง่ายมาก: นี่คือจำนวนสมาชิกปัจจุบันลบ:

ตอนนี้สะดวกขึ้นมากแล้วใช่ไหม? เราตรวจสอบ:

ตัดสินใจด้วยตัวเอง:

ในการก้าวหน้าทางคณิตศาสตร์ ให้ค้นหาสูตรสำหรับเทอมที่ n และค้นหาเทอมที่ร้อย

สารละลาย:

เทอมแรกมีค่าเท่ากัน ความแตกต่างคืออะไร? นี่คือสิ่งที่:

(เหตุนี้จึงเรียกว่าความแตกต่างเพราะเท่ากับผลต่างของระยะต่อเนื่องของการก้าวหน้า)

ดังนั้นสูตร:

จากนั้นเทอมที่ร้อยจะเท่ากับ:

ผลรวมของจำนวนธรรมชาติทั้งหมดตั้งแต่ ถึง คืออะไร?

ตามตำนาน คาร์ล เกาส์ นักคณิตศาสตร์ผู้ยิ่งใหญ่ เมื่อตอนอายุ 9 ขวบ คำนวณจำนวนนี้ในเวลาไม่กี่นาที เขาสังเกตเห็นว่าผลรวมของเลขตัวแรกและตัวสุดท้ายเท่ากัน ผลรวมของเลขที่สองและเลขสุดท้ายเท่ากัน ผลรวมของเลขที่สามและเลข 3 จากท้ายสุดเท่ากัน เป็นต้น มีคู่ดังกล่าวทั้งหมดกี่คู่? ถูกต้อง ครึ่งหนึ่งของจำนวนทั้งหมดนั่นเอง ดังนั้น,

สูตรทั่วไปสำหรับผลรวมของเทอมแรกของความก้าวหน้าทางคณิตศาสตร์จะเป็น:

ตัวอย่าง:
ค้นหาผลรวมของตัวคูณสองหลักทั้งหมด

สารละลาย:

ตัวเลขแรกคือสิ่งนี้ แต่ละหมายเลขที่ตามมาจะได้มาจากการเพิ่มหมายเลขก่อนหน้า ดังนั้นตัวเลขที่เราสนใจจะสร้างความก้าวหน้าทางคณิตศาสตร์ด้วยเทอมแรกและผลต่าง

สูตรของเทอมที่ 3 สำหรับความก้าวหน้านี้:

มีคำศัพท์กี่คำที่อยู่ในความก้าวหน้าหากทุกคำต้องเป็นเลขสองหลัก?

ง่ายมาก: .

ระยะสุดท้ายของความก้าวหน้าจะเท่ากัน จากนั้นผลรวม:

คำตอบ: .

ตอนนี้ตัดสินใจด้วยตัวเอง:

  1. ทุกวันนักกีฬาจะวิ่งมากกว่าวันก่อนหน้า เขาจะวิ่งได้ทั้งหมดกี่กิโลเมตรในหนึ่งสัปดาห์ ถ้าในวันแรกเขาวิ่ง km m?
  2. นักปั่นจักรยานเดินทางหลายกิโลเมตรทุกวันมากกว่าวันก่อนหน้า วันแรกเดินทาง กม. เขาต้องเดินทางกี่วันจึงจะครบหนึ่งกิโลเมตร? วันสุดท้ายของการเดินทางเขาจะเดินทางกี่กิโลเมตร?
  3. ราคาตู้เย็นในร้านค้าลดลงเท่ากันทุกปี พิจารณาว่าราคาตู้เย็นลดลงเท่าใดในแต่ละปีหากขายเป็นรูเบิลหกปีต่อมาขายเป็นรูเบิล

คำตอบ:

  1. สิ่งที่สำคัญที่สุดคือการจดจำความก้าวหน้าทางคณิตศาสตร์และกำหนดพารามิเตอร์ ในกรณีนี้ (สัปดาห์ = วัน) คุณต้องพิจารณาผลรวมของเงื่อนไขแรกของความก้าวหน้านี้:
    .
    คำตอบ:
  2. นี่คือสิ่งที่ได้รับ: , จะต้องพบ
    แน่นอนว่าคุณต้องใช้สูตรผลรวมเดียวกันกับในปัญหาก่อนหน้านี้:
    .
    แทนค่า:

    เห็นได้ชัดว่ารูตไม่พอดี ดังนั้นคำตอบก็คือ
    ลองคำนวณเส้นทางที่เดินทางในวันสุดท้ายโดยใช้สูตรของเทอมที่ 3:
    (กม.)
    คำตอบ:

  3. ที่ให้ไว้: . หา: .
    ไม่มีอะไรง่ายไปกว่านี้แล้ว:
    (ถู).
    คำตอบ:

ความก้าวหน้าทางคณิตศาสตร์ สั้น ๆ เกี่ยวกับสิ่งสำคัญ

นี่คือลำดับตัวเลขซึ่งความแตกต่างระหว่างตัวเลขที่อยู่ติดกันจะเท่ากันและเท่ากัน

ความก้าวหน้าทางคณิตศาสตร์สามารถเพิ่ม () และลด ()

ตัวอย่างเช่น:

สูตรการหาเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์

เขียนตามสูตร โดยที่ คือ จำนวนตัวเลขที่กำลังดำเนินอยู่

คุณสมบัติของสมาชิกของความก้าวหน้าทางคณิตศาสตร์

ช่วยให้คุณสามารถค้นหาคำศัพท์ของความก้าวหน้าได้อย่างง่ายดายหากทราบคำศัพท์ใกล้เคียง - โดยที่จำนวนตัวเลขในความก้าวหน้าคือจำนวนใด

ผลรวมของเงื่อนไขความก้าวหน้าทางคณิตศาสตร์

มีสองวิธีในการค้นหาจำนวนเงิน:

จำนวนค่าอยู่ที่ไหน

จำนวนค่าอยู่ที่ไหน

ประเภทบทเรียน:การเรียนรู้เนื้อหาใหม่

วัตถุประสงค์ของบทเรียน:

  • การขยายและเพิ่มความเข้าใจของนักเรียนให้ลึกซึ้งยิ่งขึ้นเกี่ยวกับปัญหาที่แก้ไขโดยใช้ความก้าวหน้าทางคณิตศาสตร์ การจัดกิจกรรมการค้นหาของนักเรียนเมื่อได้สูตรสำหรับผลรวมของเทอม n แรกของความก้าวหน้าทางคณิตศาสตร์
  • การพัฒนาความสามารถในการรับความรู้ใหม่อย่างอิสระและใช้ความรู้ที่ได้รับแล้วเพื่อบรรลุภารกิจที่กำหนด
  • การพัฒนาความปรารถนาและความจำเป็นในการสรุปข้อเท็จจริงที่ได้รับการพัฒนาความเป็นอิสระ

งาน:

  • สรุปและจัดระบบความรู้ที่มีอยู่ในหัวข้อ “ความก้าวหน้าทางคณิตศาสตร์”
  • หาสูตรสำหรับคำนวณผลรวมของเทอม n แรกของความก้าวหน้าทางคณิตศาสตร์
  • สอนวิธีใช้สูตรที่ได้รับเมื่อแก้ไขปัญหาต่างๆ
  • ดึงความสนใจของนักเรียนไปที่ขั้นตอนการค้นหาค่าของนิพจน์ตัวเลข

อุปกรณ์:

  • การ์ดที่มีภารกิจสำหรับการทำงานเป็นกลุ่มและคู่
  • ใบคะแนน;
  • การนำเสนอ“ความก้าวหน้าทางคณิตศาสตร์”

I. การอัพเดตความรู้พื้นฐาน

1. ทำงานอิสระเป็นคู่

ตัวเลือกที่ 1:

กำหนดความก้าวหน้าทางคณิตศาสตร์ เขียนมันลงไป สูตรการเกิดซ้ำซึ่งใช้เพื่อกำหนดความก้าวหน้าทางคณิตศาสตร์ โปรดยกตัวอย่างความก้าวหน้าทางคณิตศาสตร์และระบุความแตกต่าง

ตัวเลือกที่ 2:

เขียนสูตรสำหรับเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์ ค้นหาระยะที่ 100 ของความก้าวหน้าทางคณิตศาสตร์ ( หนึ่ง}: 2, 5, 8 …
ขณะนี้มีนักเรียนสองคน ด้านหลังบอร์ดกำลังเตรียมคำตอบสำหรับคำถามเดียวกันนี้
นักเรียนประเมินงานของคู่โดยการตรวจสอบบนกระดาน (มีการส่งเอกสารพร้อมคำตอบมาให้)

2. ช่วงเวลาของเกม

ภารกิจที่ 1

ครู.ฉันคิดถึงความก้าวหน้าทางคณิตศาสตร์บางอย่าง ถามคำถามฉันเพียงสองข้อเพื่อว่าหลังจากคำตอบแล้วคุณสามารถตั้งชื่อเทอมที่ 7 ของความก้าวหน้านี้ได้อย่างรวดเร็ว (1, 3, 5, 7, 9, 11, 13, 15…)

คำถามจากนักเรียน

  1. ระยะที่ 6 ของความก้าวหน้าคืออะไร และความแตกต่างคืออะไร?
  2. ระยะที่ 8 ของความก้าวหน้าคืออะไร และความแตกต่างคืออะไร?

หากไม่มีคำถามอีกต่อไปครูสามารถกระตุ้นพวกเขาได้ - "ห้าม" ใน d (ความแตกต่าง) นั่นคือไม่ได้รับอนุญาตให้ถามว่าความแตกต่างเท่ากับอะไร คุณสามารถถามคำถาม: ระยะที่ 6 ของความก้าวหน้าเท่ากับเท่าใด และระยะที่ 8 ของความก้าวหน้าเท่ากับเท่าใด?

ภารกิจที่ 2

บนกระดานมีตัวเลข 20 ตัวเขียน: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

ครูยืนหันหลังให้กระดาน นักเรียนโทรออกหมายเลขนั้น และครูจะโทรออกหมายเลขนั้นทันที อธิบายว่าฉันสามารถทำเช่นนี้ได้อย่างไร?

ครูจำสูตรสำหรับเทอมที่ n ได้ n = 3n – 2และแทนที่ค่าที่ระบุ n จะค้นหาค่าที่เกี่ยวข้อง หนึ่ง.

ครั้งที่สอง การตั้งค่างานการเรียนรู้

ฉันเสนอให้แก้ไขปัญหาโบราณที่มีอายุย้อนกลับไปถึงสหัสวรรษที่ 2 ก่อนคริสต์ศักราช ซึ่งพบในปาปิรุสของอียิปต์

งาน:“ ขอให้คุณแบ่งข้าวบาร์เลย์ 10 ถังให้กับคน 10 คนความแตกต่างระหว่างแต่ละคนกับเพื่อนบ้านคือ 1/8 ของการวัด”

  • ปัญหานี้เกี่ยวข้องกับความก้าวหน้าทางคณิตศาสตร์ของหัวข้ออย่างไร (คนถัดไปแต่ละคนจะได้รับ 1/8 ของการวัดมากขึ้น ซึ่งหมายถึงผลต่างคือ d=1/8, 10 คน ซึ่งหมายถึง n=10)
  • คุณคิดว่ามาตรการหมายเลข 10 หมายถึงอะไร? (ผลรวมของเงื่อนไขทั้งหมดของความก้าวหน้า)
  • คุณต้องรู้อะไรอีกบ้างเพื่อให้สามารถแบ่งข้าวบาร์เลย์ตามเงื่อนไขของปัญหาได้ง่ายและสะดวก? (ระยะแรกของความก้าวหน้า)

วัตถุประสงค์ของบทเรียน– ได้รับการพึ่งพาผลรวมของเงื่อนไขของความก้าวหน้ากับจำนวน เทอมแรก และความแตกต่าง และตรวจสอบว่าปัญหาได้รับการแก้ไขอย่างถูกต้องในสมัยโบราณหรือไม่

ก่อนที่เราจะสรุปสูตร เรามาดูกันว่าชาวอียิปต์โบราณแก้ปัญหาอย่างไร

และพวกเขาก็แก้ไขได้ดังนี้:

1) 10 มาตรการ: 10 = 1 มาตรการ – ส่วนแบ่งเฉลี่ย;
2) 1 การวัด ∙ = 2 การวัด – เพิ่มเป็นสองเท่า เฉลี่ยแบ่งปัน.
เพิ่มเป็นสองเท่า เฉลี่ยหุ้นคือผลรวมของหุ้นของบุคคลที่ 5 และ 6
3) 2 มาตรการ - 1/8 มาตรการ = 1 7/8 มาตรการ - เพิ่มส่วนแบ่งเป็นสองเท่าของบุคคลที่ห้า
4) 1 7/8: 2 = 5/16 – เศษส่วนของหนึ่งในห้า; และอื่นๆ คุณสามารถค้นหาส่วนแบ่งของบุคคลก่อนหน้าและบุคคลถัดไปได้

เราได้รับลำดับ:

ที่สาม การแก้ปัญหา

1.ทำงานเป็นกลุ่ม

กลุ่มที่ 1:ค้นหาผลรวมของจำนวนธรรมชาติ 20 จำนวนติดต่อกัน: ส 20 =(20+1)∙10 =210

โดยทั่วไปแล้ว

กลุ่มที่สอง:ค้นหาผลรวมของจำนวนธรรมชาติตั้งแต่ 1 ถึง 100 (ตำนานเกาส์น้อย)

ส 100 = (1+100)∙50 = 5050

บทสรุป:

กลุ่มที่สาม:ค้นหาผลรวมของจำนวนธรรมชาติตั้งแต่ 1 ถึง 21

วิธีแก้: 1+21=2+20=3+19=4+18…

บทสรุป:

กลุ่มที่สี่:ค้นหาผลรวมของจำนวนธรรมชาติตั้งแต่ 1 ถึง 101

บทสรุป:

วิธีการแก้ปัญหาที่พิจารณานี้เรียกว่า "วิธีเกาส์"

2. แต่ละกลุ่มนำเสนอวิธีแก้ปัญหาบนกระดาน

3. ลักษณะทั่วไปของวิธีแก้ปัญหาที่เสนอสำหรับความก้าวหน้าทางคณิตศาสตร์โดยพลการ:

1, 2, 3,…, n-2, n-1, n
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n

ลองหาผลรวมนี้โดยใช้เหตุผลที่คล้ายกัน:

4. เราได้แก้ไขปัญหาแล้วหรือยัง?(ใช่.)

IV. ความเข้าใจเบื้องต้นและการประยุกต์ใช้สูตรที่ได้รับเมื่อแก้ไขปัญหา

1. ตรวจสอบวิธีแก้ปัญหาของปัญหาโบราณโดยใช้สูตร

2. การประยุกต์สูตรในการแก้ปัญหาต่างๆ

3. แบบฝึกหัดเพื่อพัฒนาความสามารถในการประยุกต์สูตรเมื่อแก้ไขปัญหา

ก) หมายเลข 613

ที่ให้ไว้: ( หนึ่ง) -ความก้าวหน้าทางคณิตศาสตร์

(น): 1, 2, 3, …, 1500

หา: เอส 1500

สารละลาย: , 1 = 1 และ 1500 = 1500

B) ให้ไว้: ( หนึ่ง) -ความก้าวหน้าทางคณิตศาสตร์
(น): 1, 2, 3, …
ส น = 210

หา: n
สารละลาย:

V. งานอิสระพร้อมการตรวจสอบร่วมกัน

เดนิสเริ่มทำงานเป็นคนส่งของ ในเดือนแรกเงินเดือนของเขาอยู่ที่ 200 รูเบิล ในแต่ละเดือนต่อมาจะเพิ่มขึ้น 30 รูเบิล เขามีรายได้ทั้งหมดเท่าไหร่ในหนึ่งปี?

ที่ให้ไว้: ( หนึ่ง) -ความก้าวหน้าทางคณิตศาสตร์
ก 1 = 200, ง=30, n=12
หา: ส 12
สารละลาย:

คำตอบ: เดนิสได้รับ 4,380 รูเบิลต่อปี

วี. การสอนการบ้าน

  1. ส่วนที่ 4.3 – เรียนรู้ที่มาของสูตร
  2. №№ 585, 623 .
  3. สร้างปัญหาที่สามารถแก้ไขได้โดยใช้สูตรสำหรับผลรวมของ n เทอมแรกของความก้าวหน้าทางคณิตศาสตร์

ปกเกล้าเจ้าอยู่หัว สรุปบทเรียน.

1. ใบคะแนน

2. ดำเนินประโยคต่อ

  • วันนี้ในชั้นเรียนฉันได้เรียนรู้...
  • สูตรที่เรียนมา...
  • ฉันเชื่อว่า...

3. คุณสามารถหาผลรวมของตัวเลขตั้งแต่ 1 ถึง 500 ได้หรือไม่? คุณจะใช้วิธีการใดในการแก้ปัญหานี้?

อ้างอิง.

1. พีชคณิต ชั้นประถมศึกษาปีที่ 9 บทช่วยสอนสำหรับ สถาบันการศึกษา- เอ็ด จี.วี. โดโรฟีวา.อ.: “การตรัสรู้”, 2552.

ระดับรายการ

ความก้าวหน้าทางคณิตศาสตร์ ทฤษฎีโดยละเอียดพร้อมตัวอย่าง (2019)

ลำดับหมายเลข

เรามานั่งลงและเริ่มเขียนตัวเลขกันดีกว่า ตัวอย่างเช่น:
คุณสามารถเขียนตัวเลขใดก็ได้ และอาจมีได้มากเท่าที่คุณต้องการ (ในกรณีของเราก็มีอยู่แล้ว) ไม่ว่าเราจะเขียนตัวเลขไปกี่จำนวน เราก็บอกได้เสมอว่าอันไหนเป็นอันดับแรก อันไหนเป็นที่สอง และต่อๆ ไปจนถึงตัวสุดท้าย นั่นคือ เราสามารถนับเลขได้ นี่คือตัวอย่างลำดับตัวเลข:

ลำดับหมายเลข
ตัวอย่างเช่น สำหรับลำดับของเรา:

หมายเลขที่กำหนดจะเฉพาะกับหมายเลขเดียวในลำดับเท่านั้น กล่าวอีกนัยหนึ่ง ไม่มีตัวเลขสามวินาทีในลำดับ ตัวเลขที่สอง (เช่นตัวเลขที่ th) จะเหมือนกันเสมอ
จำนวนที่มีจำนวนเรียกว่าเทอมที่ 3 ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

ในกรณีของเรา:

สมมติว่าเรามีลำดับตัวเลขซึ่งความแตกต่างระหว่างตัวเลขที่อยู่ติดกันเท่ากันและเท่ากัน
ตัวอย่างเช่น:

ฯลฯ
ลำดับตัวเลขนี้เรียกว่าความก้าวหน้าทางคณิตศาสตร์
คำว่า "ความก้าวหน้า" ถูกนำมาใช้โดยนักเขียนชาวโรมันชื่อ Boethius ย้อนกลับไปในศตวรรษที่ 6 และเป็นที่เข้าใจในความหมายที่กว้างกว่าว่าเป็นลำดับตัวเลขที่ไม่มีที่สิ้นสุด ชื่อ "เลขคณิต" โอนมาจากทฤษฎีสัดส่วนต่อเนื่องที่ชาวกรีกโบราณศึกษา

นี่คือลำดับตัวเลข ซึ่งสมาชิกแต่ละตัวจะเท่ากับลำดับก่อนหน้าที่บวกเข้ากับหมายเลขเดียวกัน จำนวนนี้เรียกว่าผลต่างของความก้าวหน้าทางคณิตศาสตร์และถูกกำหนดไว้

พยายามพิจารณาว่าลำดับตัวเลขใดเป็นความก้าวหน้าทางคณิตศาสตร์ และลำดับใดไม่ใช่:

ก)
ข)
ค)
ง)

เข้าใจแล้ว? ลองเปรียบเทียบคำตอบของเรา:
เป็นความก้าวหน้าทางคณิตศาสตร์ - b, c
ไม่ใช่ความก้าวหน้าทางคณิตศาสตร์ - a, d

กลับไปที่ความก้าวหน้าที่กำหนด () แล้วลองค้นหาค่าของเทอมที่ 3 ของมัน มีอยู่ สองวิธีที่จะค้นหามัน

1. วิธีการ

เราสามารถบวกเลขความก้าวหน้าเข้ากับค่าก่อนหน้าได้จนกว่าเราจะถึงระยะที่ 3 ของความก้าวหน้า เป็นการดีที่เราไม่มีอะไรจะสรุปมากนัก - มีเพียงสามค่าเท่านั้น:

ดังนั้นเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์ที่อธิบายไว้จึงเท่ากับ

2. วิธีการ

จะเป็นอย่างไรถ้าเราจำเป็นต้องค้นหามูลค่าของระยะที่ 3 ของความก้าวหน้า? การบวกจะใช้เวลามากกว่าหนึ่งชั่วโมง และไม่ใช่ความจริงที่ว่าเราจะไม่ทำผิดพลาดเมื่อบวกตัวเลข
แน่นอนว่านักคณิตศาสตร์มีวิธีที่ไม่จำเป็นต้องเพิ่มผลต่างของความก้าวหน้าทางคณิตศาสตร์ให้กับค่าก่อนหน้า ลองดูภาพที่วาดให้ละเอียดยิ่งขึ้น... แน่นอนคุณได้สังเกตเห็นรูปแบบบางอย่างแล้ว ได้แก่:

ตัวอย่างเช่น ลองดูว่าค่าของเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์นี้ประกอบด้วยเท่าใด:


กล่าวอีกนัยหนึ่ง:

พยายามหาค่าของสมาชิกของความก้าวหน้าทางคณิตศาสตร์ที่กำหนดด้วยตัวเองด้วยวิธีนี้

คุณคำนวณหรือไม่? เปรียบเทียบบันทึกย่อของคุณกับคำตอบ:

โปรดทราบว่าคุณได้ตัวเลขเดียวกันกับวิธีก่อนหน้าทุกประการ เมื่อเราเพิ่มเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์เป็นค่าก่อนหน้าตามลำดับ
เรามาลอง "ลดความเป็นตัวตน" ของสูตรนี้ - มาวางไว้ในรูปแบบทั่วไปแล้วจะได้:

สมการความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์สามารถเพิ่มหรือลดลงได้

เพิ่มขึ้น- ความก้าวหน้าซึ่งแต่ละมูลค่าที่ตามมาของข้อกำหนดจะมากกว่าค่าก่อนหน้า
ตัวอย่างเช่น:

จากมากไปน้อย- ความก้าวหน้าซึ่งแต่ละค่าของข้อกำหนดที่ตามมาจะน้อยกว่าค่าก่อนหน้า
ตัวอย่างเช่น:

สูตรที่ได้รับใช้ในการคำนวณเงื่อนไขทั้งในเงื่อนไขที่เพิ่มขึ้นและลดลงของความก้าวหน้าทางคณิตศาสตร์
มาตรวจสอบสิ่งนี้ในทางปฏิบัติ
เราได้รับความก้าวหน้าทางคณิตศาสตร์ซึ่งประกอบด้วยตัวเลขต่อไปนี้: มาตรวจสอบกันว่าตัวเลขลำดับที่ 3 ของความก้าวหน้าทางคณิตศาสตร์นี้จะเป็นอย่างไรหากเราใช้สูตรของเราในการคำนวณ:


ตั้งแต่นั้นมา:

ดังนั้นเราจึงมั่นใจว่าสูตรดำเนินการทั้งในการลดลงและเพิ่มความก้าวหน้าทางคณิตศาสตร์
พยายามค้นหาเงื่อนไขที่ th และ th ของความก้าวหน้าทางคณิตศาสตร์นี้ด้วยตัวเอง

ลองเปรียบเทียบผลลัพธ์:

คุณสมบัติความก้าวหน้าทางคณิตศาสตร์

มาทำให้ปัญหาซับซ้อนขึ้น - เราจะได้คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์
สมมติว่าเราได้รับเงื่อนไขต่อไปนี้:
- ความก้าวหน้าทางคณิตศาสตร์ ค้นหาค่า
ง่าย ๆ ที่คุณพูดและเริ่มนับตามสูตรที่คุณรู้อยู่แล้ว:

ให้เอ่อแล้ว:

จริงอย่างแน่นอน ปรากฎว่าเราพบก่อนแล้วจึงบวกเข้ากับตัวเลขแรกแล้วได้สิ่งที่เรากำลังมองหา ถ้าความก้าวหน้าแสดงด้วยค่าเล็กๆ ก็ไม่มีอะไรซับซ้อน แต่จะเกิดอะไรขึ้นถ้าเราได้รับตัวเลขในเงื่อนไขล่ะ? ยอมรับว่ามีความเป็นไปได้ที่จะเกิดข้อผิดพลาดในการคำนวณ
ทีนี้ลองคิดดูว่าจะสามารถแก้ไขปัญหานี้ในขั้นตอนเดียวโดยใช้สูตรใดๆ ได้หรือไม่? ใช่แน่นอน และนั่นคือสิ่งที่เราจะพยายามนำเสนอออกมาในตอนนี้

ให้เราแสดงคำที่ต้องการของความก้าวหน้าทางคณิตศาสตร์เนื่องจากสูตรในการค้นหาที่เรารู้จัก - นี่เป็นสูตรเดียวกับที่เราได้รับตั้งแต่ต้น:
, แล้ว:

  • ระยะก่อนหน้าของความก้าวหน้าคือ:
  • ระยะต่อไปของความก้าวหน้าคือ:

เรามาสรุปข้อกำหนดก่อนหน้าและถัดไปของความก้าวหน้า:

ปรากฎว่าผลรวมของเงื่อนไขก่อนหน้าและเงื่อนไขถัดไปของความก้าวหน้าคือค่าสองเท่าของเงื่อนไขความก้าวหน้าที่อยู่ระหว่างพวกเขา กล่าวอีกนัยหนึ่ง หากต้องการค้นหาค่าของเทอมความก้าวหน้าด้วยค่าก่อนหน้าและค่าต่อเนื่องที่ทราบ คุณจะต้องบวกค่าเหล่านั้นแล้วหารด้วย

ใช่แล้ว เราได้เลขเดียวกัน มารักษาความปลอดภัยของวัสดุกันเถอะ คำนวณมูลค่าสำหรับความก้าวหน้าด้วยตัวเอง ไม่ยากเลย

ทำได้ดี! คุณรู้เกือบทุกอย่างเกี่ยวกับความก้าวหน้า! ยังคงต้องหาสูตรเพียงสูตรเดียวเท่านั้น ซึ่งตามตำนานสามารถอนุมานได้ง่าย ๆ ด้วยตัวเองโดยหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดตลอดกาล "ราชาแห่งนักคณิตศาสตร์" - Carl Gauss...

เมื่อ Carl Gauss อายุ 9 ขวบ ครูคนหนึ่งซึ่งยุ่งอยู่กับการตรวจสอบงานของนักเรียนในชั้นเรียนอื่น ได้ถามคำถามในชั้นเรียนดังนี้: “คำนวณผลรวมของจำนวนธรรมชาติทั้งหมดตั้งแต่ ถึง (ตามแหล่งข้อมูลอื่นถึง) รวม” ลองนึกภาพความประหลาดใจของครูเมื่อนักเรียนคนหนึ่งของเขา (นี่คือคาร์ล เกาส์) นาทีต่อมาให้คำตอบที่ถูกต้องกับงาน ในขณะที่เพื่อนร่วมชั้นของผู้บ้าระห่ำส่วนใหญ่ได้รับผลลัพธ์ที่ผิดหลังจากคำนวณมาเป็นเวลานาน...

คาร์ล เกาส์ วัยหนุ่มสังเกตเห็นรูปแบบบางอย่างที่คุณสามารถสังเกตได้ง่ายเช่นกัน
สมมติว่าเรามีความก้าวหน้าทางคณิตศาสตร์ที่ประกอบด้วยเทอมที่ -: เราจำเป็นต้องค้นหาผลรวมของเงื่อนไขเหล่านี้ของการก้าวหน้าทางคณิตศาสตร์ แน่นอนว่า เราสามารถรวมค่าทั้งหมดด้วยตนเอง แต่จะเกิดอะไรขึ้นถ้างานนั้นต้องการหาผลรวมของเงื่อนไขตามที่เกาส์กำลังมองหา?

ให้เราบรรยายถึงความก้าวหน้าที่มอบให้เรา ดูตัวเลขที่ไฮไลต์อย่างใกล้ชิดแล้วลองดำเนินการทางคณิตศาสตร์ต่างๆ กับตัวเลขเหล่านั้น


คุณลองแล้วหรือยัง? คุณสังเกตเห็นอะไร? ขวา! ผลรวมของพวกเขาเท่ากัน


ทีนี้บอกหน่อยเถอะว่าความก้าวหน้าที่มอบให้เรามีทั้งหมดกี่คู่? แน่นอนว่าครึ่งหนึ่งของตัวเลขทั้งหมดนั่นเอง
จากข้อเท็จจริงที่ว่าผลรวมของสองเทอมของการก้าวหน้าทางคณิตศาสตร์เท่ากัน และคู่ที่คล้ายกันเท่ากัน เราจึงได้ผลลัพธ์ว่าผลรวมทั้งหมดเท่ากับ:
.
ดังนั้น สูตรสำหรับผลรวมของเทอมแรกของความก้าวหน้าทางคณิตศาสตร์จะเป็นดังนี้:

ในปัญหาบางอย่างเราไม่รู้คำศัพท์ที่ 3 แต่เรารู้ถึงความแตกต่างของความก้าวหน้า ลองแทนสูตรของเทอมที่ 3 ลงในสูตรผลรวม
คุณได้อะไร?

ทำได้ดี! ตอนนี้เรากลับมาที่ปัญหาที่ Carl Gauss ถาม: คำนวณด้วยตัวคุณเองว่าผลรวมของตัวเลขที่เริ่มต้นจาก th เท่ากับเท่าใด และผลรวมของตัวเลขที่เริ่มต้นจาก th

คุณได้รับเท่าไหร่?
เกาส์พบว่าผลรวมของพจน์เท่ากัน และผลรวมของพจน์นั้น นั่นคือสิ่งที่คุณตัดสินใจ?

ในความเป็นจริง สูตรสำหรับผลรวมของเทอมของความก้าวหน้าทางคณิตศาสตร์ได้รับการพิสูจน์โดยนักวิทยาศาสตร์ชาวกรีกโบราณ ไดโอแฟนตัส ย้อนกลับไปในศตวรรษที่ 3 และตลอดเวลานี้ คนที่มีไหวพริบได้ใช้คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์อย่างเต็มที่
ตัวอย่างเช่น ลองนึกภาพอียิปต์โบราณและโครงการก่อสร้างที่ใหญ่ที่สุดในยุคนั้น - การก่อสร้างปิรามิด... รูปภาพแสดงด้านใดด้านหนึ่ง

คุณพูดว่าความก้าวหน้าอยู่ที่ไหน? มองให้ดีและหารูปแบบจำนวนบล็อกทรายในแต่ละแถวของกำแพงพีระมิด


ทำไมไม่ก้าวหน้าทางคณิตศาสตร์? คำนวณจำนวนบล็อกที่จำเป็นในการสร้างกำแพงด้านหนึ่งหากวางอิฐบล็อกไว้ที่ฐาน ฉันหวังว่าคุณจะไม่นับในขณะที่เลื่อนนิ้วไปบนหน้าจอ คุณจำสูตรสุดท้ายและทุกสิ่งที่เราพูดเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์ได้ไหม

ในกรณีนี้ ความคืบหน้าจะเป็นดังนี้:
ความแตกต่างความก้าวหน้าทางคณิตศาสตร์
จำนวนเงื่อนไขของการก้าวหน้าทางคณิตศาสตร์
เรามาแทนที่ข้อมูลของเราเป็นสูตรสุดท้าย (คำนวณจำนวนบล็อกได้ 2 วิธี)

วิธีที่ 1

วิธีที่ 2

และตอนนี้คุณสามารถคำนวณบนมอนิเตอร์ได้: เปรียบเทียบค่าที่ได้รับกับจำนวนบล็อกที่อยู่ในปิรามิดของเรา เข้าใจแล้ว? ทำได้ดีมาก คุณเชี่ยวชาญผลรวมของเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์แล้ว
แน่นอนว่าคุณไม่สามารถสร้างปิรามิดจากบล็อกที่ฐานได้ แต่จากอะไรล่ะ? ลองคำนวณว่าต้องใช้อิฐทรายจำนวนเท่าใดในการสร้างกำแพงด้วยเงื่อนไขนี้
คุณจัดการหรือไม่?
คำตอบที่ถูกต้องคือบล็อก:

การฝึกอบรม

งาน:

  1. Masha กำลังมีรูปร่างดีสำหรับฤดูร้อน เธอเพิ่มจำนวนท่าสควอชทุกวัน Masha จะทำ squats กี่ครั้งในหนึ่งสัปดาห์ถ้าเธอทำ squats ในการฝึกซ้อมครั้งแรก?
  2. ผลรวมของเลขคี่ทั้งหมดที่มีอยู่เป็นเท่าใด
  3. เมื่อจัดเก็บบันทึก ตัวบันทึกจะซ้อนกันในลักษณะที่แต่ละชั้นบนสุดมีบันทึกหนึ่งรายการน้อยกว่าบันทึกก่อนหน้า อิฐหนึ่งก้อนมีท่อนไม้อยู่กี่ท่อน ถ้ารากฐานของท่อนไม้เป็นท่อนไม้?

คำตอบ:

  1. ให้เรากำหนดพารามิเตอร์ของความก้าวหน้าทางคณิตศาสตร์ ในกรณีนี้
    (สัปดาห์ = วัน)

    คำตอบ:ในสองสัปดาห์ Masha ควรทำ squats วันละครั้ง

  2. เลขคี่ตัวแรก เลขสุดท้าย
    ความแตกต่างความก้าวหน้าทางคณิตศาสตร์
    อย่างไรก็ตาม จำนวนเลขคี่คือครึ่งหนึ่ง เราจะมาตรวจสอบข้อเท็จจริงนี้โดยใช้สูตรในการหาเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์:

    ตัวเลขประกอบด้วยเลขคี่
    ลองแทนที่ข้อมูลที่มีอยู่ลงในสูตร:

    คำตอบ:ผลรวมของเลขคี่ทั้งหมดที่อยู่ในนั้นมีค่าเท่ากัน

  3. เรามาจำปัญหาเกี่ยวกับปิรามิดกันดีกว่า สำหรับกรณีของเรา a เนื่องจากแต่ละเลเยอร์บนสุดจะลดลงหนึ่งบันทึก ดังนั้นโดยรวมแล้วจะมีหลายเลเยอร์ นั่นก็คือ
    ลองแทนที่ข้อมูลลงในสูตร:

    คำตอบ:มีท่อนซุงอยู่ในการก่ออิฐ

มาสรุปกัน

  1. - ลำดับตัวเลขที่ความแตกต่างระหว่างตัวเลขที่อยู่ติดกันเท่ากันและเท่ากัน มันอาจจะเพิ่มขึ้นหรือลดลงก็ได้
  2. การหาสูตรเทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์เขียนโดยสูตร - โดยที่ คือจำนวนตัวเลขในความก้าวหน้า
  3. คุณสมบัติของสมาชิกของความก้าวหน้าทางคณิตศาสตร์- - โดยที่คือจำนวนตัวเลขที่กำลังดำเนินอยู่
  4. ผลรวมของเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์สามารถพบได้สองวิธี:

    โดยที่คือจำนวนค่า

ความก้าวหน้าทางคณิตศาสตร์ ระดับกลาง

ลำดับหมายเลข

ลองนั่งลงและเริ่มเขียนตัวเลขกัน ตัวอย่างเช่น:

คุณสามารถเขียนตัวเลขใดๆ ก็ได้ และจะมีได้มากเท่าที่คุณต้องการ แต่เราสามารถพูดได้เสมอว่าอันไหนเป็นอันดับแรก อันไหนเป็นที่สอง และอื่น ๆ นั่นคือเราสามารถนับพวกมันได้ นี่คือตัวอย่างลำดับตัวเลข

ลำดับหมายเลขคือชุดตัวเลขซึ่งแต่ละชุดสามารถกำหนดหมายเลขเฉพาะได้

กล่าวอีกนัยหนึ่ง แต่ละหมายเลขสามารถเชื่อมโยงกับจำนวนธรรมชาติจำนวนหนึ่งและเป็นจำนวนเฉพาะได้ และเราจะไม่กำหนดหมายเลขนี้ให้กับหมายเลขอื่นจากชุดนี้

ตัวเลขที่มีตัวเลขเรียกว่าสมาชิกตัวที่ 2 ของลำดับ

โดยปกติเราเรียกลำดับทั้งหมดด้วยตัวอักษรบางตัว (เช่น) และสมาชิกแต่ละคนของลำดับนี้จะเป็นตัวอักษรเดียวกัน โดยมีดัชนีเท่ากับจำนวนสมาชิกนี้:

จะสะดวกมากหากบางสูตรสามารถระบุเทอมที่ 3 ของลำดับได้ ยกตัวอย่างสูตร

กำหนดลำดับ:

และสูตรก็มีลำดับดังนี้:

ตัวอย่างเช่น ความก้าวหน้าทางคณิตศาสตร์คือลำดับ (เทอมแรกในที่นี้มีค่าเท่ากัน และผลต่างคือ) หรือ (, ส่วนต่าง)

สูตรเทอมที่ n

เราเรียกสูตรที่เกิดซ้ำซึ่งในการหาเทอมที่ 3 คุณจำเป็นต้องรู้คำก่อนหน้าหรือหลายคำก่อนหน้านี้:

หากต้องการค้นหาระยะที่ 3 ของความก้าวหน้าโดยใช้สูตรนี้ เราจะต้องคำนวณเก้าค่าก่อนหน้า เช่น ปล่อยให้มัน. แล้ว:

ตอนนี้ชัดเจนแล้วว่าสูตรคืออะไร?

ในแต่ละบรรทัดที่เราบวกเข้าไป คูณด้วยตัวเลขจำนวนหนึ่ง อันไหน? ง่ายมาก: นี่คือจำนวนสมาชิกปัจจุบันลบ:

ตอนนี้สะดวกขึ้นมากแล้วใช่ไหม? เราตรวจสอบ:

ตัดสินใจด้วยตัวเอง:

ในการก้าวหน้าทางคณิตศาสตร์ ให้ค้นหาสูตรสำหรับเทอมที่ n และค้นหาเทอมที่ร้อย

สารละลาย:

เทอมแรกมีค่าเท่ากัน ความแตกต่างคืออะไร? นี่คือสิ่งที่:

(เหตุนี้จึงเรียกว่าความแตกต่างเพราะเท่ากับผลต่างของระยะต่อเนื่องของการก้าวหน้า)

ดังนั้นสูตร:

จากนั้นเทอมที่ร้อยจะเท่ากับ:

ผลรวมของจำนวนธรรมชาติทั้งหมดตั้งแต่ ถึง คืออะไร?

ตามตำนาน คาร์ล เกาส์ นักคณิตศาสตร์ผู้ยิ่งใหญ่ เมื่อตอนอายุ 9 ขวบ คำนวณจำนวนนี้ในเวลาไม่กี่นาที เขาสังเกตเห็นว่าผลรวมของเลขตัวแรกและตัวสุดท้ายเท่ากัน ผลรวมของเลขที่สองและเลขสุดท้ายเท่ากัน ผลรวมของเลขที่สามและเลข 3 จากท้ายสุดเท่ากัน เป็นต้น มีคู่ดังกล่าวทั้งหมดกี่คู่? ถูกต้อง ครึ่งหนึ่งของจำนวนทั้งหมดนั่นเอง ดังนั้น,

สูตรทั่วไปสำหรับผลรวมของเทอมแรกของความก้าวหน้าทางคณิตศาสตร์จะเป็น:

ตัวอย่าง:
ค้นหาผลรวมของตัวคูณสองหลักทั้งหมด

สารละลาย:

ตัวเลขแรกคือสิ่งนี้ แต่ละหมายเลขที่ตามมาจะได้มาจากการเพิ่มหมายเลขก่อนหน้า ดังนั้นตัวเลขที่เราสนใจจะสร้างความก้าวหน้าทางคณิตศาสตร์ด้วยเทอมแรกและผลต่าง

สูตรของเทอมที่ 3 สำหรับความก้าวหน้านี้:

มีคำศัพท์กี่คำที่อยู่ในความก้าวหน้าหากทุกคำต้องเป็นเลขสองหลัก?

ง่ายมาก: .

ระยะสุดท้ายของความก้าวหน้าจะเท่ากัน จากนั้นผลรวม:

คำตอบ: .

ตอนนี้ตัดสินใจด้วยตัวเอง:

  1. ทุกวันนักกีฬาจะวิ่งมากกว่าวันก่อนหน้า เขาจะวิ่งได้ทั้งหมดกี่กิโลเมตรในหนึ่งสัปดาห์ ถ้าในวันแรกเขาวิ่ง km m?
  2. นักปั่นจักรยานเดินทางหลายกิโลเมตรทุกวันมากกว่าวันก่อนหน้า วันแรกเดินทาง กม. เขาต้องเดินทางกี่วันจึงจะครบหนึ่งกิโลเมตร? วันสุดท้ายของการเดินทางเขาจะเดินทางกี่กิโลเมตร?
  3. ราคาตู้เย็นในร้านค้าลดลงเท่ากันทุกปี พิจารณาว่าราคาตู้เย็นลดลงเท่าใดในแต่ละปีหากขายเป็นรูเบิลหกปีต่อมาขายเป็นรูเบิล

คำตอบ:

  1. สิ่งที่สำคัญที่สุดคือการจดจำความก้าวหน้าทางคณิตศาสตร์และกำหนดพารามิเตอร์ ในกรณีนี้ (สัปดาห์ = วัน) คุณต้องพิจารณาผลรวมของเงื่อนไขแรกของความก้าวหน้านี้:
    .
    คำตอบ:
  2. นี่คือสิ่งที่ได้รับ: , จะต้องพบ
    แน่นอนว่าคุณต้องใช้สูตรผลรวมเดียวกันกับในปัญหาก่อนหน้านี้:
    .
    แทนค่า:

    เห็นได้ชัดว่ารูตไม่พอดี ดังนั้นคำตอบก็คือ
    ลองคำนวณเส้นทางที่เดินทางในวันสุดท้ายโดยใช้สูตรของเทอมที่ 3:
    (กม.)
    คำตอบ:

  3. ที่ให้ไว้: . หา: .
    ไม่มีอะไรง่ายไปกว่านี้แล้ว:
    (ถู).
    คำตอบ:

ความก้าวหน้าทางคณิตศาสตร์ สั้น ๆ เกี่ยวกับสิ่งสำคัญ

นี่คือลำดับตัวเลขซึ่งความแตกต่างระหว่างตัวเลขที่อยู่ติดกันจะเท่ากันและเท่ากัน

ความก้าวหน้าทางคณิตศาสตร์สามารถเพิ่ม () และลด ()

ตัวอย่างเช่น:

สูตรการหาเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์

เขียนตามสูตร โดยที่ คือ จำนวนตัวเลขที่กำลังดำเนินอยู่

คุณสมบัติของสมาชิกของความก้าวหน้าทางคณิตศาสตร์

ช่วยให้คุณสามารถค้นหาคำศัพท์ของความก้าวหน้าได้อย่างง่ายดายหากทราบคำศัพท์ใกล้เคียง - โดยที่จำนวนตัวเลขในความก้าวหน้าคือจำนวนใด

ผลรวมของเงื่อนไขความก้าวหน้าทางคณิตศาสตร์

มีสองวิธีในการค้นหาจำนวนเงิน:

จำนวนค่าอยู่ที่ไหน

จำนวนค่าอยู่ที่ไหน