ชีวประวัติ ลักษณะเฉพาะ การวิเคราะห์

อนุพันธ์ของดีกรีที่เป็นลบ ที่มาของสูตรสำหรับอนุพันธ์ของฟังก์ชันกำลัง

ในวิดีโอนี้ ฉันจะเริ่มบทเรียนยาวๆ เกี่ยวกับอนุพันธ์ บทเรียนนี้ประกอบด้วยหลายส่วน

ก่อนอื่น ฉันจะบอกคุณว่าอนุพันธ์คืออะไรและจะคำนวณอย่างไร แต่ไม่ใช่ในภาษาวิชาการที่ซับซ้อน แต่จะบอกวิธีที่ฉันเข้าใจด้วยตัวเอง และฉันจะอธิบายให้นักเรียนฟังอย่างไร ประการที่สอง เราจะพิจารณากฎที่ง่ายที่สุดในการแก้ปัญหา โดยเราจะมองหาอนุพันธ์ของผลรวม อนุพันธ์ของผลต่าง และอนุพันธ์ ฟังก์ชั่นพลังงาน.

เราจะดูตัวอย่างรวมที่ซับซ้อนมากขึ้น โดยเฉพาะอย่างยิ่งคุณจะได้เรียนรู้ว่าปัญหาที่คล้ายกันเกี่ยวกับรากและเศษส่วนสามารถแก้ไขได้โดยใช้สูตรหาอนุพันธ์ของฟังก์ชันกำลัง แน่นอนว่ายังจะมีปัญหาและตัวอย่างวิธีแก้ไขอีกมากมาย ระดับที่แตกต่างกันความซับซ้อน

โดยทั่วไป ในตอนแรกฉันจะบันทึกวิดีโอสั้น ๆ ความยาว 5 นาที แต่คุณจะเห็นได้ว่าผลลัพธ์เป็นอย่างไร เนื้อเพลงเพียงพอแล้ว - มาทำธุรกิจกันดีกว่า

อนุพันธ์คืออะไร?

เรามาเริ่มจากระยะไกลกันก่อน หลายปีก่อน เมื่อต้นไม้เขียวมากขึ้นและชีวิตก็สนุกสนานมากขึ้น นักคณิตศาสตร์คิดเกี่ยวกับสิ่งนี้: พิจารณาฟังก์ชันง่ายๆ ที่กำหนดโดยกราฟของมัน เรียกมันว่า $y=f\left(x \right)$ แน่นอนว่ากราฟไม่มีอยู่ในตัวมันเอง ดังนั้นคุณต้องวาดแกน $x$ เช่นเดียวกับแกน $y$ ทีนี้ ลองเลือกจุดใดๆ บนกราฟนี้ หรือจุดใดๆ ก็ได้ ลองเรียก Abscissa ว่า $((x)_(1))$ ซึ่งเป็นลำดับที่คุณอาจเดาได้ว่าจะเป็น $f\left(((x)_(1)) \right)$

ลองดูอีกจุดหนึ่งบนกราฟเดียวกัน ไม่สำคัญว่าอันไหนสิ่งสำคัญคือมันแตกต่างจากอันเดิม อีกครั้ง มันมี abscissa เรียกมันว่า $((x)_(2))$ แล้วก็มีลำดับ - $f\left(((x)_(2)) \right)$

เราได้สองจุด: พวกเขามีจุดหักต่างกัน และด้วยเหตุนี้ ความหมายที่แตกต่างกันแม้ว่าอันหลังจะเป็นทางเลือกก็ตาม แต่สิ่งสำคัญจริงๆ ก็คือเรารู้จากหลักสูตรแผนผังระนาบ: คุณสามารถวาดเส้นตรงผ่านสองจุดได้ และยิ่งไปกว่านั้น มีเพียงจุดเดียวเท่านั้น เรามาดำเนินการกัน

ทีนี้ลองวาดเส้นตรงผ่านจุดแรกสุด ขนานกับแกนแอบซิสซา เราได้รับ สามเหลี่ยมมุมฉาก- ลองเรียกมันว่า $ABC$, มุมขวา $C$ สามเหลี่ยมนี้มีคุณสมบัติที่น่าสนใจอย่างหนึ่ง: ความจริงก็คือมุม $\alpha $ จริงๆ แล้ว เท่ากับมุมโดยที่เส้นตรง $AB$ ตัดกับความต่อเนื่องของแกนแอบซิสซา ตัดสินด้วยตัวคุณเอง:

  1. เส้นตรง $AC$ ขนานกับแกน $Ox$ โดยการก่อสร้าง
  2. เส้น $AB$ ตัดกัน $AC$ ใต้ $\alpha $,
  3. ดังนั้น $AB$ ตัดกัน $Ox$ ภายใต้ $\alpha $ อันเดียวกัน

เราจะพูดอะไรเกี่ยวกับ $\text( )\!\!\alpha\!\!\text( )$? ไม่มีอะไรเฉพาะเจาะจง ยกเว้นว่าในรูปสามเหลี่ยม $ABC$ อัตราส่วนของขา $BC$ ต่อขา $AC$ เท่ากับแทนเจนต์ของมุมนี้ ลองเขียนมันลงไป:

แน่นอนว่า $AC$ เข้า ในกรณีนี้คำนวณง่าย:

ในทำนองเดียวกันสำหรับ $BC$:

กล่าวอีกนัยหนึ่ง เราสามารถเขียนได้ดังต่อไปนี้:

\[\ชื่อผู้ดำเนินการ(tg)\text( )\!\!\alpha\!\!\text( )=\frac(f\left(((x)_(2)) \right)-f\left( ((x)_(1)) \right))(((x)_(2))-((x)_(1)))\]

ตอนนี้เราเข้าใจหมดแล้ว ลองกลับไปที่กราฟของเราแล้วดู จุดใหม่$B$. ลองลบค่าเก่าแล้วนำ $B$ ไปที่ไหนสักแห่งที่ใกล้กับ $((x)_(1))$ ขอให้เราแทนค่า abscissa ของมันอีกครั้งด้วย $((x)_(2))$ และกำหนดลำดับด้วย $f\left(((x)_(2)) \right)$

ลองดูสามเหลี่ยมเล็กๆ ของเรา $ABC$ และ $\text( )\!\!\alpha\!\!\text( )$ ที่อยู่ข้างในอีกครั้ง เห็นได้ชัดว่านี่จะเป็นมุมที่แตกต่างไปจากเดิมอย่างสิ้นเชิง แทนเจนต์ก็จะแตกต่างกันด้วยเนื่องจากความยาวของส่วนของ $AC$ และ $BC$ มีการเปลี่ยนแปลงอย่างมีนัยสำคัญ แต่สูตรสำหรับแทนเจนต์ของมุมไม่มีการเปลี่ยนแปลงเลย - นี่ยังคงเป็นความสัมพันธ์ระหว่างการเปลี่ยนแปลงในฟังก์ชันและการเปลี่ยนแปลงในอาร์กิวเมนต์

สุดท้ายนี้ เรายังคงย้าย $B$ เข้าใกล้จุดเดิม $A$ ต่อไป ผลที่ตามมาคือรูปสามเหลี่ยมจะเล็กลง และเส้นตรงที่มีส่วน $AB$ จะดูเหมือนเส้นสัมผัสของกราฟมากขึ้นเรื่อยๆ ฟังก์ชั่น

ผลก็คือ หากเรายังคงนำจุดต่างๆ มาใกล้กันมากขึ้น เช่น ลดระยะห่างให้เป็นศูนย์ เส้นตรง $AB$ ก็จะเปลี่ยนเป็นเส้นสัมผัสกันของกราฟที่จุดที่กำหนด และ $\text( )\ !\!\alpha\!\ !\text( )$ จะเปลี่ยนจากองค์ประกอบสามเหลี่ยมปกติไปเป็นมุมระหว่างแทนเจนต์กับกราฟและทิศทางบวกของแกน $Ox$

และที่นี่ เรามาดูคำจำกัดความของ $f$ ได้อย่างราบรื่น กล่าวคือ อนุพันธ์ของฟังก์ชันที่จุด $((x)_(1))$ คือแทนเจนต์ของมุม $\alpha $ ระหว่างแทนเจนต์กับ กราฟที่จุด $((x)_( 1))$ และทิศทางบวกของแกน $Ox$:

\[(f)"\left(((x)_(1)) \right)=\ชื่อผู้ดำเนินการ(tg)\text( )\!\!\alpha\!\!\text( )\]

เมื่อกลับมาที่กราฟของเรา ควรสังเกตว่าจุดใดๆ บนกราฟสามารถเลือกเป็น $((x)_(1))$ ได้ ตัวอย่างเช่น ด้วยความสำเร็จเดียวกัน เราสามารถลบเส้นขีดที่จุดที่แสดงในรูปได้

ลองเรียกมุมระหว่างทิศทางแทนเจนต์กับทิศทางบวกของแกน $\beta$ กัน ดังนั้น $f$ ใน $((x)_(2))$ จะเท่ากับแทนเจนต์ของมุมนี้ $\beta $

\[(f)"\left(((x)_(2)) \right)=tg\text( )\!\!\beta\!\!\text( )\]

แต่ละจุดบนกราฟจะมีแทนเจนต์ของตัวเอง ดังนั้นจึงมีค่าฟังก์ชันของตัวเองด้วย ในแต่ละกรณีนี้ นอกเหนือจากจุดที่เรากำลังมองหาอนุพันธ์ของผลต่างหรือผลรวม หรืออนุพันธ์ของฟังก์ชันกำลังแล้ว ยังจำเป็นต้องใช้จุดอื่นซึ่งอยู่ห่างจากจุดนั้นจากนั้นจึงกำหนดทิศทาง ชี้ไปที่จุดเดิมและแน่นอนค้นหาว่าในกระบวนการการเคลื่อนไหวดังกล่าวจะเปลี่ยนแทนเจนต์ของมุมเอียงได้อย่างไร

อนุพันธ์ของฟังก์ชันยกกำลัง

น่าเสียดาย, คำจำกัดความที่คล้ายกันเราไม่พึงพอใจเลย สูตร รูปภาพ มุมทั้งหมดนี้ไม่ได้ทำให้เรามีความคิดแม้แต่น้อยว่าจะคำนวณอนุพันธ์ที่แท้จริงได้อย่างไร ปัญหาที่แท้จริง- ดังนั้นเรามาพูดนอกเรื่องเล็กน้อยจากคำจำกัดความที่เป็นทางการและพิจารณาสูตรและเทคนิคที่มีประสิทธิภาพมากขึ้นซึ่งคุณสามารถแก้ไขปัญหาจริงได้แล้ว

เริ่มจากโครงสร้างที่ง่ายที่สุดกันก่อน กล่าวคือ ฟังก์ชันในรูปแบบ $y=((x)^(n))$ เช่น ฟังก์ชั่นพลังงาน ในกรณีนี้ เราสามารถเขียนได้ดังนี้: $(y)"=n\cdot ((x)^(n-1))$ กล่าวอีกนัยหนึ่ง ระดับที่อยู่ในเลขชี้กำลังจะแสดงในตัวคูณด้านหน้า และเลขชี้กำลังจะลดลงตามหน่วย ตัวอย่างเช่น

\[\begin(align)& y=((x)^(2)) \\& (y)"=2\cdot ((x)^(2-1))=2x \\\end(align) \]

นี่เป็นอีกทางเลือกหนึ่ง:

\[\begin(align)& y=((x)^(1)) \\& (y)"=((\left(x \right))^(\prime ))=1\cdot ((x )^(0))=1\cdot 1=1 \\& ((\left(x \right))^(\prime ))=1 \\\end(align)\]

ใช้กฎง่ายๆ เหล่านี้ เรามาลองลบสัมผัสของตัวอย่างต่อไปนี้:

ดังนั้นเราจึงได้:

\[((\left(((x)^(6)) \right))^(\prime ))=6\cdot ((x)^(5))=6((x)^(5)) \]

ตอนนี้เรามาแก้นิพจน์ที่สองกัน:

\[\begin(align)& f\left(x \right)=((x)^(100)) \\& ((\left(((x)^(100)) \right))^(\ ไพรม์ ))=100\cdot ((x)^(99))=100((x)^(99)) \\\end(align)\]

แน่นอนว่าสิ่งเหล่านี้เป็นอย่างมาก งานง่ายๆ- อย่างไรก็ตาม ปัญหาที่แท้จริงมีความซับซ้อนมากกว่า และไม่ได้จำกัดอยู่เพียงระดับของฟังก์ชันเท่านั้น

ดังนั้น กฎข้อที่ 1 - หากมีการนำเสนอฟังก์ชันในรูปแบบของอีกสองฟังก์ชัน อนุพันธ์ของผลรวมนี้จะเท่ากับผลรวมของอนุพันธ์:

\[((\left(f+g \right))^(\prime ))=(f)"+(g)"\]

ในทำนองเดียวกัน อนุพันธ์ของผลต่างของฟังก์ชันทั้งสองจะเท่ากับผลต่างของอนุพันธ์:

\[((\left(f-g \right))^(\prime ))=(f)"-(g)"\]

\[((\left(((x)^(2))+x \right))^(\prime ))=((\left(((x)^(2)) \right))^(\ นายก ))+((\ซ้าย(x \right))^(\นายก ))=2x+1\]

นอกจากนี้ก็ยังมีอีกอย่างหนึ่ง กฎที่สำคัญ: ถ้า $f$ นำหน้าด้วยค่าคงที่ $c$ ซึ่งใช้ฟังก์ชันนี้คูณกัน ดังนั้น $f$ ของโครงสร้างทั้งหมดนี้จะถูกคำนวณดังนี้:

\[((\left(c\cdot f \right))^(\prime ))=c\cdot (f)"\]

\[((\left(3((x)^(3)) \right))^(\prime ))=3((\left(((x)^(3)) \right))^(\ ไพรม์ ))=3\cดอท 3((x)^(2))=9((x)^(2))\]

สุดท้ายนี้ มีกฎที่สำคัญมากอีกข้อหนึ่ง: ในปัญหา มักมีคำแยกต่างหากที่ไม่มี $x$ เลย ตัวอย่างเช่น เราสามารถสังเกตสิ่งนี้ได้ในสำนวนของเราในปัจจุบัน อนุพันธ์ของค่าคงที่ กล่าวคือ ตัวเลขที่ไม่ได้ขึ้นอยู่กับ $x$ ในทางใดทางหนึ่ง จะเท่ากับศูนย์เสมอ และไม่สำคัญเลยว่าค่าคงที่ $c$ จะเท่ากับเท่าใด:

\[((\left(c \right))^(\prime ))=0\]

ตัวอย่างวิธีแก้ปัญหา:

\[((\left(1001 \right))^(\prime ))=((\left(\frac(1)(1000) \right))^(\prime ))=0\]

ประเด็นสำคัญอีกครั้ง:

  1. อนุพันธ์ของผลรวมของสองฟังก์ชันจะเท่ากับผลรวมของอนุพันธ์เสมอ: $((\left(f+g \right))^(\prime ))=(f)"+(g)"$;
  2. ด้วยเหตุผลเดียวกัน อนุพันธ์ของผลต่างของฟังก์ชันทั้งสองจะเท่ากับผลต่างของอนุพันธ์สองตัว: $((\left(f-g \right))^(\prime ))=(f)"-(g)"$;
  3. ถ้าฟังก์ชันมีตัวประกอบคงที่ ค่าคงที่นี้สามารถนำมาเป็นเครื่องหมายอนุพันธ์ได้: $((\left(c\cdot f \right))^(\prime ))=c\cdot (f)"$;
  4. ถ้าฟังก์ชันทั้งหมดเป็นค่าคงที่ อนุพันธ์ของมันจะเป็นศูนย์เสมอ: $((\left(c \right))^(\prime ))=0$

เรามาดูกันว่ามันทำงานอย่างไร ตัวอย่างจริง- ดังนั้น:

เราเขียนลงไป:

\[\begin(align)& ((\left(((x)^(5))-3((x)^(2))+7 \right))^(\prime ))=((\left (((x)^(5)) \right))^(\prime ))-((\left(3((x)^(2)) \right))^(\prime ))+(7) "= \\& =5((x)^(4))-3((\left(((x)^(2)) \right))^(\prime ))+0=5((x) ^(4))-6x \\\end(align)\]

ในตัวอย่างนี้ เราเห็นทั้งอนุพันธ์ของผลรวมและอนุพันธ์ของผลต่าง โดยรวมแล้วอนุพันธ์จะเท่ากับ $5((x)^(4))-6x$

มาดูฟังก์ชันที่สองกันดีกว่า:

มาเขียนวิธีแก้ปัญหากัน:

\[\begin(align)& ((\left(3((x)^(2))-2x+2 \right))^(\prime ))=((\left(3((x)^( 2)) \right))^(\prime ))-((\left(2x \right))^(\prime ))+(2)"= \\& =3((\left(((x) ^(2)) \right))^(\prime ))-2(x)"+0=3\cdot 2x-2\cdot 1=6x-2 \\\end(align)\]

ที่นี่เราพบคำตอบแล้ว

มาดูฟังก์ชั่นที่สามกันดีกว่า - มันจริงจังกว่านี้:

\[\begin(align)& ((\left(2((x)^(3))-3((x)^(2))+\frac(1)(2)x-5 \right)) ^(\prime ))=((\left(2((x)^(3)) \right))^(\prime ))-((\left(3((x)^(2)) \right ))^(\prime ))+((\left(\frac(1)(2)x \right))^(\prime ))-(5)"= \\& =2((\left(( (x)^(3)) \right))^(\prime ))-3((\left(((x)^(2)) \right))^(\prime ))+\frac(1) (2)\cdot (x)"=2\cdot 3((x)^(2))-3\cdot 2x+\frac(1)(2)\cdot 1=6((x)^(2)) -6x+\frac(1)(2) \\\end(align)\]

เราได้พบคำตอบแล้ว

มาดูนิพจน์สุดท้ายกัน - ซับซ้อนที่สุดและยาวที่สุด:

ดังนั้นเราจึงพิจารณาว่า:

\[\begin(align)& ((\left(6((x)^(7))-14((x)^(3))+4x+5 \right))^(\prime ))=( (\left(6((x)^(7)) \right))^(\prime ))-((\left(14((x)^(3)) \right))^(\prime )) +((\left(4x \right))^(\prime ))+(5)"= \\& =6\cdot 7\cdot ((x)^(6))-14\cdot 3((x )^(2))+4\cdot 1+0=42((x)^(6))-42((x)^(2))+4 \\\end(align)\]

แต่การแก้ปัญหาไม่ได้จบเพียงแค่นั้น เพราะเราถูกขอให้ไม่เพียงแค่ลบเส้นขีดออกเท่านั้น แต่ยังต้องคำนวณค่าของมันที่จุดใดจุดหนึ่งด้วย ดังนั้นเราจึงแทนที่ −1 แทน $x$ ลงในนิพจน์:

\[(y)"\left(-1 \right)=42\cdot 1-42\cdot 1+4=4\]

ก้าวต่อไปและก้าวไปสู่ความซับซ้อนยิ่งขึ้นและ ตัวอย่างที่น่าสนใจ- ความจริงก็คือสูตรสำหรับการแก้อนุพันธ์ของกำลัง $((\left(((x)^(n)) \right))^(\prime ))=n\cdot ((x)^(n-1) )$ มีขอบเขตที่กว้างกว่าที่คิดกันโดยทั่วไป ด้วยความช่วยเหลือนี้ คุณสามารถแก้ตัวอย่างด้วยเศษส่วน ราก ฯลฯ นี่คือสิ่งที่เราจะทำตอนนี้

ขั้นแรก ให้เขียนสูตรอีกครั้งเพื่อช่วยเราค้นหาอนุพันธ์ของฟังก์ชันกำลัง:

และตอนนี้ความสนใจ: จนถึงตอนนี้เราถือว่า $n$ เท่านั้น ตัวเลขธรรมชาติอย่างไรก็ตาม ไม่มีอะไรขัดขวางเราไม่ให้พิจารณาเศษส่วนและแม้แต่จำนวนลบ ตัวอย่างเช่น เราสามารถเขียนได้ดังต่อไปนี้:

\[\begin(align)& \sqrt(x)=((x)^(\frac(1)(2))) \\& ((\left(\sqrt(x) \right))^(\ นายก ))=((\left(((x)^(\frac(1)(2))) \right))^(\prime ))=\frac(1)(2)\cdot ((x) ^(-\frac(1)(2)))=\frac(1)(2)\cdot \frac(1)(\sqrt(x))=\frac(1)(2\sqrt(x)) \\\end(จัดแนว)\]

ไม่มีอะไรซับซ้อน เรามาดูกันว่าสูตรนี้จะช่วยเราแก้ปัญหาเพิ่มเติมได้อย่างไร งานที่ซับซ้อน- ดังนั้นตัวอย่าง:

มาเขียนวิธีแก้ปัญหากัน:

\[\begin(align)& \left(\sqrt(x)+\sqrt(x)+\sqrt(x) \right)=((\left(\sqrt(x) \right))^(\prime ))+((\left(\sqrt(x) \right))^(\prime ))+((\left(\sqrt(x) \right))^(\prime )) \\& ((\ ซ้าย(\sqrt(x) \right))^(\prime ))=\frac(1)(2\sqrt(x)) \\& ((\left(\sqrt(x) \right))^( \prime ))=((\left(((x)^(\frac(1)(3))) \right))^(\prime ))=\frac(1)(3)\cdot ((x )^(-\frac(2)(3)))=\frac(1)(3)\cdot \frac(1)(\sqrt(((x)^(2)))) \\& (( \left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac(1)(4))) \right))^(\prime )) =\frac(1)(4)((x)^(-\frac(3)(4)))=\frac(1)(4)\cdot \frac(1)(\sqrt(((x) ^(3)))) \\\end(align)\]

กลับไปที่ตัวอย่างของเราแล้วเขียน:

\[(y)"=\frac(1)(2\sqrt(x))+\frac(1)(3\sqrt(((x)^(2))))+\frac(1)(4 \sqrt(((x)^(3))))\]

นี่เป็นการตัดสินใจที่ยากลำบาก

มาดูตัวอย่างที่สองกัน - มีเพียงสองคำเท่านั้น แต่แต่ละคำมีทั้งระดับคลาสสิกและราก

ตอนนี้เราจะเรียนรู้วิธีค้นหาอนุพันธ์ของฟังก์ชันกำลังซึ่งมีรากอยู่ด้วย:

\[\begin(align)& ((\left(((x)^(3))\sqrt(((x)^(2)))+((x)^(7))\sqrt(x) \right))^(\prime ))=((\left(((x)^(3))\cdot \sqrt(((x)^(2))) \right))^(\prime )) =((\left(((x)^(3))\cdot ((x)^(\frac(2)(3))) \right))^(\prime ))= \\& =(( \left(((x)^(3+\frac(2)(3))) \right))^(\prime ))=((\left(((x)^(\frac(11)(3) ))) \right))^(\prime ))=\frac(11)(3)\cdot ((x)^(\frac(8)(3)))=\frac(11)(3)\ cdot ((x)^(2\frac(2)(3)))=\frac(11)(3)\cdot ((x)^(2))\cdot \sqrt(((x)^(2 ))) \\& ((\left(((x)^(7))\cdot \sqrt(x) \right))^(\prime ))=((\left(((x)^(7 ))\cdot ((x)^(\frac(1)(3))) \right))^(\prime ))=((\left(((x)^(7\frac(1)(3) ))) \right))^(\prime ))=7\frac(1)(3)\cdot ((x)^(6\frac(1)(3)))=\frac(22)(3 )\cdot ((x)^(6))\cdot \sqrt(x) \\\end(จัด)\]

ทั้งสองคำได้รับการคำนวณแล้ว สิ่งที่เหลืออยู่คือการเขียนคำตอบสุดท้าย:

\[(y)"=\frac(11)(3)\cdot ((x)^(2))\cdot \sqrt(((x)^(2)))+\frac(22)(3) \cdot ((x)^(6))\cdot \sqrt(x)\]

เราได้พบคำตอบแล้ว

อนุพันธ์ของเศษส่วนผ่านฟังก์ชันยกกำลัง

แต่ความเป็นไปได้ของสูตรในการแก้อนุพันธ์ของฟังก์ชันกำลังไม่ได้จบเพียงแค่นั้น ความจริงก็คือด้วยความช่วยเหลือคุณสามารถคำนวณได้ไม่เพียง แต่ตัวอย่างที่มีรากเท่านั้น แต่ยังรวมถึงเศษส่วนด้วย นี่เป็นโอกาสที่หาได้ยากอย่างยิ่งที่ทำให้การแก้ปัญหาตัวอย่างดังกล่าวง่ายขึ้นอย่างมาก แต่บ่อยครั้งที่ไม่เพียงแต่นักเรียนเท่านั้น แต่ยังถูกครูมองข้ามด้วย

ตอนนี้เราจะพยายามรวมสองสูตรเข้าด้วยกัน ในด้านหนึ่ง อนุพันธ์คลาสสิกของฟังก์ชันกำลัง

\[((\left(((x)^(n)) \right))^(\prime ))=n\cdot ((x)^(n-1))\]

ในทางกลับกัน เรารู้ว่านิพจน์ในรูปแบบ $\frac(1)(((x)^(n)))$ สามารถแสดงเป็น $((x)^(-n))$ ได้ เพราะฉะนั้น,

\[\left(\frac(1)(((x)^(n))) \right)"=((\left(((x)^(-n)) \right))^(\prime ) )=-n\cdot ((x)^(-n-1))=-\frac(n)(((x)^(n+1)))\]

\[((\left(\frac(1)(x) \right))^(\prime ))=\left(((x)^(-1)) \right)=-1\cdot ((x )^(-2))=-\frac(1)(((x)^(2)))\]

ดังนั้นอนุพันธ์ เศษส่วนอย่างง่ายโดยที่ตัวเศษเป็นค่าคงที่และตัวส่วนเป็นดีกรี ก็คำนวณโดยใช้เช่นกัน สูตรคลาสสิก- เรามาดูกันว่าวิธีนี้ทำงานอย่างไรในทางปฏิบัติ

ดังนั้นฟังก์ชันแรก:

\[((\left(\frac(1)(((x)^(2))) \right))^(\prime ))=((\left(((x)^(-2)) \ ขวา))^(\prime ))=-2\cdot ((x)^(-3))=-\frac(2)(((x)^(3)))\]

ตัวอย่างแรกได้รับการแก้ไขแล้ว มาดูตัวอย่างที่สองกันดีกว่า:

\[\begin(align)& ((\left(\frac(7)(4((x)^(4)))-\frac(2)(3((x)^(3)))+\ frac(5)(2)((x)^(2))+2((x)^(3))-3((x)^(4)) \right))^(\prime ))= \ \& =((\left(\frac(7)(4((x)^(4))) \right))^(\prime ))-((\left(\frac(2)(3(( x)^(3))) \right))^(\prime ))+((\left(2((x)^(3)) \right))^(\prime ))-((\left( 3((x)^(4)) \right))^(\prime )) \\& ((\left(\frac(7)(4((x)^(4))) \right))^ (\prime ))=\frac(7)(4)((\left(\frac(1)(((x)^(4))) \right))^(\prime ))=\frac(7 )(4)\cdot ((\left(((x)^(-4)) \right))^(\prime ))=\frac(7)(4)\cdot \left(-4 \right) \cdot ((x)^(-5))=\frac(-7)(((x)^(5))) \\& ((\left(\frac(2)(3((x)^ (3))) \right))^(\prime ))=\frac(2)(3)\cdot ((\left(\frac(1)(((x)^(3))) \right) )^(\prime ))=\frac(2)(3)\cdot ((\left(((x)^(-3)) \right))^(\prime ))=\frac(2)( 3)\cdot \left(-3 \right)\cdot ((x)^(-4))=\frac(-2)(((x)^(4))) \\& ((\ซ้าย( \frac(5)(2)((x)^(2)) \right))^(\prime ))=\frac(5)(2)\cdot 2x=5x \\& ((\left(2 ((x)^(3)) \right))^(\prime ))=2\cdot 3((x)^(2))=6((x)^(2)) \\& ((\ ซ้าย(3((x)^(4)) \right))^(\prime ))=3\cdot 4((x)^(3))=12((x)^(3)) \\\ สิ้นสุด (จัดแนว)\]...

ตอนนี้เรารวบรวมคำศัพท์เหล่านี้ทั้งหมดไว้ในสูตรเดียว:

\[(y)"=-\frac(7)(((x)^(5)))+\frac(2)(((x)^(4)))+5x+6((x)^ (2))-12((x)^(3))\]

เราได้รับคำตอบแล้ว

อย่างไรก็ตาม ก่อนที่จะไปต่อ ฉันอยากจะดึงความสนใจของคุณไปที่รูปแบบของการเขียนสำนวนดั้งเดิม: ในนิพจน์แรกเราเขียน $f\left(x \right)=...$ ในนิพจน์ที่สอง: $y =...$ นักเรียนหลายคนหลงทางเมื่อเห็น รูปร่างที่แตกต่างกันบันทึก อะไรคือความแตกต่างระหว่าง $f\left(x \right)$ และ $y$? ไม่มีอะไรจริงๆ เป็นเพียงรายการที่แตกต่างกันซึ่งมีความหมายเหมือนกัน ก็แค่นั้นแหละเมื่อเราพูดว่า $f\left(x \right)$ แล้ว เรากำลังพูดถึงก่อนอื่นเลย เกี่ยวกับฟังก์ชัน และเมื่อเราพูดถึง $y$ เรามักจะหมายถึงกราฟของฟังก์ชันบ่อยที่สุด ไม่เช่นนั้นก็เป็นสิ่งเดียวกัน กล่าวคือ อนุพันธ์ในทั้งสองกรณีถือว่าเหมือนกัน

ปัญหาที่ซับซ้อนเกี่ยวกับอนุพันธ์

โดยสรุป ฉันต้องการพิจารณาปัญหารวมที่ซับซ้อนสองสามข้อที่ใช้ทุกสิ่งที่เราพิจารณาในวันนี้ ประกอบด้วยราก เศษส่วน และผลรวม อย่างไรก็ตาม ตัวอย่างเหล่านี้จะซับซ้อนในวิดีโอการสอนของวันนี้เท่านั้น เนื่องจากฟังก์ชันอนุพันธ์ที่ซับซ้อนอย่างแท้จริงจะรอคุณอยู่ข้างหน้า

ดังนั้นส่วนสุดท้ายของบทเรียนวิดีโอของวันนี้ประกอบด้วยสองงานรวมกัน เริ่มจากสิ่งแรกกันก่อน:

\[\begin(align)& ((\left(((x)^(3))-\frac(1)(((x)^(3)))+\sqrt(x) \right))^ (\prime ))=((\left(((x)^(3)) \right))^(\prime ))-((\left(\frac(1)(((x)^(3) )) \right))^(\prime ))+\left(\sqrt(x) \right) \\& ((\left(((x)^(3)) \right))^(\prime ) )=3((x)^(2)) \\& ((\left(\frac(1)(((x)^(3))) \right))^(\prime ))=((\ ซ้าย(((x)^(-3)) \right))^(\prime ))=-3\cdot ((x)^(-4))=-\frac(3)(((x)^ (4))) \\& ((\left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac(1)(3)))) \right))^(\prime ))=\frac(1)(3)\cdot \frac(1)(((x)^(\frac(2)(3))))=\frac(1) (3\sqrt(((x)^(2)))) \\\end(align)\]

อนุพันธ์ของฟังก์ชันคือ:

\[(y)"=3((x)^(2))-\frac(3)(((x)^(4)))+\frac(1)(3\sqrt(((x)^ (2))))\]

ตัวอย่างแรกได้รับการแก้ไขแล้ว ลองพิจารณาปัญหาที่สอง:

ในตัวอย่างที่สอง เราทำเช่นเดียวกัน:

\[((\left(-\frac(2)(((x)^(4)))+\sqrt(x)+\frac(4)(x\sqrt(((x)^(3)) )) \right))^(\prime ))=((\left(-\frac(2)(((x)^(4))) \right))^(\prime ))+((\ซ้าย (\sqrt(x) \right))^(\prime ))+((\left(\frac(4)(x\cdot \sqrt(((x)^(3)))) \right))^ (\ไพรม์ ))\]

เรามานับแต่ละเทอมแยกกัน:

\[\begin(align)& ((\left(-\frac(2)(((x)^(4))) \right))^(\prime ))=-2\cdot ((\left( ((x)^(-4)) \right))^(\prime ))=-2\cdot \left(-4 \right)\cdot ((x)^(-5))=\frac(8 )(((x)^(5))) \\& ((\left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac( 1)(4))) \right))^(\prime ))=\frac(1)(4)\cdot ((x)^(-\frac(3)(4)))=\frac(1 )(4\cdot ((x)^(\frac(3)(4))))=\frac(1)(4\sqrt(((x)^(3)))) \\& ((\ ซ้าย(\frac(4)(x\cdot \sqrt(((x)^(3)))) \right))^(\prime ))=((\left(\frac(4)(x\cdot ((x)^(\frac(3)(4)))) \right))^(\prime ))=((\left(\frac(4)(((x)^(1\frac(3 )(4)))) \right))^(\prime ))=4\cdot ((\left(((x)^(-1\frac(3)(4))) \right))^( \prime ))= \\& =4\cdot \left(-1\frac(3)(4) \right)\cdot ((x)^(-2\frac(3)(4)))=4 \cdot \left(-\frac(7)(4) \right)\cdot \frac(1)(((x)^(2\frac(3)(4))))=\frac(-7) (((x)^(2))\cdot ((x)^(\frac(3)(4))))=-\frac(7)(((x)^(2))\cdot \sqrt (((x)^(3)))) \\\end(align)\]

เงื่อนไขทั้งหมดได้รับการคำนวณแล้ว ตอนนี้เรากลับไปสู่สูตรดั้งเดิมแล้วบวกทั้งสามคำเข้าด้วยกัน เราได้รับคำตอบสุดท้ายดังนี้:

\[(y)"=\frac(8)(((x)^(5)))+\frac(1)(4\sqrt(((x)^(3))))-\frac(7 )(((x)^(2))\cdot \sqrt(((x)^(3))))\]

และนั่นคือทั้งหมด นี่เป็นบทเรียนแรกของเรา ในบทเรียนต่อไปนี้ เราจะดูโครงสร้างที่ซับซ้อนมากขึ้น และดูว่าเหตุใดจึงจำเป็นต้องมีอนุพันธ์ตั้งแต่แรก

การคำนวณอนุพันธ์- หนึ่งในมากที่สุด การดำเนินงานที่สำคัญวี แคลคูลัสเชิงอนุพันธ์- ด้านล่างเป็นตารางสำหรับค้นหาอนุพันธ์ ฟังก์ชั่นง่ายๆ- มากกว่า กฎที่ซับซ้อนการสร้างความแตกต่าง ดูบทเรียนอื่นๆ:
  • ตารางอนุพันธ์ของฟังก์ชันเลขชี้กำลังและลอการิทึม
ใช้สูตรที่กำหนดเป็นค่าอ้างอิง พวกเขาจะช่วยคุณตัดสินใจ สมการเชิงอนุพันธ์และงานต่างๆ ในภาพในตารางอนุพันธ์ของฟังก์ชันอย่างง่ายมี “สูตรโกง” กรณีหลักๆ ในการหาอนุพันธ์ในรูปแบบที่เข้าใจง่ายในการใช้งาน ข้างๆ มีคำอธิบายในแต่ละกรณี

อนุพันธ์ของฟังก์ชันอย่างง่าย

1. อนุพันธ์ของตัวเลขคือศูนย์
ซ' = 0
ตัวอย่าง:
5' = 0

คำอธิบาย:
อนุพันธ์แสดงอัตราที่ค่าของฟังก์ชันเปลี่ยนแปลงเมื่ออาร์กิวเมนต์ของฟังก์ชันเปลี่ยนแปลง เนื่องจากตัวเลขไม่เปลี่ยนแปลงไม่ว่าในกรณีใด ๆ อัตราการเปลี่ยนแปลงจึงเป็นศูนย์เสมอ

2. อนุพันธ์ของตัวแปรเท่ากับหนึ่ง
x' = 1

คำอธิบาย:
เมื่ออาร์กิวเมนต์เพิ่มขึ้น (x) ทีละค่า ค่าของฟังก์ชัน (ผลลัพธ์ของการคำนวณ) จะเพิ่มขึ้นด้วยจำนวนที่เท่ากัน ดังนั้นอัตราการเปลี่ยนแปลงค่าของฟังก์ชัน y = x จึงเท่ากับอัตราการเปลี่ยนแปลงค่าของอาร์กิวเมนต์ทุกประการ

3. อนุพันธ์ของตัวแปรและตัวประกอบเท่ากับตัวประกอบนี้
ซx´ = ซ
ตัวอย่าง:
(3x)' = 3
(2x)' = 2
คำอธิบาย:
ในกรณีนี้ ทุกครั้งที่อาร์กิวเมนต์ของฟังก์ชันเปลี่ยนแปลง ( เอ็กซ์) ค่าของมัน (y) เพิ่มขึ้น กับครั้งหนึ่ง. ดังนั้น อัตราการเปลี่ยนแปลงของค่าฟังก์ชันสัมพันธ์กับอัตราการเปลี่ยนแปลงของอาร์กิวเมนต์จึงเท่ากับค่าทุกประการ กับ.

มันเป็นไปตามนั้นตอนไหน.
(cx + b)" = ค
นั่นคือดิฟเฟอเรนเชียลของฟังก์ชันเชิงเส้น y=kx+b เท่ากับ ความลาดชันความชันของเส้นตรง (k)


4. อนุพันธ์แบบโมดูโล่ของตัวแปรเท่ากับผลหารของตัวแปรนี้ต่อโมดูลัส
|x|"= x / |x| โดยมีเงื่อนไขว่า x ≠ 0
คำอธิบาย:
เนื่องจากอนุพันธ์ของตัวแปร (ดูสูตร 2) มีค่าเท่ากับหนึ่ง อนุพันธ์ของโมดูลจึงแตกต่างกันเพียงว่าค่าของอัตราการเปลี่ยนแปลงของฟังก์ชันจะเปลี่ยนเป็นค่าตรงกันข้ามเมื่อข้ามจุดกำเนิด (ลองวาดกราฟ ของฟังก์ชัน y = |x| และดูด้วยตัวคุณเอง< 0 оно равно (-1), а когда x >0 - หนึ่ง นั่นคือเมื่อ ค่าลบตัวแปร x เมื่ออาร์กิวเมนต์เพิ่มขึ้นแต่ละครั้ง ค่าของฟังก์ชันจะลดลงด้วยค่าเดียวกันทุกประการ และสำหรับค่าบวก ในทางกลับกัน ค่าจะเพิ่มขึ้น แต่ด้วยค่าเดียวกันทุกประการ

5. อนุพันธ์ของตัวแปรยกกำลังเท่ากับผลคูณของจำนวนกำลังนี้และตัวแปรของกำลังลดลงหนึ่ง
(x ค)"= cx c-1โดยมีเงื่อนไขว่า x c และ cx c-1 ถูกกำหนดไว้และ c ≠ 0
ตัวอย่าง:
(x 2)" = 2x
(x 3)" = 3x 2
เพื่อจำสูตร:
ย้ายระดับของตัวแปรลงเป็นตัวประกอบ แล้วลดระดับลงหนึ่งตัว ตัวอย่างเช่น สำหรับ x 2 - ทั้งสองอยู่ข้างหน้า x แล้วกำลังที่ลดลง (2-1 = 1) ก็ให้ค่าเรา 2x สิ่งเดียวกันนี้เกิดขึ้นกับ x 3 - เรา "เลื่อนลง" ทั้งสามลดขนาดลงหนึ่งและแทนที่จะเป็นลูกบาศก์เรามีสี่เหลี่ยมจัตุรัสนั่นคือ 3x 2 "ไม่เป็นไปตามหลักวิทยาศาสตร์" เล็กน้อยแต่จำได้ง่ายมาก

6.อนุพันธ์ของเศษส่วน 1/x
(1/x)" = - 1 / x 2
ตัวอย่าง:
เนื่องจากเศษส่วนสามารถแสดงเป็นการยกกำลังเป็นลบได้
(1/x)" = (x -1)" จากนั้นคุณสามารถใช้สูตรจากกฎข้อ 5 ของตารางอนุพันธ์
(x -1)" = -1x -2 = - 1 / x 2

7. อนุพันธ์ของเศษส่วน ด้วยตัวแปรระดับใดก็ได้ในตัวส่วน
(1/xค)" = - ค / x ค+1
ตัวอย่าง:
(1 / x 2)" = - 2 / x 3

8. อนุพันธ์ของราก(อนุพันธ์ของตัวแปรภายใต้รากที่สอง)
(√x)" = 1 / (2√x)หรือ 1/2 x -1/2
ตัวอย่าง:
(√x)" = (x 1/2)" หมายความว่าคุณสามารถใช้สูตรจากกฎข้อ 5 ได้
(x 1/2)" = 1/2 x -1/2 = 1 / (2√x)

9. อนุพันธ์ของตัวแปรภายใต้รากของระดับที่กำหนด
(n √x)" = 1 / (n n √x n-1)

การดำเนินการหาอนุพันธ์เรียกว่าอนุพันธ์

อันเป็นผลมาจากการแก้ปัญหาในการค้นหาอนุพันธ์ของฟังก์ชันที่ง่ายที่สุด (และไม่ง่ายนัก) โดยการกำหนดอนุพันธ์เป็นขีด จำกัด ของอัตราส่วนของการเพิ่มขึ้นต่อการเพิ่มขึ้นของอาร์กิวเมนต์ตารางอนุพันธ์และกฎการแยกความแตกต่างที่กำหนดไว้อย่างแม่นยำปรากฏขึ้น . คนแรกที่ทำงานในด้านการค้นหาอนุพันธ์คือ Isaac Newton (1643-1727) และ Gottfried Wilhelm Leibniz (1646-1716)

ดังนั้นในยุคของเราในการค้นหาอนุพันธ์ของฟังก์ชันใด ๆ คุณไม่จำเป็นต้องคำนวณขีด จำกัด ดังกล่าวข้างต้นของอัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์ แต่คุณเพียงต้องใช้ตารางของ อนุพันธ์และกฎของความแตกต่าง อัลกอริธึมต่อไปนี้เหมาะสำหรับการค้นหาอนุพันธ์

เพื่อหาอนุพันธ์คุณต้องมีนิพจน์ใต้เครื่องหมายเฉพาะ แบ่งฟังก์ชันง่ายๆ ออกเป็นส่วนประกอบต่างๆและกำหนดการกระทำใด (ผลิตภัณฑ์ ผลรวม ผลหาร)ฟังก์ชันเหล่านี้เกี่ยวข้องกัน อนุพันธ์เพิ่มเติม ฟังก์ชั่นเบื้องต้นเราพบในตารางอนุพันธ์ และสูตรสำหรับอนุพันธ์ของผลิตภัณฑ์ ผลรวม และผลหารอยู่ในกฎของการสร้างความแตกต่าง ตารางอนุพันธ์และกฎการแยกความแตกต่างจะได้รับหลังจากสองตัวอย่างแรก

ตัวอย่างที่ 1ค้นหาอนุพันธ์ของฟังก์ชัน

สารละลาย. จากกฎการหาความแตกต่าง เราพบว่าอนุพันธ์ของผลรวมของฟังก์ชันคือผลรวมของอนุพันธ์ของฟังก์ชัน เช่น

จากตารางอนุพันธ์ เราพบว่าอนุพันธ์ของ "X" เท่ากับ 1 และอนุพันธ์ของไซน์เท่ากับโคไซน์ เราแทนที่ค่าเหล่านี้เป็นผลรวมของอนุพันธ์และค้นหาอนุพันธ์ที่ต้องการตามเงื่อนไขของปัญหา:

ตัวอย่างที่ 2ค้นหาอนุพันธ์ของฟังก์ชัน

สารละลาย. เราแยกความแตกต่างเป็นอนุพันธ์ของผลรวมโดยที่เทอมที่สองมีปัจจัยคงที่ สามารถนำออกจากเครื่องหมายของอนุพันธ์ได้:

หากยังคงมีคำถามเกิดขึ้นเกี่ยวกับที่มาของบางสิ่ง คำถามเหล่านั้นมักจะถูกกระจ่างหลังจากทำความคุ้นเคยกับตารางอนุพันธ์และกฎการแยกความแตกต่างที่ง่ายที่สุด เรากำลังดำเนินการไปหาพวกเขาในขณะนี้

ตารางอนุพันธ์ของฟังก์ชันอย่างง่าย

1. อนุพันธ์ของค่าคงที่ (ตัวเลข) ตัวเลขใดๆ (1, 2, 5, 200...) ที่อยู่ในนิพจน์ฟังก์ชัน เท่ากับศูนย์เสมอ นี่เป็นสิ่งสำคัญมากที่ต้องจำไว้เนื่องจากต้องใช้บ่อยมาก
2. อนุพันธ์ของตัวแปรอิสระ ส่วนใหญ่มักจะเป็น "X" เท่ากับหนึ่งเสมอ นี่เป็นสิ่งสำคัญที่ต้องจดจำเป็นเวลานาน
3. อนุพันธ์ของปริญญา เมื่อแก้ไขปัญหา คุณต้องแปลงรากที่ไม่ใช่กำลังสองให้เป็นกำลัง
4. อนุพันธ์ของตัวแปรยกกำลัง -1
5. อนุพันธ์ของรากที่สอง
6. อนุพันธ์ของไซน์
7. อนุพันธ์ของโคไซน์
8. อนุพันธ์ของแทนเจนต์
9. อนุพันธ์ของโคแทนเจนต์
10. อนุพันธ์ของอาร์คไซน์
11. อนุพันธ์ของอาร์คโคไซน์
12. อนุพันธ์ของอาร์กแทนเจนต์
13. อนุพันธ์ของอาร์คโคแทนเจนต์
14. อนุพันธ์ของลอการิทึมธรรมชาติ
15. อนุพันธ์ของฟังก์ชันลอการิทึม
16. อนุพันธ์ของเลขชี้กำลัง
17. อนุพันธ์ ฟังก์ชันเลขชี้กำลัง

กฎของความแตกต่าง

1. อนุพันธ์ของผลรวมหรือผลต่าง
2. อนุพันธ์ของผลิตภัณฑ์
2ก. อนุพันธ์ของนิพจน์คูณด้วยตัวประกอบคงที่
3. อนุพันธ์ของผลหาร
4. อนุพันธ์ของฟังก์ชันเชิงซ้อน

กฎข้อที่ 1ถ้าฟังก์ชั่น

สามารถหาอนุพันธ์ได้ ณ จุดหนึ่ง จากนั้นฟังก์ชันจะหาอนุพันธ์ได้ที่จุดเดียวกัน

และ

เหล่านั้น. อนุพันธ์ของผลรวมพีชคณิตของฟังก์ชันเท่ากับ ผลรวมพีชคณิตอนุพันธ์ของฟังก์ชันเหล่านี้

ผลที่ตามมา หากฟังก์ชันหาอนุพันธ์ได้สองฟังก์ชันต่างกันด้วยเทอมคงที่ อนุพันธ์ของฟังก์ชันทั้งสองจะเท่ากัน, เช่น.

กฎข้อที่ 2ถ้าฟังก์ชั่น

สามารถหาอนุพันธ์ได้ ณ จุดหนึ่ง แล้วผลิตภัณฑ์ของเขาก็หาอนุพันธ์ได้ที่จุดเดียวกัน

และ

เหล่านั้น. อนุพันธ์ของผลิตภัณฑ์ของสองฟังก์ชันจะเท่ากับผลรวมของผลิตภัณฑ์ของแต่ละฟังก์ชันเหล่านี้กับอนุพันธ์ของอีกฟังก์ชันหนึ่ง

ข้อพิสูจน์ 1. ตัวประกอบคงที่สามารถนำออกจากเครื่องหมายของอนุพันธ์ได้:

ข้อพิสูจน์ 2. อนุพันธ์ของผลิตภัณฑ์ของฟังก์ชันอนุพันธ์หลายตัวจะเท่ากับผลรวมของผลิตภัณฑ์ของอนุพันธ์ของแต่ละปัจจัยและอื่นๆ ทั้งหมด

ตัวอย่างเช่น สำหรับตัวคูณสามตัว:

กฎข้อที่ 3ถ้าฟังก์ชั่น

แยกแยะได้ในบางจุด และ , เมื่อถึงจุดนี้ความฉลาดของพวกมันก็สามารถหาอนุพันธ์ได้เช่นกันคุณ/v และ

เหล่านั้น. อนุพันธ์ของผลหารของสองฟังก์ชันเท่ากับเศษส่วน โดยตัวเศษคือผลต่างระหว่างผลคูณของตัวส่วนกับอนุพันธ์ของตัวเศษและตัวเศษและอนุพันธ์ของตัวส่วน และตัวส่วนคือกำลังสองของ อดีตตัวเศษ

จะค้นหาสิ่งต่าง ๆ ในหน้าอื่นได้ที่ไหน

เมื่อค้นหาอนุพันธ์ของผลิตภัณฑ์และผลหารในปัญหาจริง จำเป็นต้องใช้กฎการสร้างความแตกต่างหลายข้อในคราวเดียวเสมอ ดังนั้นจึงมีตัวอย่างเพิ่มเติมเกี่ยวกับอนุพันธ์เหล่านี้ในบทความ"อนุพันธ์ของผลิตภัณฑ์และผลหารของฟังก์ชัน".

ความคิดเห็นคุณไม่ควรสับสนระหว่างค่าคงที่ (นั่นคือตัวเลข) ในรูปของผลรวมและตัวประกอบคงที่! ในกรณีของเทอม อนุพันธ์ของมันจะเท่ากับศูนย์ และในกรณีของตัวประกอบคงที่ อนุพันธ์ของเทอมนั้นจะถูกนำออกจากเครื่องหมายของอนุพันธ์ นี้ ข้อผิดพลาดทั่วไปซึ่งเกิดขึ้นเมื่อวันที่ ระยะเริ่มแรกศึกษาอนุพันธ์ แต่ในขณะที่พวกเขาแก้ตัวอย่างหนึ่งและสองส่วนหลายตัวอย่าง นักเรียนทั่วไปจะไม่ทำผิดพลาดอีกต่อไป

และถ้าเมื่อคุณแยกแยะผลิตภัณฑ์หรือผลหาร คุณมีคำศัพท์ คุณ"โวลต์ซึ่งในนั้น คุณ- ตัวเลข เช่น 2 หรือ 5 นั่นคือค่าคงที่ จากนั้นอนุพันธ์ของตัวเลขนี้จะเท่ากับศูนย์ ดังนั้นพจน์ทั้งหมดจะเท่ากับศูนย์ (ในกรณีนี้จะกล่าวถึงในตัวอย่างที่ 10)

ข้อผิดพลาดทั่วไปอีกประการหนึ่งคือการแก้อนุพันธ์ของฟังก์ชันเชิงซ้อนโดยกลไกให้เป็นอนุพันธ์ของฟังก์ชันเชิงเดียว นั่นเป็นเหตุผล อนุพันธ์ของฟังก์ชันเชิงซ้อนมีการอุทิศบทความแยกต่างหาก แต่ก่อนอื่น เราจะเรียนรู้การหาอนุพันธ์ของฟังก์ชันง่ายๆ ก่อน

ระหว่างทาง คุณไม่สามารถทำได้โดยไม่เปลี่ยนการแสดงออก เมื่อต้องการทำเช่นนี้ คุณอาจต้องเปิดคู่มือในหน้าต่างใหม่ การกระทำที่มีพลังและรากและ การดำเนินการกับเศษส่วน .

หากคุณกำลังมองหาคำตอบของอนุพันธ์ของเศษส่วนที่มีกำลังและราก นั่นคือเมื่อฟังก์ชันมีลักษณะเช่นนี้ จากนั้นติดตามบทเรียน “อนุพันธ์ของผลบวกของเศษส่วนที่มีพลังและราก”

หากคุณมีงานเช่น จากนั้น คุณจะได้เรียนรู้บทเรียน “อนุพันธ์ของฟังก์ชันตรีโกณมิติอย่างง่าย”

ตัวอย่างทีละขั้นตอน - วิธีค้นหาอนุพันธ์

ตัวอย่างที่ 3ค้นหาอนุพันธ์ของฟังก์ชัน

สารละลาย. เรากำหนดส่วนของนิพจน์ฟังก์ชัน: นิพจน์ทั้งหมดแสดงถึงผลิตภัณฑ์ และตัวประกอบของมันคือผลรวม ในวินาทีที่คำศัพท์ตัวใดตัวหนึ่งมีค่าคงที่ เราใช้กฎการสร้างความแตกต่างของผลคูณ: อนุพันธ์ของผลิตภัณฑ์ของสองฟังก์ชันจะเท่ากับผลรวมของผลิตภัณฑ์ของแต่ละฟังก์ชันเหล่านี้ด้วยอนุพันธ์ของฟังก์ชันอื่น:

ต่อไป เราใช้กฎการหาผลรวมเชิงอนุพันธ์: อนุพันธ์ของผลรวมพีชคณิตของฟังก์ชันจะเท่ากับผลรวมพีชคณิตของอนุพันธ์ของฟังก์ชันเหล่านี้ ในกรณีของเรา ในแต่ละผลรวม เทอมที่สองจะมีเครื่องหมายลบ ในแต่ละผลรวมเราจะเห็นทั้งตัวแปรอิสระ โดยมีอนุพันธ์เท่ากับ 1 และค่าคงที่ (ตัวเลข) ซึ่งอนุพันธ์มีค่าเท่ากับศูนย์ ดังนั้น "X" จะกลายเป็นหนึ่ง และลบ 5 จะกลายเป็นศูนย์ ในนิพจน์ที่สอง "x" คูณด้วย 2 ดังนั้นเราจึงคูณสองด้วยหน่วยเดียวกันกับอนุพันธ์ของ "x" เราได้รับ ค่าต่อไปนี้อนุพันธ์:

เราแทนที่อนุพันธ์ที่พบเป็นผลรวมของผลิตภัณฑ์และรับอนุพันธ์ของฟังก์ชันทั้งหมดที่กำหนดตามเงื่อนไขของปัญหา:

ตัวอย่างที่ 4ค้นหาอนุพันธ์ของฟังก์ชัน

สารละลาย. เราจำเป็นต้องค้นหาอนุพันธ์ของผลหาร เราใช้สูตรในการหาความแตกต่างของผลหาร: อนุพันธ์ของผลหารของฟังก์ชันทั้งสองมีค่าเท่ากับเศษส่วน ซึ่งตัวเศษคือความแตกต่างระหว่างผลคูณของตัวส่วนกับอนุพันธ์ของตัวเศษและตัวเศษและอนุพันธ์ของ ตัวส่วน และตัวส่วนคือกำลังสองของตัวเศษเดิม เราได้รับ:

เราพบอนุพันธ์ของปัจจัยในตัวเศษในตัวอย่างที่ 2 แล้ว อย่าลืมว่าผลคูณซึ่งเป็นตัวประกอบตัวที่สองในตัวเศษในตัวอย่างปัจจุบันนั้นมีเครื่องหมายลบ:

หากคุณกำลังมองหาวิธีแก้ไขปัญหาโดยต้องหาอนุพันธ์ของฟังก์ชันซึ่งมีรากและกำลังมากมายอย่างต่อเนื่อง เช่น แล้วยินดีต้อนรับเข้าสู่ชั้นเรียน “อนุพันธ์ของผลบวกของเศษส่วนด้วยกำลังและราก” .

หากคุณต้องการเรียนรู้เพิ่มเติมเกี่ยวกับอนุพันธ์ของไซน์ โคไซน์ แทนเจนต์ และอื่นๆ ฟังก์ชันตรีโกณมิตินั่นคือเมื่อฟังก์ชันดูเหมือน แล้วบทเรียนสำหรับคุณ "อนุพันธ์ของฟังก์ชันตรีโกณมิติอย่างง่าย" .

ตัวอย่างที่ 5ค้นหาอนุพันธ์ของฟังก์ชัน

สารละลาย. ในฟังก์ชันนี้ เราจะเห็นผลิตภัณฑ์ ซึ่งหนึ่งในปัจจัยนั้นก็คือ รากที่สองจากตัวแปรอิสระซึ่งเป็นอนุพันธ์ที่เราคุ้นเคยในตารางอนุพันธ์ ตามกฎของความแตกต่างของผลิตภัณฑ์และ ค่าตารางอนุพันธ์ของรากที่สองที่เราได้รับ:

ตัวอย่างที่ 6ค้นหาอนุพันธ์ของฟังก์ชัน

สารละลาย. ในฟังก์ชันนี้ เราจะเห็นผลหารซึ่งเงินปันผลคือรากที่สองของตัวแปรอิสระ เมื่อใช้กฎการแยกความแตกต่างของผลหารซึ่งเราทำซ้ำและนำไปใช้ในตัวอย่างที่ 4 และค่าตารางของอนุพันธ์ของรากที่สอง เราได้:

หากต้องการกำจัดเศษส่วนในตัวเศษ ให้คูณทั้งเศษและส่วนด้วย

ซึ่งเราได้วิเคราะห์อนุพันธ์ที่ง่ายที่สุดและได้ทำความคุ้นเคยกับกฎของการสร้างความแตกต่างและบางส่วนด้วย วิธีการทางเทคนิคการหาอนุพันธ์ ดังนั้นหากคุณไม่เก่งเรื่องอนุพันธ์ของฟังก์ชันหรือบางจุดในบทความนี้ยังไม่ชัดเจน ให้อ่านบทเรียนข้างต้นก่อน โปรดใช้อารมณ์จริงจัง - เนื้อหาไม่เรียบง่าย แต่ฉันจะพยายามนำเสนออย่างเรียบง่ายและชัดเจนต่อไป

ในทางปฏิบัติ คุณต้องจัดการกับอนุพันธ์ของฟังก์ชันที่ซับซ้อนบ่อยครั้งมาก หรือเกือบทุกครั้ง เมื่อคุณได้รับมอบหมายงานให้ค้นหาอนุพันธ์

เราดูตารางตามกฎ (หมายเลข 5) เพื่อแยกความแตกต่างของฟังก์ชันที่ซับซ้อน:

ลองคิดดูสิ ก่อนอื่นมาใส่ใจกับรายการกันก่อน ที่นี่เรามีสองฟังก์ชัน - และ และฟังก์ชันที่พูดเป็นรูปเป็นร่างซ้อนอยู่ภายในฟังก์ชัน ฟังก์ชันประเภทนี้ (เมื่อฟังก์ชันหนึ่งซ้อนอยู่ภายในอีกฟังก์ชันหนึ่ง) เรียกว่าฟังก์ชันเชิงซ้อน

ฉันจะเรียกใช้ฟังก์ชัน ฟังก์ชั่นภายนอกและฟังก์ชัน – ฟังก์ชั่นภายใน (หรือซ้อนกัน).

- คำจำกัดความเหล่านี้ไม่ใช่ทฤษฎีและไม่ควรปรากฏในการออกแบบงานขั้นสุดท้าย ฉันใช้สำนวนที่ไม่เป็นทางการ "ฟังก์ชันภายนอก", "ฟังก์ชันภายใน" เท่านั้นเพื่อให้คุณเข้าใจเนื้อหาได้ง่ายขึ้น

เพื่อชี้แจงสถานการณ์ ให้พิจารณา:

ตัวอย่างที่ 1

ค้นหาอนุพันธ์ของฟังก์ชัน

ภายใต้ไซน์เราไม่ได้มีเพียงตัวอักษร "X" เท่านั้น แต่ยังมีนิพจน์ทั้งหมดด้วย ดังนั้นการค้นหาอนุพันธ์ทันทีจากตารางจะไม่ได้ผล นอกจากนี้เรายังสังเกตเห็นว่าเป็นไปไม่ได้ที่จะใช้กฎสี่ข้อแรกที่นี่ดูเหมือนว่าจะมีความแตกต่าง แต่ความจริงก็คือไซน์ไม่สามารถ "ฉีกเป็นชิ้น ๆ" ได้:

ใน ในตัวอย่างนี้จากคำอธิบายของฉันชัดเจนอยู่แล้วว่าฟังก์ชันคืออะไร ฟังก์ชั่นที่ซับซ้อนและพหุนามเป็นฟังก์ชันภายใน (การฝัง) และเป็นฟังก์ชันภายนอก

ขั้นตอนแรกสิ่งที่คุณต้องทำเมื่อหาอนุพันธ์ของฟังก์ชันเชิงซ้อนก็คือ ทำความเข้าใจว่าฟังก์ชันใดเป็นฟังก์ชันภายในและฟังก์ชันใดเป็นภายนอก.

ในกรณีที่ ตัวอย่างง่ายๆดูเหมือนชัดเจนว่าพหุนามฝังอยู่ใต้ไซน์ แต่จะเกิดอะไรขึ้นถ้าทุกอย่างไม่ชัดเจน? จะทราบได้อย่างไรว่าฟังก์ชันใดเป็นฟังก์ชันภายนอกและฟังก์ชันใดเป็นฟังก์ชันภายใน ในการทำเช่นนี้ฉันขอแนะนำให้ใช้เทคนิคต่อไปนี้ซึ่งสามารถทำได้ทั้งทางจิตใจหรือแบบร่าง

สมมติว่าเราจำเป็นต้องคำนวณค่าของนิพจน์บนเครื่องคิดเลข (แทนที่จะใช้ค่าใดค่าหนึ่งเป็นตัวเลขใดๆ ก็ได้)

เราจะคำนวณอะไรก่อน? ก่อนอื่นเลยคุณจะต้องดำเนินการต่อไปนี้: ดังนั้นพหุนามจะเป็นฟังก์ชันภายใน:

ประการที่สองจะต้องค้นหา ดังนั้น ไซน์ – จะเป็นฟังก์ชันภายนอก:

หลังจากที่เรา ขายหมดแล้วด้วยฟังก์ชันภายในและภายนอก ถึงเวลาที่จะใช้กฎการแยกความแตกต่างของฟังก์ชันที่ซับซ้อน .

มาเริ่มตัดสินใจกันเลย จากบทเรียน จะหาอนุพันธ์ได้อย่างไร?เราจำได้ว่าการออกแบบวิธีแก้ปัญหาสำหรับอนุพันธ์ใด ๆ มักจะเริ่มต้นเช่นนี้ - เราใส่นิพจน์ในวงเล็บแล้วใส่เส้นขีดที่มุมขวาบน:

ตอนแรกเราค้นหาอนุพันธ์ของฟังก์ชันภายนอก (ไซน์) ดูที่ตารางอนุพันธ์ของฟังก์ชันพื้นฐานแล้วสังเกตว่า . สูตรตารางทั้งหมดยังสามารถใช้ได้หากแทนที่ "x" ด้วยนิพจน์ที่ซับซ้อนในกรณีนี้:

โปรดทราบว่าฟังก์ชั่นภายใน ไม่เปลี่ยนแปลงเราไม่แตะต้องมัน.

มันค่อนข้างชัดเจนว่า

ผลลัพธ์ของการใช้สูตร ในรูปแบบสุดท้ายมีลักษณะดังนี้:

โดยปกติปัจจัยคงที่จะถูกวางไว้ที่จุดเริ่มต้นของนิพจน์:

หากมีความเข้าใจผิดให้เขียนวิธีแก้ปัญหาลงในกระดาษแล้วอ่านคำอธิบายอีกครั้ง

ตัวอย่างที่ 2

ค้นหาอนุพันธ์ของฟังก์ชัน

ตัวอย่างที่ 3

ค้นหาอนุพันธ์ของฟังก์ชัน

และเช่นเคย เราเขียนไว้ว่า:

ลองหาดูว่าเรามีฟังก์ชันภายนอกอยู่ที่ไหน และเรามีฟังก์ชันภายในอยู่ที่ไหน ในการทำเช่นนี้ เราพยายาม (ทางจิตใจหรือแบบร่าง) เพื่อคำนวณค่าของนิพจน์ที่ คุณควรทำอะไรก่อน? ก่อนอื่น คุณต้องคำนวณว่าฐานเท่ากับเท่าใด ดังนั้น พหุนามจึงเป็นฟังก์ชันภายใน:

และเมื่อถึงเวลานั้นเท่านั้นที่จะดำเนินการยกกำลัง ดังนั้น ฟังก์ชันยกกำลังจึงเป็นฟังก์ชันภายนอก:

ตามสูตรครับ ก่อนอื่นคุณต้องหาอนุพันธ์ของฟังก์ชันภายนอก ในกรณีนี้คือดีกรี มองหาในตาราง สูตรที่ต้องการ- เราทำซ้ำอีกครั้ง: สูตรตารางใด ๆ ใช้ได้ไม่เพียง แต่สำหรับ "X" เท่านั้น แต่ยังรวมถึงนิพจน์ที่ซับซ้อนด้วย- ดังนั้นผลลัพธ์ของการใช้กฎในการหาอนุพันธ์ของฟังก์ชันที่ซับซ้อน ต่อไป:

ฉันขอย้ำอีกครั้งว่าเมื่อเราหาอนุพันธ์ของฟังก์ชันภายนอก ฟังก์ชันภายในของเราจะไม่เปลี่ยนแปลง:

ตอนนี้สิ่งที่เหลืออยู่คือการหาอนุพันธ์ที่เรียบง่ายของฟังก์ชันภายในและปรับแต่งผลลัพธ์เล็กน้อย:

ตัวอย่างที่ 4

ค้นหาอนุพันธ์ของฟังก์ชัน

นี่เป็นตัวอย่างสำหรับ การตัดสินใจที่เป็นอิสระ(ตอบในตอนท้ายของบทเรียน)

เพื่อรวบรวมความเข้าใจของคุณเกี่ยวกับอนุพันธ์ของฟังก์ชันที่ซับซ้อน ฉันจะยกตัวอย่างโดยไม่มีความคิดเห็น พยายามคิดออกด้วยตัวเอง เหตุผลที่ฟังก์ชันภายนอกและฟังก์ชันภายในอยู่ที่ไหน เหตุใดงานจึงถูกแก้ไขด้วยวิธีนี้

ตัวอย่างที่ 5

ก) ค้นหาอนุพันธ์ของฟังก์ชัน

b) ค้นหาอนุพันธ์ของฟังก์ชัน

ตัวอย่างที่ 6

ค้นหาอนุพันธ์ของฟังก์ชัน

ที่นี่เรามีราก และเพื่อที่จะแยกแยะรากนั้น จะต้องแสดงเป็นพลัง ดังนั้นก่อนอื่นเราจึงนำฟังก์ชันมาอยู่ในรูปแบบที่เหมาะสมสำหรับการสร้างความแตกต่าง:

จากการวิเคราะห์ฟังก์ชัน เราได้ข้อสรุปว่าผลรวมของพจน์ทั้งสามเป็นฟังก์ชันภายใน และการยกกำลังเป็นฟังก์ชันภายนอก เราใช้กฎการแยกความแตกต่างของฟังก์ชันที่ซับซ้อน :

เราแสดงดีกรีเป็นราก (รูท) อีกครั้ง และสำหรับอนุพันธ์ของฟังก์ชันภายใน เราใช้กฎง่ายๆ เพื่อแยกความแตกต่างของผลรวม:

พร้อม. คุณยังสามารถใส่นิพจน์ในวงเล็บได้ ตัวส่วนร่วมและเขียนทุกอย่างเป็นเศษส่วนหนึ่ง สวยงามแน่นอน แต่เมื่อได้อนุพันธ์ระยะยาวที่ยุ่งยากก็อย่าทำแบบนี้ดีกว่า (สับสนง่าย ทำผิดโดยไม่จำเป็น และครูจะตรวจสอบไม่สะดวก)

ตัวอย่างที่ 7

ค้นหาอนุพันธ์ของฟังก์ชัน

นี่เป็นตัวอย่างให้คุณแก้ด้วยตัวเอง (ตอบในตอนท้ายของบทเรียน)

เป็นที่น่าสนใจที่จะทราบว่าบางครั้งแทนที่จะใช้กฎในการหาอนุพันธ์ของฟังก์ชันที่ซับซ้อน คุณสามารถใช้กฎในการหาอนุพันธ์ผลหาร แต่วิธีแก้ปัญหาดังกล่าวจะดูเหมือนเป็นการบิดเบือนที่ผิดปกติ นี่คือตัวอย่างทั่วไป:

ตัวอย่างที่ 8

ค้นหาอนุพันธ์ของฟังก์ชัน

ที่นี่คุณสามารถใช้กฎการหาอนุพันธ์ของผลหารได้ แต่จะทำกำไรได้มากกว่ามากในการค้นหาอนุพันธ์ผ่านกฎการแยกความแตกต่างของฟังก์ชันที่ซับซ้อน:

เราเตรียมฟังก์ชันสำหรับการสร้างความแตกต่าง - เราย้ายเครื่องหมายลบออกจากเครื่องหมายอนุพันธ์และเพิ่มโคไซน์เป็นตัวเศษ:

โคไซน์เป็นฟังก์ชันภายใน การยกกำลังเป็นฟังก์ชันภายนอก
ลองใช้กฎของเรา :

เราค้นหาอนุพันธ์ของฟังก์ชันภายในและรีเซ็ตโคไซน์กลับลงมา:

พร้อม. ในตัวอย่างที่พิจารณา สิ่งสำคัญคือต้องไม่สับสนกับสัญญาณต่างๆ ยังไงก็ลองแก้โดยใช้กฎดูครับ คำตอบจะต้องตรงกัน

ตัวอย่างที่ 9

ค้นหาอนุพันธ์ของฟังก์ชัน

นี่เป็นตัวอย่างให้คุณแก้ด้วยตัวเอง (ตอบในตอนท้ายของบทเรียน)

จนถึงตอนนี้เราได้ดูกรณีที่เรามีรังเพียงอันเดียวในฟังก์ชันที่ซับซ้อน ในงานภาคปฏิบัติ คุณมักจะพบอนุพันธ์ โดยที่เหมือนกับตุ๊กตาทำรัง มีอันหนึ่งอยู่ในอีกอันหนึ่ง มีฟังก์ชัน 3 หรือ 4-5 รายการที่ซ้อนกันในคราวเดียว

ตัวอย่างที่ 10

ค้นหาอนุพันธ์ของฟังก์ชัน

มาทำความเข้าใจกับไฟล์แนบของฟังก์ชันนี้กันดีกว่า เรามาลองคำนวณนิพจน์โดยใช้ค่าทดลองกันดีกว่า เราจะนับเครื่องคิดเลขได้อย่างไร?

ก่อนอื่นคุณต้องค้นหา ซึ่งหมายความว่าอาร์คไซน์เป็นการฝังที่ลึกที่สุด:

อาร์คไซน์ของอันนี้ควรถูกยกกำลังสอง:

และในที่สุด เราก็ยกเจ็ดขึ้นเป็นกำลัง:

นั่นคือในตัวอย่างนี้เรามีสามรายการ ฟังก์ชั่นที่แตกต่างกันและการฝังสองรายการ โดยฟังก์ชันด้านในสุดเป็นอาร์คไซน์ และฟังก์ชันด้านนอกสุดเป็นฟังก์ชันเลขชี้กำลัง

มาเริ่มตัดสินใจกันเลย

ตามกฎแล้ว ก่อนอื่น คุณต้องหาอนุพันธ์ของฟังก์ชันภายนอกก่อน เราดูตารางอนุพันธ์และค้นหาอนุพันธ์ของฟังก์ชันเลขชี้กำลัง ข้อแตกต่างเพียงอย่างเดียวคือแทนที่จะเป็น "x" เรามี การแสดงออกที่ซับซ้อนซึ่งไม่ได้ลบล้างความถูกต้องของสูตรนี้ ดังนั้น ผลลัพธ์ของการใช้กฎในการหาอนุพันธ์ของฟังก์ชันที่ซับซ้อน ต่อไป.

ระดับรายการ

อนุพันธ์ของฟังก์ชัน คู่มือที่ครอบคลุม (2019)

ลองจินตนาการถึงถนนเส้นตรงที่ตัดผ่านบริเวณเนินเขา นั่นคือขึ้นลงแต่ไม่เลี้ยวขวาหรือซ้าย หากแกนถูกชี้ในแนวนอนไปตามถนนและแนวตั้ง เส้นถนนจะคล้ายกับกราฟของฟังก์ชันต่อเนื่องบางอย่างมาก:

แกนเป็นระดับความสูงเป็นศูนย์ในชีวิตเราใช้ระดับน้ำทะเลเป็นมัน

เมื่อเราก้าวไปข้างหน้าตามถนนเช่นนั้น เราก็จะเลื่อนขึ้นหรือลงด้วย นอกจากนี้เรายังสามารถพูดได้ว่า: เมื่ออาร์กิวเมนต์เปลี่ยนไป (การเคลื่อนที่ไปตามแกน Abscissa) ค่าของฟังก์ชันจะเปลี่ยนไป (การเคลื่อนที่ไปตามแกนกำหนด) ทีนี้ลองคิดดูว่าจะกำหนด "ความชัน" ของถนนของเราได้อย่างไร? สิ่งนี้จะเป็นค่าอะไร? ง่ายมาก: ความสูงจะเปลี่ยนไปเท่าใดเมื่อเคลื่อนที่ไปข้างหน้า ระยะทางที่แน่นอน- แท้จริงแล้วบนถนนส่วนต่างๆ เคลื่อนไปข้างหน้า (ตามแกน x) ไปอีก 1 กิโลเมตร เราจะขึ้นหรือลงตาม ปริมาณที่แตกต่างกันเมตรสัมพันธ์กับระดับน้ำทะเล (ตามแนวแกนกำหนด)

เรามาแสดงถึงความก้าวหน้ากันเถอะ (อ่านว่า “เดลต้า x”)

ตัวอักษรกรีก (เดลต้า) มักใช้ในทางคณิตศาสตร์เป็นคำนำหน้าหมายถึง "การเปลี่ยนแปลง" นั่นคือ - นี่คือการเปลี่ยนแปลงปริมาณ - การเปลี่ยนแปลง; แล้วมันคืออะไร? ถูกต้องการเปลี่ยนแปลงขนาด

สิ่งสำคัญ: นิพจน์คือข้อมูลทั้งหมดเพียงตัวแปรเดียว อย่าแยก “เดลต้า” ออกจาก “x” หรือตัวอักษรอื่นใด!

กล่าวคือ ตัวอย่างเช่น .

เราก็เลยเคลื่อนไปข้างหน้าในแนวนอนโดย ถ้าเราเปรียบเทียบเส้นถนนกับกราฟของฟังก์ชัน แล้วเราจะระบุการเพิ่มขึ้นได้อย่างไร? แน่นอน, . นั่นคือเมื่อเราก้าวไปข้างหน้า เราก็สูงขึ้น

ค่านั้นง่ายต่อการคำนวณ: ถ้าในตอนแรกเราอยู่ที่ความสูงและหลังจากเคลื่อนที่แล้วเราก็พบว่าตัวเองอยู่ในที่สูงแล้ว หากจุดสิ้นสุดต่ำกว่าจุดเริ่มต้น จุดนั้นจะติดลบ ซึ่งหมายความว่าเราไม่ได้กำลังขึ้น แต่กำลังลง

กลับไปที่ "ความชัน": นี่คือค่าที่แสดงความสูงที่เพิ่มขึ้น (สูงชัน) เมื่อเคลื่อนที่ไปข้างหน้าหนึ่งหน่วยระยะทาง:

ทีนี้มาดูบนยอดเขากันดีกว่า หากคุณใช้จุดเริ่มต้นของส่วนนี้ครึ่งกิโลเมตรก่อนถึงยอดเขา และส่วนท้ายอีกครึ่งกิโลเมตรหลังจากนั้น คุณจะเห็นว่าความสูงเกือบจะเท่ากัน

นั่นคือตามตรรกะของเรา ปรากฎว่าความชันตรงนี้เกือบเท่ากับศูนย์ ซึ่งไม่เป็นความจริงอย่างชัดเจน แค่ระยะทางกว่ากิโลเมตร อะไรๆ ก็เปลี่ยนแปลงได้มากมาย พื้นที่ขนาดเล็กจะต้องได้รับการพิจารณาให้เพียงพอและมากขึ้น การประเมินที่แม่นยำความชัน ตัวอย่างเช่น หากคุณวัดการเปลี่ยนแปลงของความสูงเมื่อคุณเคลื่อนที่ไปหนึ่งเมตร ผลลัพธ์ก็จะแม่นยำมากขึ้น แต่ความแม่นยำขนาดนี้ก็อาจไม่เพียงพอสำหรับเรา เพราะหากมีเสาค้ำอยู่กลางถนนเราก็ผ่านไปได้ แล้วเราควรเลือกระยะไหน? เซนติเมตร? มิลลิเมตร? น้อยมาก!

ใน ชีวิตจริงการวัดระยะทางเป็นมิลลิเมตรที่ใกล้ที่สุดก็เกินพอแล้ว แต่นักคณิตศาสตร์มักมุ่งมั่นเพื่อความสมบูรณ์แบบอยู่เสมอ จึงได้คิดค้นแนวคิดขึ้นมา ไม่มีที่สิ้นสุดนั่นคือค่าสัมบูรณ์น้อยกว่าตัวเลขใดๆ ที่เราตั้งชื่อได้ ตัวอย่างเช่น คุณพูดว่า: หนึ่งล้านล้าน! มากน้อยแค่ไหน? แล้วคุณหารตัวเลขนี้ด้วย - แล้วมันจะยิ่งน้อยลงไปอีก และอื่นๆ หากเราต้องการเขียนว่าปริมาณเป็นจำนวนไม่สิ้นสุด เราจะเขียนดังนี้ (เราอ่านว่า “x มีแนวโน้มเป็นศูนย์”) มันสำคัญมากที่จะต้องเข้าใจ ว่าเลขนี้ไม่ใช่ศูนย์!แต่อยู่ใกล้มาก ซึ่งหมายความว่าคุณสามารถหารด้วยมันได้.

แนวคิดที่ตรงข้ามกับ infinitesimal นั้นมีขนาดใหญ่เป็นอนันต์ () คุณอาจเคยเจอมันมาก่อนเมื่อคุณกำลังศึกษาเรื่องอสมการ: จำนวนนี้เป็นแบบโมดูโลมากกว่าจำนวนใดๆ ที่คุณคิดได้ หากคุณหาจำนวนมากที่สุดเท่าที่จะเป็นไปได้ แค่คูณด้วย 2 แล้วคุณจะได้จำนวนที่มากขึ้นอีก และไม่มีที่สิ้นสุด นอกจากนี้จะเกิดอะไรขึ้น อันที่จริง ใหญ่เป็นอนันต์และเล็กเป็นอนันต์เป็นสิ่งที่ตรงกันข้ามกัน นั่นคือ at และในทางกลับกัน: at

ตอนนี้เรากลับมาที่ถนนของเรากันดีกว่า ความชันที่คำนวณได้อย่างเหมาะสมคือความชันที่คำนวณสำหรับส่วนที่เล็กที่สุดของเส้นทาง นั่นคือ:

ฉันสังเกตว่าด้วยการกระจัดที่น้อยที่สุด การเปลี่ยนแปลงความสูงก็จะไม่มีขอบเขตเช่นกัน แต่ขอเตือนคุณว่าค่าน้อยที่สุดไม่ได้หมายความว่าเท่ากับศูนย์ หากคุณหารจำนวนที่น้อยที่สุดด้วยกัน คุณจะได้จำนวนสามัญที่สมบูรณ์ เช่น นั่นคือค่าเล็กๆ ค่าหนึ่งสามารถมีขนาดใหญ่กว่าค่าอื่นได้อย่างแน่นอน

ทั้งหมดนี้เพื่ออะไร? ถนน ความชัน... เราไม่ได้ไปแรลลี่รถยนต์ แต่เรากำลังสอนคณิตศาสตร์ และในทางคณิตศาสตร์ทุกอย่างเหมือนกันทุกประการ ต่างกันแค่เรียกต่างกันเท่านั้น

แนวคิดเรื่องอนุพันธ์

อนุพันธ์ของฟังก์ชันคืออัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์สำหรับการเพิ่มอาร์กิวเมนต์เพียงเล็กน้อย

ทีละน้อยในทางคณิตศาสตร์พวกเขาเรียกว่าการเปลี่ยนแปลง ขอบเขตที่อาร์กิวเมนต์ () เปลี่ยนแปลงเมื่อเคลื่อนที่ไปตามแกนเรียกว่า อาร์กิวเมนต์เพิ่มขึ้นและถูกกำหนดไว้ว่าฟังก์ชัน (ความสูง) มีการเปลี่ยนแปลงไปมากน้อยเพียงใดเมื่อเคลื่อนที่ไปข้างหน้าตามแกนตามระยะทาง เพิ่มฟังก์ชันและถูกกำหนดไว้

ดังนั้นอนุพันธ์ของฟังก์ชันคืออัตราส่วนต่อเมื่อ เราแสดงอนุพันธ์ด้วยตัวอักษรเดียวกันกับฟังก์ชัน โดยจะมีเฉพาะจำนวนเฉพาะที่มุมขวาบนเท่านั้น: หรือเพียงแค่ ลองเขียนสูตรอนุพันธ์โดยใช้สัญลักษณ์เหล่านี้:

เหมือนกับการเปรียบเทียบกับถนน เมื่อฟังก์ชันเพิ่มขึ้น อนุพันธ์จะเป็นค่าบวก และเมื่อมันลดลง จะเป็นค่าลบ

อนุพันธ์สามารถเท่ากับศูนย์ได้หรือไม่? แน่นอน. เช่น ถ้าเราขับรถบนถนนแนวราบ ความชันจะเป็นศูนย์ และมันเป็นเรื่องจริงที่ความสูงไม่เปลี่ยนแปลงเลย เช่นเดียวกับอนุพันธ์: อนุพันธ์ ฟังก์ชั่นคงที่(ค่าคงที่) เท่ากับศูนย์:

เนื่องจากการเพิ่มขึ้นของฟังก์ชันดังกล่าวจะเท่ากับศูนย์สำหรับค่าใดๆ

ลองจำตัวอย่างยอดเขากัน ปรากฎว่าสามารถจัดเรียงส่วนท้ายของเซ็กเมนต์ได้ตามต้องการ ด้านที่แตกต่างกันจากด้านบนเพื่อให้ความสูงที่ปลายเท่ากันนั่นคือส่วนนั้นขนานกับแกน:

แต่ส่วนขนาดใหญ่เป็นสัญญาณของการวัดที่ไม่ถูกต้อง เราจะยกส่วนของเราขึ้นขนานกับตัวมันเอง จากนั้นความยาวของมันจะลดลง

ในที่สุด เมื่อเราเข้าใกล้ด้านบนสุดอย่างไม่สิ้นสุด ความยาวของส่วนนั้นก็จะสั้นลง แต่ในขณะเดียวกันก็ยังคงขนานกับแกนนั่นคือความแตกต่างของความสูงที่ปลายมีค่าเท่ากับศูนย์ (ไม่ได้มีแนวโน้มว่าจะเป็นเช่นนั้น แต่เท่ากับ) ดังนั้นอนุพันธ์

สิ่งนี้สามารถเข้าใจได้ด้วยวิธีนี้: เมื่อเรายืนอยู่ที่จุดสูงสุด การขยับไปทางซ้ายหรือขวาเล็กน้อยจะทำให้ความสูงของเราเปลี่ยนแปลงไปโดยประมาท

นอกจากนี้ยังมีคำอธิบายเกี่ยวกับพีชคณิตล้วนๆ อีกด้วย: ทางด้านซ้ายของจุดยอดฟังก์ชันจะเพิ่มขึ้น และทางด้านขวาจะลดลง อย่างที่เราทราบไปก่อนหน้านี้ เมื่อฟังก์ชันเพิ่มขึ้น อนุพันธ์จะเป็นค่าบวก และเมื่อมันลดลง จะเป็นค่าลบ แต่มันเปลี่ยนได้อย่างราบรื่นโดยไม่ต้องกระโดด (เนื่องจากถนนไม่เปลี่ยนความลาดชันทุกที่) ดังนั้นระหว่างลบกับ ค่าบวกจะต้องมีอย่างแน่นอน มันจะเป็นจุดที่ฟังก์ชันไม่เพิ่มขึ้นหรือลดลง - ที่จุดยอด

เช่นเดียวกับรางน้ำ (พื้นที่ที่ฟังก์ชันทางด้านซ้ายลดลงและทางด้านขวาเพิ่มขึ้น):

เพิ่มเติมเล็กน้อยเกี่ยวกับการเพิ่มขึ้น

ดังนั้นเราจึงเปลี่ยนข้อโต้แย้งเป็นขนาด เราเปลี่ยนจากค่าอะไร? ตอนนี้ (ข้อโต้แย้ง) กลายเป็นอะไรไปแล้ว? เราสามารถเลือกจุดใดก็ได้ และตอนนี้ เราจะเต้นจากจุดนั้น

พิจารณาจุดที่มีพิกัด ค่าของฟังก์ชันในนั้นเท่ากัน จากนั้นเราก็ทำการเพิ่มแบบเดียวกัน: เราเพิ่มพิกัดด้วย อะไรตอนนี้? ข้อโต้แย้งที่เท่าเทียมกัน- ง่ายมาก: . ตอนนี้ค่าของฟังก์ชันเป็นเท่าใด? อาร์กิวเมนต์ไปที่ไหน ฟังก์ชันก็เช่นกัน: . แล้วการเพิ่มฟังก์ชันล่ะ? ไม่มีอะไรใหม่: นี่ยังคงเป็นจำนวนที่ฟังก์ชันเปลี่ยนไป:

ฝึกหาส่วนเพิ่ม:

  1. ค้นหาส่วนเพิ่มของฟังก์ชัน ณ จุดที่ส่วนเพิ่มของอาร์กิวเมนต์เท่ากับ
  2. เช่นเดียวกับฟังก์ชัน ณ จุดหนึ่ง

โซลูชั่น:

ใน จุดที่แตกต่างกันด้วยการเพิ่มอาร์กิวเมนต์เดียวกัน การเพิ่มฟังก์ชันจะแตกต่างกัน ซึ่งหมายความว่าอนุพันธ์ในแต่ละจุดจะแตกต่างกัน (เราคุยกันเรื่องนี้ตั้งแต่เริ่มต้น - ความชันของถนนแตกต่างกันในแต่ละจุด) ดังนั้นเวลาเราเขียนอนุพันธ์เราต้องระบุว่าจุดไหน:

ฟังก์ชั่นพลังงาน

ฟังก์ชันยกกำลังคือฟังก์ชันที่มีการโต้แย้งในระดับหนึ่ง (ตรรกะใช่ไหม)

ยิ่งกว่านั้น - ในระดับใด ๆ : .

กรณีที่ง่ายที่สุด- นี่คือเมื่อเลขชี้กำลัง:

ลองหาอนุพันธ์ของมัน ณ จุดหนึ่งกัน จำคำจำกัดความของอนุพันธ์:

ข้อโต้แย้งจึงเปลี่ยนจากเป็น ฟังก์ชั่นเพิ่มขึ้นเท่าไหร่?

เพิ่มขึ้นเป็นเช่นนี้ แต่ฟังก์ชัน ณ จุดใดก็ตามจะเท่ากับอาร์กิวเมนต์ของมัน นั่นเป็นเหตุผล:

อนุพันธ์มีค่าเท่ากับ:

อนุพันธ์ของเท่ากับ:

b) ตอนนี้พิจารณา ฟังก์ชันกำลังสอง (): .

ทีนี้มาจำไว้ว่า ซึ่งหมายความว่าสามารถละเลยค่าของการเพิ่มขึ้นได้ เนื่องจากมีค่าเพียงเล็กน้อย ดังนั้นจึงไม่มีนัยสำคัญเมื่อเทียบกับพื้นหลังของคำอื่น:

ดังนั้นเราจึงมีกฎอีกข้อหนึ่ง:

c) เราดำเนินการต่อในซีรีส์เชิงตรรกะ: .

นิพจน์นี้สามารถทำให้ง่ายขึ้นได้หลายวิธี: เปิดวงเล็บแรกโดยใช้สูตรสำหรับการคูณแบบย่อของกำลังสามของผลรวม หรือแยกตัวประกอบนิพจน์ทั้งหมดโดยใช้ผลต่างของสูตรลูกบาศก์ ลองทำด้วยตัวเองโดยใช้วิธีการที่แนะนำ

ดังนั้นฉันจึงได้สิ่งต่อไปนี้:

และอีกครั้งให้เราจำไว้ ซึ่งหมายความว่าเราสามารถละเลยข้อกำหนดทั้งหมดที่มี:

เราได้รับ: .

d) สามารถรับกฎที่คล้ายกันสำหรับมหาอำนาจ:

e) ปรากฎว่ากฎนี้สามารถวางนัยทั่วไปสำหรับฟังก์ชันกำลังที่มีเลขชี้กำลังตามใจชอบ ไม่ใช่จำนวนเต็มด้วยซ้ำ:

(2)

กฎสามารถกำหนดได้ในคำว่า: “ระดับจะถูกยกไปข้างหน้าเป็นค่าสัมประสิทธิ์แล้วลดลงด้วย ”

เราจะพิสูจน์กฎนี้ในภายหลัง (เกือบจะในตอนท้ายสุด) ตอนนี้เรามาดูตัวอย่างบางส่วนกัน ค้นหาอนุพันธ์ของฟังก์ชัน:

  1. (ในสองวิธี: โดยสูตรและการใช้คำจำกัดความของอนุพันธ์ - โดยการคำนวณการเพิ่มขึ้นของฟังก์ชัน)
  1. - เชื่อหรือไม่ นี่คือฟังก์ชันกำลัง หากคุณมีคำถามเช่น “เป็นอย่างไรบ้าง? ปริญญาอยู่ที่ไหน?” จำหัวข้อ “” ไว้!
    ใช่ ใช่ รูตก็เป็นดีกรีเช่นกัน เป็นเศษส่วนเท่านั้น:
    ซึ่งหมายความว่ารากที่สองของเราเป็นเพียงกำลังที่มีเลขชี้กำลัง:
    .
    เราค้นหาอนุพันธ์โดยใช้สูตรที่เพิ่งเรียนรู้:

    หากมาถึงจุดนี้ไม่ชัดเจนอีกครั้ง ย้ำหัวข้อ “”!!! (ประมาณปริญญากับ ตัวบ่งชี้เชิงลบ)

  2. - ตอนนี้เลขชี้กำลัง:

    และตอนนี้ผ่านคำจำกัดความ (ลืมไปแล้วหรือยัง?):
    ;
    .
    ตามปกติแล้ว เราละเลยคำที่มี:
    .

  3. - การรวมกันของกรณีก่อนหน้า: .

ฟังก์ชันตรีโกณมิติ

เราจะใช้ข้อเท็จจริงข้อหนึ่งจากคณิตศาสตร์ชั้นสูงดังนี้:

ด้วยการแสดงออก

คุณจะได้เรียนรู้หลักฐานในปีแรกของการเรียนในสถาบัน (และเพื่อจะไปถึงจุดนั้น คุณจะต้องผ่านการสอบ Unified State ด้วย) ตอนนี้ฉันจะแสดงเป็นภาพกราฟิก:

เราจะเห็นว่าเมื่อไม่มีฟังก์ชัน - จุดบนกราฟจะถูกตัดออก แต่ยิ่งใกล้กับค่ามากเท่าไร ฟังก์ชันก็จะยิ่งเข้าใกล้มากขึ้นเท่านั้น นี่คือสิ่งที่ "จุดมุ่งหมาย"

นอกจากนี้ คุณสามารถตรวจสอบกฎนี้ได้โดยใช้เครื่องคิดเลข ใช่ ใช่ อย่าเพิ่งอาย หยิบเครื่องคิดเลขมา เรายังไม่ถึงการสอบ Unified State

เรามาลองกันดู: ;

อย่าลืมเปลี่ยนเครื่องคิดเลขของคุณเป็นโหมดเรเดียน!

ฯลฯ เราจะเห็นว่ายิ่งน้อยค่าของอัตราส่วนก็จะยิ่งใกล้มากขึ้นเท่านั้น

ก) พิจารณาฟังก์ชัน ตามปกติเราจะหาส่วนเพิ่มของมัน:

ลองเปลี่ยนผลต่างของไซน์ให้เป็นผลคูณกัน ในการทำเช่นนี้เราใช้สูตร (จำหัวข้อ ""): .

ตอนนี้อนุพันธ์:

มาทดแทนกัน: . จากนั้นสำหรับสิ่งเล็กน้อย มันก็ไม่สิ้นสุดเช่นกัน: นิพจน์สำหรับจะอยู่ในรูปแบบ:

และตอนนี้เราจำมันได้ด้วยพจน์นี้ และจะเกิดอะไรขึ้นหากสามารถละเลยปริมาณที่น้อยที่สุดไปเป็นผลรวมได้ (นั่นคือ ที่)

ดังนั้นเราจึงได้กฎต่อไปนี้: อนุพันธ์ของไซน์เท่ากับโคไซน์:

สิ่งเหล่านี้เป็นอนุพันธ์พื้นฐาน (“ตาราง”) นี่คือหนึ่งในรายการ:

ต่อมาเราจะเพิ่มอีกสองสามอย่าง แต่สิ่งเหล่านี้สำคัญที่สุดเนื่องจากมีการใช้บ่อยที่สุด

ฝึกฝน:

  1. ค้นหาอนุพันธ์ของฟังก์ชันที่จุดหนึ่ง
  2. ค้นหาอนุพันธ์ของฟังก์ชัน

โซลูชั่น:

  1. ก่อนอื่น มาหาอนุพันธ์กันก่อน มุมมองทั่วไปแล้วแทนค่าของมัน:
    ;
    .
  2. ตรงนี้เรามีบางอย่างที่คล้ายกับฟังก์ชันกำลัง เราลองพาเธอไป
    มุมมองปกติ:
    .
    เยี่ยมมาก ตอนนี้คุณสามารถใช้สูตร:
    .
    .
  3. - เออ.....นี่มันอะไรเนี่ย????

โอเค คุณพูดถูก เรายังไม่รู้ว่าจะหาอนุพันธ์แบบนั้นได้อย่างไร ที่นี่เรามีฟังก์ชันหลายประเภทรวมกัน หากต้องการทำงานร่วมกับพวกเขา คุณต้องเรียนรู้กฎเพิ่มเติมอีกสองสามข้อ:

เลขชี้กำลังและลอการิทึมธรรมชาติ

มีฟังก์ชันในคณิตศาสตร์ซึ่งมีอนุพันธ์ของค่าใดๆ เท่ากับค่าของฟังก์ชันนั้นในเวลาเดียวกัน เรียกว่า “เลขชี้กำลัง” และเป็นฟังก์ชันเลขชี้กำลัง

พื้นฐานของฟังก์ชันนี้คือค่าคงที่ - เป็นค่าอนันต์ ทศนิยมนั่นคือจำนวนอตรรกยะ (เช่น) มันถูกเรียกว่า "หมายเลขออยเลอร์" ซึ่งเป็นสาเหตุที่เขียนแทนด้วยตัวอักษร

ดังนั้นกฎ:

จำง่ายมาก

เอาล่ะอย่าไปไกลเรามาดูกันทันที ฟังก์ชันผกผัน- ฟังก์ชันใดเป็นฟังก์ชันผกผันของฟังก์ชันเลขชี้กำลัง ลอการิทึม:

ในกรณีของเรา ฐานคือตัวเลข:

ลอการิทึมดังกล่าว (นั่นคือลอการิทึมที่มีฐาน) เรียกว่า "ธรรมชาติ" และเราใช้สัญลักษณ์พิเศษสำหรับมัน: เราเขียนแทน

มันเท่ากับอะไร? แน่นอน.

อนุพันธ์ของลอการิทึมธรรมชาตินั้นง่ายมาก:

ตัวอย่าง:

  1. ค้นหาอนุพันธ์ของฟังก์ชัน
  2. อนุพันธ์ของฟังก์ชันคืออะไร?

คำตอบ: ผู้แสดงสินค้าและ ลอการิทึมธรรมชาติ- ฟังก์ชั่นมีความเรียบง่ายไม่ซ้ำใครในแง่ของอนุพันธ์ ฟังก์ชันเอ็กซ์โปเนนเชียลและลอการิทึมที่มีฐานอื่นจะมีอนุพันธ์ที่แตกต่างกัน ซึ่งเราจะวิเคราะห์ในภายหลัง มาดูกฎกันดีกว่าความแตกต่าง

กฎของความแตกต่าง

กฎของอะไร? อีกครั้ง คำศัพท์ใหม่, อีกครั้ง?!...

ความแตกต่างเป็นกระบวนการหาอนุพันธ์

นั่นคือทั้งหมดที่ คุณสามารถเรียกกระบวนการนี้ว่าอะไรอีกในคำเดียว? ไม่ใช่อนุพันธ์... นักคณิตศาสตร์เรียกอนุพันธ์ว่าการเพิ่มขึ้นของฟังก์ชันที่เท่ากัน คำนี้มาจากภาษาละตินว่า differentia - ความแตกต่าง ที่นี่.

เมื่อได้รับกฎเหล่านี้ทั้งหมด เราจะใช้สองฟังก์ชัน เช่น และ นอกจากนี้เรายังต้องมีสูตรสำหรับการเพิ่ม:

มีกฎทั้งหมด 5 ข้อ

ค่าคงที่ถูกนำออกจากเครื่องหมายอนุพันธ์

ถ้า-บ้าง จำนวนคงที่(คงที่) จากนั้น

แน่นอนว่ากฎนี้ยังใช้ได้กับความแตกต่าง:

มาพิสูจน์กัน ปล่อยให้มันเป็นไปหรือง่ายกว่านั้น

ตัวอย่าง.

ค้นหาอนุพันธ์ของฟังก์ชัน:

  1. ณ จุดหนึ่ง;
  2. ณ จุดหนึ่ง;
  3. ณ จุดหนึ่ง;
  4. ตรงจุด

โซลูชั่น:

  1. (อนุพันธ์จะเท่ากันทุกจุดเนื่องจากอันนี้ ฟังก์ชันเชิงเส้น, จดจำ?);

อนุพันธ์ของผลิตภัณฑ์

ทุกอย่างคล้ายกันที่นี่: เข้ามาเลย คุณลักษณะใหม่และหาส่วนเพิ่ม:

อนุพันธ์:

ตัวอย่าง:

  1. ค้นหาอนุพันธ์ของฟังก์ชันและ;
  2. ค้นหาอนุพันธ์ของฟังก์ชันที่จุดหนึ่ง

โซลูชั่น:

อนุพันธ์ของฟังก์ชันเลขชี้กำลัง

ตอนนี้ความรู้ของคุณก็เพียงพอแล้วที่จะเรียนรู้วิธีค้นหาอนุพันธ์ของฟังก์ชันเอ็กซ์โปเนนเชียล ไม่ใช่แค่เลขยกกำลัง (คุณลืมไปแล้วหรือว่าสิ่งนั้นคืออะไร?)

แล้วเลขไหนล่ะ..

เรารู้อนุพันธ์ของฟังก์ชันแล้ว ลองลดฟังก์ชันของเราให้เป็นฐานใหม่:

สำหรับสิ่งนี้เราจะใช้ กฎง่ายๆ- แล้ว:

มันได้ผล ทีนี้ลองหาอนุพันธ์ และอย่าลืมว่าฟังก์ชันนี้ซับซ้อน

มันได้ผลเหรอ?

ที่นี่ตรวจสอบตัวเอง:

สูตรนี้ดูคล้ายกับอนุพันธ์ของเลขชี้กำลังมาก เหมือนเดิม มันยังคงเหมือนเดิม มีเพียงตัวประกอบเท่านั้นที่ปรากฏ ซึ่งเป็นเพียงตัวเลข แต่ไม่ใช่ตัวแปร

ตัวอย่าง:
ค้นหาอนุพันธ์ของฟังก์ชัน:

คำตอบ:

นี่เป็นเพียงตัวเลขที่ไม่สามารถคำนวณได้หากไม่มีเครื่องคิดเลขนั่นคือไม่สามารถเขียนลงไปได้อีก ในรูปแบบที่เรียบง่าย- ดังนั้นเราจึงทิ้งคำตอบไว้ในรูปแบบนี้

อนุพันธ์ของฟังก์ชันลอการิทึม

มันคล้ายกันตรงนี้: คุณรู้อนุพันธ์ของลอการิทึมธรรมชาติแล้ว:

ดังนั้น หากต้องการค้นหาลอการิทึมตามอำเภอใจที่มีฐานต่างกัน เช่น

เราจำเป็นต้องลดลอการิทึมนี้ลงเหลือฐาน คุณจะเปลี่ยนฐานของลอการิทึมได้อย่างไร? ฉันหวังว่าคุณจะจำสูตรนี้:

ตอนนี้เราจะเขียนแทน:

ตัวส่วนเป็นเพียงค่าคงที่ (จำนวนคงที่โดยไม่มีตัวแปร) อนุพันธ์ได้มาง่ายมาก:

อนุพันธ์ของเลขชี้กำลังและ ฟังก์ชันลอการิทึมแทบไม่เคยปรากฏในการสอบ Unified State แต่การรู้จักพวกเขาก็ไม่เสียหาย

อนุพันธ์ของฟังก์ชันเชิงซ้อน

"ฟังก์ชันที่ซับซ้อน" คืออะไร? ไม่ นี่ไม่ใช่ลอการิทึม และไม่ใช่อาร์กแทนเจนต์ ฟังก์ชันเหล่านี้อาจเข้าใจได้ยาก (แม้ว่าคุณจะพบว่าลอการิทึมยาก ลองอ่านหัวข้อ "ลอการิทึม" แล้วคุณจะโอเค) แต่จากมุมมองทางคณิตศาสตร์ คำว่า "ซับซ้อน" ไม่ได้หมายความว่า "ยาก"

ลองนึกภาพสายพานลำเลียงขนาดเล็ก: คนสองคนกำลังนั่งและทำอะไรบางอย่างกับวัตถุบางอย่าง ตัวอย่างเช่น อันแรกห่อแท่งช็อกโกแลตด้วยกระดาษห่อ และอันที่สองผูกด้วยริบบิ้น ผลลัพธ์ที่ได้คือวัตถุที่ประกอบขึ้นเป็นแท่งช็อกโกแลตที่พันและผูกด้วยริบบิ้น หากต้องการกินช็อกโกแลตแท่ง คุณต้องทำย้อนกลับ ลำดับย้อนกลับ.

มาสร้างไปป์ไลน์ทางคณิตศาสตร์ที่คล้ายกันกัน: ก่อนอื่นเราจะหาโคไซน์ของตัวเลขแล้วยกกำลังสองของจำนวนผลลัพธ์ ดังนั้นเราจึงได้รับตัวเลข (ช็อคโกแลต) ฉันหาโคไซน์ของมัน (กระดาษห่อ) แล้วคุณก็ยกกำลังสองสิ่งที่ฉันได้ (ผูกมันด้วยริบบิ้น) เกิดอะไรขึ้น การทำงาน. นี่คือตัวอย่างของฟังก์ชันที่ซับซ้อน: เมื่อเราต้องการหาค่าของมัน เราจะดำเนินการแรกกับตัวแปรโดยตรง จากนั้นจึงดำเนินการที่สองกับผลลัพธ์จากฟังก์ชันแรก

เราสามารถทำขั้นตอนเดียวกันในลำดับย้อนกลับได้ง่ายๆ ขั้นแรกให้คุณยกกำลังสอง จากนั้นฉันจะหาโคไซน์ของตัวเลขผลลัพธ์: เป็นเรื่องง่ายที่จะคาดเดาว่าผลลัพธ์จะแตกต่างออกไปเกือบตลอดเวลา คุณสมบัติที่สำคัญฟังก์ชันที่ซับซ้อน: เมื่อลำดับของการกระทำเปลี่ยนแปลง ฟังก์ชันก็จะเปลี่ยนไป

กล่าวอีกนัยหนึ่ง ฟังก์ชันที่ซับซ้อนคือฟังก์ชันที่มีอาร์กิวเมนต์เป็นฟังก์ชันอื่น: .

สำหรับตัวอย่างแรก .

ตัวอย่างที่สอง: (สิ่งเดียวกัน) -

การกระทำที่เราทำครั้งสุดท้ายจะถูกเรียกว่า ฟังก์ชั่น "ภายนอก"และการกระทำนั้นเกิดขึ้นก่อน - ตามนั้น ฟังก์ชั่น "ภายใน"(ชื่อเหล่านี้เป็นชื่อที่ไม่เป็นทางการ ฉันใช้เพื่ออธิบายเนื้อหาเป็นภาษาง่ายๆ เท่านั้น)

ลองพิจารณาด้วยตัวเองว่าฟังก์ชันใดเป็นฟังก์ชันภายนอกและฟังก์ชันใดภายใน:

คำตอบ:การแยกฟังก์ชันภายในและภายนอกจะคล้ายกันมากกับการเปลี่ยนแปลงตัวแปร ตัวอย่างเช่น ในฟังก์ชัน

  1. เราจะดำเนินการใดก่อน? ก่อนอื่น มาคำนวณไซน์ก่อน แล้วค่อยยกกำลังสามเท่านั้น ซึ่งหมายความว่ามันเป็นฟังก์ชันภายใน แต่เป็นฟังก์ชันภายนอก
    และฟังก์ชันดั้งเดิมคือองค์ประกอบ: .
  2. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .
  3. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .
  4. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .
  5. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .

เราเปลี่ยนตัวแปรและรับฟังก์ชัน

ทีนี้ เราจะแยกแท่งช็อกโกแลตออกมาแล้วมองหาอนุพันธ์ ขั้นตอนจะกลับกันเสมอ ขั้นแรกเรามองหาอนุพันธ์ของฟังก์ชันภายนอก จากนั้นจึงคูณผลลัพธ์ด้วยอนุพันธ์ของฟังก์ชันภายใน สัมพันธ์กับตัวอย่างดั้งเดิม ดูเหมือนว่า:

อีกตัวอย่างหนึ่ง:

ในที่สุดเรามากำหนดกฎอย่างเป็นทางการกัน:

อัลกอริทึมในการค้นหาอนุพันธ์ของฟังก์ชันเชิงซ้อน:

ดูเหมือนง่ายใช่มั้ย?

ตรวจสอบด้วยตัวอย่าง:

โซลูชั่น:

1) ภายใน: ;

ภายนอก: ;

2) ภายใน: ;

(อย่าเพิ่งพยายามตัดมันออกตอนนี้! ไม่มีอะไรออกมาจากใต้โคไซน์จำได้ไหม?)

3) ภายใน: ;

ภายนอก: ;

ชัดเจนทันทีว่านี่เป็นฟังก์ชันที่ซับซ้อนสามระดับ: ท้ายที่สุดแล้วนี่เป็นฟังก์ชันที่ซับซ้อนในตัวเองอยู่แล้วและเรายังแยกรากออกจากมันด้วยนั่นคือเราทำการกระทำที่สาม (เราใส่ช็อคโกแลตลงใน กระดาษห่อและมีริบบิ้นอยู่ในกระเป๋าเอกสาร) แต่ไม่มีเหตุผลที่ต้องกลัว: เราจะยังคง "แกะ" ฟังก์ชันนี้ในลำดับเดิมเหมือนปกติ: จากจุดสิ้นสุด

นั่นคือ ขั้นแรกเราแยกความแตกต่างของราก จากนั้นจึงแยกโคไซน์ และเฉพาะนิพจน์ในวงเล็บเท่านั้น แล้วเราก็คูณมันทั้งหมด.

ในกรณีเช่นนี้ จะสะดวกในการนับจำนวนการกระทำ นั่นคือลองจินตนาการถึงสิ่งที่เรารู้ เราจะดำเนินการตามลำดับใดเพื่อคำนวณค่าของนิพจน์นี้ ลองดูตัวอย่าง:

ยิ่งดำเนินการในภายหลังฟังก์ชันที่เกี่ยวข้องก็จะยิ่งมี "ภายนอก" มากขึ้นเท่านั้น ลำดับของการกระทำเหมือนกับเมื่อก่อน:

โดยทั่วไปการทำรังจะมี 4 ระดับ เรามากำหนดแนวทางการดำเนินการกัน

1. การแสดงออกที่รุนแรง -

2. รูท -

3. ไซน์. -

4. สี่เหลี่ยม. -

5. นำทั้งหมดมารวมกัน:

อนุพันธ์ สั้น ๆ เกี่ยวกับสิ่งสำคัญ

อนุพันธ์ของฟังก์ชัน- อัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์สำหรับการเพิ่มอาร์กิวเมนต์เพียงเล็กน้อย:

อนุพันธ์พื้นฐาน:

กฎของความแตกต่าง:

ค่าคงที่ถูกนำออกจากเครื่องหมายอนุพันธ์:

อนุพันธ์ของผลรวม:

อนุพันธ์ของผลิตภัณฑ์:

อนุพันธ์ของผลหาร:

อนุพันธ์ของฟังก์ชันเชิงซ้อน:

อัลกอริทึมในการค้นหาอนุพันธ์ของฟังก์ชันเชิงซ้อน:

  1. เรากำหนดฟังก์ชัน "ภายใน" และค้นหาอนุพันธ์ของมัน
  2. เรากำหนดฟังก์ชัน "ภายนอก" และค้นหาอนุพันธ์ของมัน
  3. เราคูณผลลัพธ์ของจุดที่หนึ่งและที่สอง