ชีวประวัติ ลักษณะเฉพาะ การวิเคราะห์

คุณสมบัติของลอการิทึมทศนิยม คำจำกัดความของลอการิทึม เอกลักษณ์ลอการิทึมพื้นฐาน

ลอการิทึมก็เหมือนกับตัวเลขอื่นๆ ที่สามารถบวก ลบ และแปลงได้ในทุกวิถีทาง แต่เนื่องจากลอการิทึมไม่ใช่ตัวเลขธรรมดาเสียทีเดียว จึงมีกฎที่เรียกว่า คุณสมบัติหลัก.

คุณจำเป็นต้องรู้กฎเหล่านี้อย่างแน่นอน - ไม่ใช่ปัญหาลอการิทึมร้ายแรงแม้แต่ข้อเดียวที่ไม่สามารถแก้ไขได้หากไม่มีกฎเหล่านี้ นอกจากนี้ยังมีน้อยมาก - คุณสามารถเรียนรู้ทุกสิ่งได้ภายในวันเดียว มาเริ่มกันเลย

การบวกและการลบลอการิทึม

พิจารณาลอการิทึมสองตัวที่มีฐานเดียวกัน: log xและเข้าสู่ระบบ - จากนั้นจึงสามารถบวกและลบได้ และ:

  1. บันทึก x+ บันทึก = บันทึก (x · );
  2. บันทึก x- บันทึก = บันทึก (x : ).

ดังนั้น ผลรวมของลอการิทึมเท่ากับลอการิทึมของผลิตภัณฑ์ และผลต่างเท่ากับลอการิทึมของผลหาร โปรดทราบ: ประเด็นสำคัญที่นี่คือ บริเวณที่เหมือนกัน- หากเหตุผลแตกต่าง กฎเหล่านี้ใช้ไม่ได้!

สูตรเหล่านี้จะช่วยคุณคำนวณนิพจน์ลอการิทึมแม้ว่าจะไม่ได้พิจารณาแต่ละส่วนก็ตาม (ดูบทเรียน "ลอการิทึมคืออะไร") ดูตัวอย่างและดู:

ล็อก 6 4 + ล็อก 6 9

เนื่องจากลอการิทึมมีฐานเท่ากัน เราจึงใช้สูตรผลรวม:
บันทึก 6 4 + บันทึก 6 9 = บันทึก 6 (4 9) = บันทึก 6 36 = 2

งาน. ค้นหาค่าของนิพจน์: log 2 48 − log 2 3

ฐานเท่ากัน เราใช้สูตรผลต่าง:
บันทึก 2 48 - บันทึก 2 3 = บันทึก 2 (48: 3) = บันทึก 2 16 = 4

งาน. ค้นหาค่าของนิพจน์: log 3 135 − log 3 5

ฐานก็เหมือนกัน ดังนั้นเราจึงได้:
บันทึก 3 135 - บันทึก 3 5 = บันทึก 3 (135: 5) = บันทึก 3 27 = 3

อย่างที่คุณเห็น นิพจน์ดั้งเดิมประกอบด้วยลอการิทึมที่ "ไม่ดี" ซึ่งไม่ได้คำนวณแยกกัน แต่หลังจากการแปลงจะได้ตัวเลขปกติโดยสมบูรณ์ การทดสอบจำนวนมากขึ้นอยู่กับข้อเท็จจริงนี้ ใช่ สำนวนที่เหมือนการทดสอบมีการนำเสนออย่างจริงจังทุกประการ (บางครั้งแทบไม่มีการเปลี่ยนแปลงใดๆ) ในการสอบ Unified State

แยกเลขชี้กำลังออกจากลอการิทึม

ตอนนี้เรามาทำให้งานซับซ้อนขึ้นเล็กน้อย จะเกิดอะไรขึ้นถ้าฐานหรืออาร์กิวเมนต์ของลอการิทึมเป็นกำลัง? จากนั้นสามารถนำเลขชี้กำลังของระดับนี้ออกจากเครื่องหมายลอการิทึมได้ตามกฎต่อไปนี้:

จะเห็นได้ง่ายว่ากฎข้อสุดท้ายเป็นไปตามสองข้อแรก แต่ยังไงก็ดีกว่าที่จะจำไว้ - ในบางกรณีมันจะลดจำนวนการคำนวณลงอย่างมาก

แน่นอนว่ากฎทั้งหมดนี้สมเหตุสมผลหากสังเกต ODZ ของลอการิทึม: > 0, ≠ 1, x> 0. และอีกอย่างหนึ่ง: เรียนรู้การใช้สูตรทั้งหมด ไม่เพียงแต่จากซ้ายไปขวา แต่ยังในทางกลับกันอีกด้วย เช่น คุณสามารถป้อนตัวเลขก่อนที่ลอการิทึมจะลงชื่อเข้าใช้ลอการิทึมได้ นี่คือสิ่งที่จำเป็นบ่อยที่สุด

งาน. ค้นหาค่าของนิพจน์: log 7 49 6 .

กำจัดระดับของการโต้แย้งโดยใช้สูตรแรก:
บันทึก 7 49 6 = 6 บันทึก 7 49 = 6 2 = 12

งาน. ค้นหาความหมายของสำนวน:

[คำบรรยายภาพ]

โปรดทราบว่าตัวส่วนประกอบด้วยลอการิทึม ฐานและอาร์กิวเมนต์เป็นกำลังที่แน่นอน: 16 = 2 4 ; 49 = 7 2. เรามี:

[คำบรรยายภาพ]

ฉันคิดว่าตัวอย่างสุดท้ายต้องมีการชี้แจง ลอการิทึมหายไปไหน? จนถึงวินาทีสุดท้ายที่เราทำงานกับตัวส่วนเท่านั้น เรานำเสนอฐานและอาร์กิวเมนต์ของลอการิทึมที่อยู่ตรงนั้นในรูปแบบของกำลังและนำเลขชี้กำลังออกมา - เราได้เศษส่วน "สามชั้น"

ทีนี้มาดูเศษส่วนหลักกัน ตัวเศษและส่วนมีตัวเลขเดียวกัน: log 2 7 เนื่องจากบันทึก 2 7 ≠ 0 เราสามารถลดเศษส่วนได้ - 2/4 จะยังคงอยู่ในตัวส่วน ตามกฎของเลขคณิตแล้วทั้งสี่สามารถโอนไปยังตัวเศษซึ่งเป็นสิ่งที่ทำเสร็จแล้ว ผลลัพธ์คือคำตอบ: 2.

การเปลี่ยนไปสู่รากฐานใหม่

เมื่อพูดถึงกฎสำหรับการบวกและการลบลอการิทึม ฉันเน้นย้ำเป็นพิเศษว่ากฎเหล่านี้ใช้ได้เฉพาะกับฐานเดียวกันเท่านั้น จะทำอย่างไรถ้าเหตุผลต่างกัน? จะเกิดอะไรขึ้นถ้าพวกมันไม่ใช่เลขยกกำลังที่เท่ากัน?

สูตรสำหรับการเปลี่ยนไปใช้รากฐานใหม่มาช่วยเหลือ ให้เรากำหนดพวกมันในรูปแบบของทฤษฎีบท:

ให้บันทึกลอการิทึม x- แล้วสำหรับเลขอะไรก็ตาม เช่นนั้น > 0 และ ≠ 1 ความเท่าเทียมกันเป็นจริง:

[คำบรรยายภาพ]

โดยเฉพาะถ้าเราใส่ = xเราได้รับ:

[คำบรรยายภาพ]

จากสูตรที่สองเป็นไปตามว่าสามารถสลับฐานและอาร์กิวเมนต์ของลอการิทึมได้ แต่ในกรณีนี้นิพจน์ทั้งหมดจะ "พลิกกลับ" เช่น ลอการิทึมจะปรากฏในตัวส่วน

สูตรเหล่านี้ไม่ค่อยพบในนิพจน์ตัวเลขทั่วไป มีความเป็นไปได้ที่จะประเมินว่าสะดวกเพียงใดเมื่อแก้สมการลอการิทึมและอสมการเท่านั้น

แต่มีปัญหาที่ไม่สามารถแก้ไขได้เลยนอกจากการย้ายฐานรากใหม่ ลองดูสองสามสิ่งเหล่านี้:

งาน. ค้นหาค่าของนิพจน์: log 5 16 log 2 25

โปรดทราบว่าอาร์กิวเมนต์ของลอการิทึมทั้งสองมีกำลังที่แน่นอน มาดูตัวบ่งชี้กันดีกว่า: log 5 16 = log 5 2 4 = 4log 5 2; บันทึก 2 25 = บันทึก 2 5 2 = 2 บันทึก 2 5;

ทีนี้ลอง "ย้อนกลับ" ลอการิทึมที่สอง:

[คำบรรยายภาพ]

เนื่องจากผลคูณไม่เปลี่ยนแปลงเมื่อจัดเรียงปัจจัยใหม่ เราจึงคูณสี่และสองอย่างใจเย็น จากนั้นจึงจัดการกับลอการิทึม

งาน. ค้นหาค่าของนิพจน์: log 9 100 lg 3

ฐานและอาร์กิวเมนต์ของลอการิทึมแรกคือกำลังที่แน่นอน มาเขียนสิ่งนี้และกำจัดตัวบ่งชี้:

[คำบรรยายภาพ]

ตอนนี้ กำจัดลอการิทึมทศนิยมโดยการย้ายไปยังฐานใหม่:

[คำบรรยายภาพ]

เอกลักษณ์ลอการิทึมพื้นฐาน

บ่อยครั้งในกระบวนการแก้ปัญหา จำเป็นต้องแสดงตัวเลขเป็นลอการิทึมของฐานที่กำหนด ในกรณีนี้สูตรต่อไปนี้จะช่วยเรา:

ในกรณีแรกคือหมายเลข nกลายเป็นเครื่องบ่งชี้ระดับการยืนหยัดในการโต้แย้ง ตัวเลข nสามารถเป็นอะไรก็ได้อย่างแน่นอน เพราะมันเป็นแค่ค่าลอการิทึม

สูตรที่สองเป็นคำจำกัดความที่ถอดความจริงๆ นั่นคือสิ่งที่เรียกว่า: ข้อมูลประจำตัวลอการิทึมพื้นฐาน

ที่จริงแล้วจะเกิดอะไรขึ้นถ้าตัวเลข ยกกำลังขึ้นถึงจำนวนนั้น ยกกำลังนี้ให้ตัวเลข - ถูกต้อง: คุณได้หมายเลขเดียวกันนี้ - อ่านย่อหน้านี้อย่างละเอียดอีกครั้ง หลายๆ คนอาจติดอยู่กับเรื่องนี้

เช่นเดียวกับสูตรสำหรับการย้ายไปยังฐานใหม่ บางครั้งเอกลักษณ์ลอการิทึมพื้นฐานก็เป็นวิธีแก้ปัญหาเดียวที่เป็นไปได้

งาน. ค้นหาความหมายของสำนวน:

[คำบรรยายภาพ]

โปรดทราบว่าบันทึก 25 64 = บันทึก 5 8 - แค่เอากำลังสองจากฐานและอาร์กิวเมนต์ของลอการิทึม เมื่อคำนึงถึงกฎในการคูณกำลังด้วยฐานเดียวกัน เราได้รับ:

[คำบรรยายภาพ]

ถ้าใครไม่รู้ นี่คืองานจริงจากการสอบ Unified State :)

หน่วยลอการิทึมและศูนย์ลอการิทึม

โดยสรุป ฉันจะให้สองตัวตนที่แทบจะเรียกได้ว่าเป็นคุณสมบัติไม่ได้ - แต่พวกมันเป็นผลมาจากคำจำกัดความของลอการิทึม พวกมันมักเกิดปัญหาอยู่ตลอดเวลา และน่าประหลาดใจที่มันสร้างปัญหาแม้กระทั่งกับนักเรียน "ขั้นสูง" ก็ตาม

  1. บันทึก = 1 คือหน่วยลอการิทึม จำไว้ทุกครั้ง: ลอการิทึมของฐานใดๆ จากฐานนี้เท่ากับหนึ่ง
  2. บันทึก 1 = 0 คือศูนย์ลอการิทึม ฐาน สามารถเป็นอะไรก็ได้ แต่ถ้าอาร์กิวเมนต์มีอย่างใดอย่างหนึ่ง ลอการิทึมจะเท่ากับศูนย์! เพราะ 0 = 1 เป็นผลโดยตรงจากคำจำกัดความ

นั่นคือคุณสมบัติทั้งหมด อย่าลืมฝึกฝนการนำไปปฏิบัติจริง! ดาวน์โหลดเอกสารสรุปตอนต้นบทเรียน พิมพ์ออกมา และแก้ไขปัญหา

การรักษาความเป็นส่วนตัวของคุณเป็นสิ่งสำคัญสำหรับเรา ด้วยเหตุนี้ เราจึงได้พัฒนานโยบายความเป็นส่วนตัวที่อธิบายถึงวิธีที่เราใช้และจัดเก็บข้อมูลของคุณ โปรดตรวจสอบหลักปฏิบัติด้านความเป็นส่วนตัวของเราและแจ้งให้เราทราบหากคุณมีคำถามใดๆ

การรวบรวมและการใช้ข้อมูลส่วนบุคคล

ข้อมูลส่วนบุคคลหมายถึงข้อมูลที่สามารถใช้เพื่อระบุหรือติดต่อบุคคลใดบุคคลหนึ่งโดยเฉพาะ

คุณอาจถูกขอให้ให้ข้อมูลส่วนบุคคลของคุณได้ตลอดเวลาเมื่อคุณติดต่อเรา

ด้านล่างนี้คือตัวอย่างบางส่วนของประเภทของข้อมูลส่วนบุคคลที่เราอาจรวบรวมและวิธีที่เราอาจใช้ข้อมูลดังกล่าว

เราเก็บรวบรวมข้อมูลส่วนบุคคลอะไรบ้าง:

  • เมื่อคุณส่งใบสมัครบนเว็บไซต์ เราอาจรวบรวมข้อมูลต่าง ๆ รวมถึงชื่อ หมายเลขโทรศัพท์ ที่อยู่อีเมลของคุณ ฯลฯ

เราใช้ข้อมูลส่วนบุคคลของคุณอย่างไร:

  • ข้อมูลส่วนบุคคลที่เรารวบรวมช่วยให้เราสามารถติดต่อคุณเพื่อแจ้งข้อเสนอ โปรโมชั่น และกิจกรรมอื่น ๆ และกิจกรรมที่กำลังจะเกิดขึ้นได้ไม่ซ้ำใคร
  • ในบางครั้ง เราอาจใช้ข้อมูลส่วนบุคคลของคุณเพื่อส่งประกาศและการสื่อสารที่สำคัญ
  • เรายังอาจใช้ข้อมูลส่วนบุคคลเพื่อวัตถุประสงค์ภายใน เช่น การดำเนินการตรวจสอบ การวิเคราะห์ข้อมูล และการวิจัยต่างๆ เพื่อปรับปรุงบริการที่เรามีให้และให้คำแนะนำเกี่ยวกับบริการของเราแก่คุณ
  • หากคุณเข้าร่วมการจับรางวัล การประกวด หรือการส่งเสริมการขายที่คล้ายกัน เราอาจใช้ข้อมูลที่คุณให้ไว้เพื่อจัดการโปรแกรมดังกล่าว

การเปิดเผยข้อมูลแก่บุคคลที่สาม

เราไม่เปิดเผยข้อมูลที่ได้รับจากคุณต่อบุคคลที่สาม

ข้อยกเว้น:

  • หากจำเป็น - ตามกฎหมาย ขั้นตอนการพิจารณาคดี ในการดำเนินการทางกฎหมาย และ/หรือตามคำขอสาธารณะหรือคำขอจากหน่วยงานของรัฐในอาณาเขตของสหพันธรัฐรัสเซีย - ให้เปิดเผยข้อมูลส่วนบุคคลของคุณ เรายังอาจเปิดเผยข้อมูลเกี่ยวกับคุณหากเราพิจารณาว่าการเปิดเผยดังกล่าวมีความจำเป็นหรือเหมาะสมเพื่อความปลอดภัย การบังคับใช้กฎหมาย หรือวัตถุประสงค์ที่สำคัญสาธารณะอื่น ๆ
  • ในกรณีของการปรับโครงสร้างองค์กร การควบรวมกิจการ หรือการขาย เราอาจถ่ายโอนข้อมูลส่วนบุคคลที่เรารวบรวมไปยังบุคคลที่สามที่รับช่วงต่อที่เกี่ยวข้อง

การคุ้มครองข้อมูลส่วนบุคคล

เราใช้ความระมัดระวัง - รวมถึงด้านการบริหาร ด้านเทคนิค และทางกายภาพ - เพื่อปกป้องข้อมูลส่วนบุคคลของคุณจากการสูญหาย การโจรกรรม และการใช้งานในทางที่ผิด รวมถึงการเข้าถึง การเปิดเผย การเปลี่ยนแปลง และการทำลายโดยไม่ได้รับอนุญาต

การเคารพความเป็นส่วนตัวของคุณในระดับบริษัท

เพื่อให้มั่นใจว่าข้อมูลส่วนบุคคลของคุณปลอดภัย เราจะสื่อสารมาตรฐานความเป็นส่วนตัวและความปลอดภัยให้กับพนักงานของเราและบังคับใช้หลักปฏิบัติด้านความเป็นส่วนตัวอย่างเคร่งครัด

และลอการิทึมมีความสัมพันธ์กันอย่างใกล้ชิด และอันที่จริง มันคือสัญกรณ์ทางคณิตศาสตร์ของคำจำกัดความ ลอการิทึม- ให้เราตรวจสอบรายละเอียดว่าลอการิทึมคืออะไรและมาจากไหน

ลองพิจารณาการดำเนินการเกี่ยวกับพีชคณิต - การคำนวณเลขชี้กำลัง เอ็กซ์ตามค่าเฉพาะที่กำหนด องศา และพื้นฐาน - งานนี้โดยพื้นฐานแล้ว การแก้สมการ เอ็กซ์ = , ที่ไหน และ - ค่าที่ระบุบางค่า x - ไม่ทราบปริมาณ โปรดทราบว่าวิธีแก้ปัญหานี้ไม่ได้มีอยู่เสมอไป

เมื่อใด เช่น ในสมการ เอ็กซ์ = ตัวเลขเป็นบวกและเป็นจำนวน เชิงลบแล้วสมการนี้ไม่มีราก แต่ถ้าเพียงเท่านั้น และ เป็นบวกและ ≠ 1 แสดงว่ามีเพียงอันเดียวเท่านั้น ราก- เป็นข้อเท็จจริงที่ทราบกันดีอยู่แล้วว่า กราฟฟังก์ชันเลขชี้กำลัง y = ก xตัดกันอย่างแน่นอน โดยตรง ย = ขและยิ่งไปกว่านั้น ณ จุดหนึ่งเท่านั้น Abscissa คือจุดตัดและจะเป็น รากของสมการ.

เพื่อบ่งชี้ รากของสมการ เอ็กซ์ = เป็นเรื่องปกติที่จะใช้บันทึก a b (อ่านว่า: ลอการิทึมของตัวเลข b ถึงฐาน a)

ลอการิทึมตัวเลข ขึ้นอยู่กับ นี้ เลขชี้กำลังซึ่งจะต้องเพิ่มจำนวน เพื่อรับหมายเลข และ > 0, ≠ 1, > 0.

ตามคำจำกัดความที่เราได้รับ เอกลักษณ์ลอการิทึมพื้นฐาน :

ตัวอย่าง:

ผลที่ตามมา เอกลักษณ์ลอการิทึมพื้นฐานเป็นดังนี้ กฎ.

จากความเท่าเทียมกันของทั้งสอง ลอการิทึมจริงเราได้รับความเท่าเทียมกัน ลอการิทึมได้การแสดงออก

แท้จริงแล้วเมื่อ log a b = log a c แล้ว , ที่ไหน, = .

ลองพิจารณาดูว่าทำไม เอกลักษณ์ลอการิทึมมีข้อจำกัด > 0, ≠ 1, > 0 .

เงื่อนไขแรก ก ≠ 1.

เป็นที่ทราบกันดีอยู่แล้วว่าหน่วยใดหน่วยหนึ่ง องศาจะเป็นเอกภาพ และความเท่าเทียมกัน x = log a b สามารถมีอยู่ได้ก็ต่อเมื่อ ข = 1แต่ในขณะเดียวกัน บันทึก 1 1จะเป็นอะไรก็ได้ จำนวนจริง- เพื่อหลีกเลี่ยงความคลุมเครือนี้จึงถูกนำมาใช้ ก ≠ 1.

ให้เราพิสูจน์ความจำเป็นของเงื่อนไข ก > 0.

ที่ ก = 0โดย คำจำกัดความของลอการิทึมสามารถดำรงอยู่ได้ก็ต่อเมื่อ ข = 0- และด้วยเหตุนั้น เข้าสู่ระบบ 0 0สามารถเป็นอะไรก็ได้ที่ไม่ใช่ศูนย์ จำนวนจริงเนื่องจากศูนย์ถึงระดับใดๆ ที่ไม่ใช่ศูนย์จะเป็นศูนย์ เพื่อป้องกันความกำกวมนี้สภาพ ก ≠ 0- และเมื่อไร ก< 0 เราจะต้องละทิ้งการวิเคราะห์ มีเหตุผลและ ไม่มีเหตุผลค่าลอการิทึม เนื่องจาก ระดับอย่างมีเหตุมีผลและ ตัวบ่งชี้ที่ไม่ลงตัวกำหนดไว้ด้วยเหตุผลเชิงบวกเท่านั้น ด้วยเหตุนี้จึงมีการกำหนดเงื่อนไขไว้ ก > 0.

และเงื่อนไขสุดท้าย ข > 0เป็นผลมาจากความไม่เท่าเทียมกัน ก > 0เนื่องจาก x = log a b และค่าของกำลังที่มีฐานบวก เป็นบวกเสมอ

\(a^(b)=c\) \(\ลูกศรซ้าย\) \(\log_(a)(c)=b\)

มาอธิบายให้ง่ายกว่านี้กันดีกว่า ตัวอย่างเช่น \(\log_(2)(8)\) เท่ากับกำลังที่ต้องยกกำลัง \(2\) เพื่อให้ได้ \(8\) จากนี้จะเห็นชัดเจนว่า \(\log_(2)(8)=3\)

ตัวอย่าง:

\(\log_(5)(25)=2\)

เพราะ \(5^(2)=25\)

\(\log_(3)(81)=4\)

เพราะ \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

เพราะ \(2^(-5)=\)\(\frac(1)(32)\)

อาร์กิวเมนต์และฐานของลอการิทึม

ลอการิทึมใดๆ มี “กายวิภาคศาสตร์” ดังต่อไปนี้:

อาร์กิวเมนต์ของลอการิทึมมักจะเขียนที่ระดับของมัน และฐานจะเขียนเป็นตัวห้อยใกล้กับเครื่องหมายลอการิทึม และรายการนี้อ่านได้ดังนี้: "ลอการิทึมของยี่สิบห้าถึงฐานห้า"

วิธีการคำนวณลอการิทึม?

ในการคำนวณลอการิทึมคุณต้องตอบคำถาม: ควรยกฐานให้ยกกำลังเท่าใดจึงจะได้รับอาร์กิวเมนต์?

ตัวอย่างเช่น, คำนวณลอการิทึม: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) จ) \(\log_(3)(\sqrt(3))\)

a) \(4\) ต้องยกกำลังเท่าใดจึงจะได้ \(16\)? เห็นได้ชัดว่าคนที่สอง นั่นเป็นเหตุผล:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(\sqrt(5)\) ต้องยกกำลังเท่าใดจึงจะได้ \(1\)? พลังอะไรที่ทำให้ใครก็ตามเป็นอันดับหนึ่ง? แน่นอนเป็นศูนย์!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) ต้องยกกำลังเท่าใดจึงจะได้ \(\sqrt(7)\)? ประการแรก จำนวนใดๆ ที่กำลังยกกำลังแรกจะเท่ากับตัวมันเอง

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(3\) ต้องยกกำลังเท่าใดจึงจะได้ \(\sqrt(3)\)? จากที่เรารู้ว่านั่นคือกำลังเศษส่วน ซึ่งหมายความว่ารากที่สองคือกำลังของ \(\frac(1)(2)\)

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

ตัวอย่าง : คำนวณลอการิทึม \(\log_(4\sqrt(2))(8)\)

สารละลาย :

\(\log_(4\sqrt(2))(8)=x\)

เราจำเป็นต้องหาค่าลอการิทึม แสดงว่ามันคือ x ตอนนี้ลองใช้คำจำกัดความของลอการิทึม:
\(\log_(a)(c)=b\) \(\ลูกศรซ้าย\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

อะไรเชื่อมต่อ \(4\sqrt(2)\) และ \(8\)? สอง เนื่องจากตัวเลขทั้งสองสามารถแสดงด้วยสองได้:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

ทางด้านซ้าย เราใช้คุณสมบัติของดีกรี: \(a^(m)\cdot a^(n)=a^(m+n)\) และ \((a^(m))^(n)= เป็น^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

ฐานเท่ากัน เราจะก้าวไปสู่ความเท่าเทียมกันของตัวบ่งชี้

\(\frac(5x)(2)\) \(=3\)


คูณทั้งสองข้างของสมการด้วย \(\frac(2)(5)\)


ผลลัพธ์ที่ได้คือค่าของลอการิทึม

คำตอบ : \(\log_(4\sqrt(2))(8)=1,2\)

เหตุใดลอการิทึมจึงถูกประดิษฐ์ขึ้น?

เพื่อให้เข้าใจสิ่งนี้ เรามาแก้สมการกัน: \(3^(x)=9\) เพียงจับคู่ \(x\) เพื่อให้สมการทำงานได้ แน่นอน \(x=2\)

ตอนนี้แก้สมการ: \(3^(x)=8\).x เท่ากับเท่าใด? นั่นคือประเด็น

คนที่ฉลาดที่สุดจะพูดว่า: “X น้อยกว่าสองนิดหน่อย” จะเขียนตัวเลขนี้ได้อย่างไร? เพื่อตอบคำถามนี้ จึงมีการประดิษฐ์ลอการิทึมขึ้น ต้องขอบคุณเขาที่ทำให้คำตอบตรงนี้สามารถเขียนได้เป็น \(x=\log_(3)(8)\)

ฉันอยากจะเน้นว่า \(\log_(3)(8)\) ชอบ ลอการิทึมใดๆ ก็เป็นเพียงตัวเลข- ใช่ มันดูแปลกแต่มันสั้น เพราะถ้าเราอยากเขียนเป็นทศนิยม จะได้ดังนี้ \(1.892789260714....\)

ตัวอย่าง : แก้สมการ \(4^(5x-4)=10\)

สารละลาย :

\(4^(5x-4)=10\)

\(4^(5x-4)\) และ \(10\) ไม่สามารถนำมาเป็นฐานเดียวกันได้ ซึ่งหมายความว่าคุณไม่สามารถทำได้หากไม่มีลอการิทึม

ลองใช้คำจำกัดความของลอการิทึม:
\(a^(b)=c\) \(\ลูกศรซ้าย\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

ลองพลิกสมการเพื่อให้ X อยู่ทางซ้าย

\(5x-4=\log_(4)(10)\)

ก่อนเรา. ลองย้าย \(4\) ไปทางขวากัน

และอย่ากลัวลอการิทึม ให้ปฏิบัติเหมือนเลขธรรมดา

\(5x=\log_(4)(10)+4\)

หารสมการด้วย 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


นี่คือรากของเรา ใช่ มันดูผิดปกติแต่พวกเขาไม่ได้เลือกคำตอบ

คำตอบ : \(\frac(\log_(4)(10)+4)(5)\)

ลอการิทึมทศนิยมและลอการิทึมธรรมชาติ

ตามที่ระบุไว้ในคำจำกัดความของลอการิทึม ฐานของมันสามารถเป็นจำนวนบวกใดๆ ก็ได้ ยกเว้น \((a>0, a\neq1)\ หนึ่งตัว) และในบรรดาฐานที่เป็นไปได้ทั้งหมด มี 2 ฐานที่เกิดขึ้นบ่อยมากจนมีการประดิษฐ์สัญกรณ์สั้นพิเศษสำหรับลอการิทึม:

ลอการิทึมธรรมชาติ: ลอการิทึมที่มีฐานเป็นเลขของออยเลอร์ \(e\) (เท่ากับประมาณ \(2.7182818…\)) และลอการิทึมเขียนเป็น \(\ln(a)\)

นั่นคือ \(\ln(a)\) เหมือนกับ \(\log_(e)(a)\)

ลอการิทึมทศนิยม: ลอการิทึมที่มีฐานเป็น 10 จะถูกเขียนเป็น \(\lg(a)\)

นั่นคือ \(\lg(a)\) เหมือนกับ \(\log_(10)(a)\)โดยที่ \(a\) คือตัวเลขจำนวนหนึ่ง

เอกลักษณ์ลอการิทึมพื้นฐาน

ลอการิทึมมีคุณสมบัติหลายอย่าง หนึ่งในนั้นเรียกว่า "Basic Logarithmic Identity" และมีลักษณะดังนี้:

\(a^(\log_(ก)(c))=c\)

คุณสมบัตินี้เป็นไปตามคำจำกัดความโดยตรง เรามาดูกันว่าสูตรนี้เกิดขึ้นได้อย่างไร

ให้เรานึกถึงสัญกรณ์สั้น ๆ เกี่ยวกับคำจำกัดความของลอการิทึม:

ถ้า \(a^(b)=c\) ดังนั้น \(\log_(a)(c)=b\)

นั่นคือ \(b\) เหมือนกับ \(\log_(a)(c)\) จากนั้นเราสามารถเขียน \(\log_(a)(c)\) แทน \(b\) ในสูตร \(a^(b)=c\) ปรากฎว่า \(a^(\log_(a)(c))=c\) - ข้อมูลประจำตัวลอการิทึมหลัก

คุณสามารถค้นหาคุณสมบัติอื่นๆ ของลอการิทึมได้ ด้วยความช่วยเหลือของพวกเขา คุณสามารถลดความซับซ้อนและคำนวณค่าของนิพจน์ด้วยลอการิทึมซึ่งยากต่อการคำนวณโดยตรง

ตัวอย่าง : ค้นหาค่าของนิพจน์ \(36^(\log_(6)(5))\)

สารละลาย :

คำตอบ : \(25\)

จะเขียนตัวเลขเป็นลอการิทึมได้อย่างไร?

ตามที่กล่าวไว้ข้างต้น ลอการิทึมใดๆ เป็นเพียงตัวเลข การสนทนาก็เป็นจริงเช่นกัน โดยตัวเลขใดๆ ก็ตามสามารถเขียนเป็นลอการิทึมได้ ตัวอย่างเช่น เรารู้ว่า \(\log_(2)(4)\) เท่ากับสอง จากนั้นคุณสามารถเขียน \(\log_(2)(4)\) แทนสองได้

แต่ \(\log_(3)(9)\) ก็เท่ากับ \(2\) เช่นกัน ซึ่งหมายความว่าเราสามารถเขียน \(2=\log_(3)(9)\) ได้เช่นกัน ในทำนองเดียวกันด้วย \(\log_(5)(25)\) และด้วย \(\log_(9)(81)\) ฯลฯ นั่นคือปรากฎว่า

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

ดังนั้น หากจำเป็น เราก็สามารถเขียนสองตัวเป็นลอการิทึมโดยมีฐานใดๆ ก็ได้ (ไม่ว่าจะเป็นในสมการ ในนิพจน์ หรือในอสมการ) เราก็แค่เขียนฐานกำลังสองเป็นอาร์กิวเมนต์

เช่นเดียวกับทริปเปิล โดยสามารถเขียนเป็น \(\log_(2)(8)\) หรือเป็น \(\log_(3)(27)\) หรือเป็น \(\log_(4)( 64) \)... ที่นี่เราเขียนฐานในคิวบ์เป็นอาร์กิวเมนต์:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

และด้วยสี่:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

และด้วยลบหนึ่ง:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

และหนึ่งในสาม:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

จำนวนใดๆ \(a\) สามารถแสดงเป็นลอการิทึมที่มีฐาน \(b\): \(a=\log_(b)(b^(a))\)

ตัวอย่าง : ค้นหาความหมายของสำนวน \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

สารละลาย :

คำตอบ : \(1\)

คำแนะนำ

เขียนนิพจน์ลอการิทึมที่กำหนด ถ้านิพจน์ใช้ลอการิทึมเป็น 10 สัญกรณ์ของมันจะสั้นลงและมีลักษณะดังนี้: lg b คือลอการิทึมทศนิยม หากลอการิทึมมีตัวเลข e เป็นฐาน ให้เขียนนิพจน์: ln b – ลอการิทึมธรรมชาติ เป็นที่เข้าใจกันว่าผลลัพธ์ของค่าใดๆ คือกำลังที่ต้องยกเลขฐานขึ้นเพื่อให้ได้เลข b

เมื่อค้นหาผลรวมของสองฟังก์ชัน คุณเพียงแค่ต้องแยกความแตกต่างทีละฟังก์ชันแล้วบวกผลลัพธ์: (u+v)" = u"+v";

เมื่อค้นหาอนุพันธ์ของผลคูณของฟังก์ชันทั้งสอง จำเป็นต้องคูณอนุพันธ์ของฟังก์ชันแรกด้วยฟังก์ชันที่สอง แล้วบวกอนุพันธ์ของฟังก์ชันที่สองคูณด้วยฟังก์ชันแรก: (u*v)" = u"*v +วี"*คุณ;

ในการที่จะหาอนุพันธ์ของผลหารของสองฟังก์ชันนั้น จำเป็นต้องลบผลคูณของอนุพันธ์ของเงินปันผลคูณด้วยฟังก์ชันตัวหารด้วยผลคูณของอนุพันธ์ของตัวหารคูณด้วยฟังก์ชันของเงินปันผล แล้วหาร ทั้งหมดนี้ด้วยฟังก์ชันตัวหารกำลังสอง (u/v)" = (u"*v-v"*u)/v^2;

หากได้รับฟังก์ชันที่ซับซ้อนก็จำเป็นต้องคูณอนุพันธ์ของฟังก์ชันภายในและอนุพันธ์ของฟังก์ชันภายนอก ให้ y=u(v(x)) แล้วก็ y"(x)=y"(u)*v"(x)

จากผลลัพธ์ที่ได้ข้างต้น คุณสามารถแยกแยะฟังก์ชันได้เกือบทุกฟังก์ชัน ลองดูตัวอย่างบางส่วน:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
นอกจากนี้ยังมีปัญหาเกี่ยวกับการคำนวณอนุพันธ์ ณ จุดหนึ่งด้วย ปล่อยให้ฟังก์ชัน y=e^(x^2+6x+5) ถูกกำหนดไว้ คุณจะต้องค้นหาค่าของฟังก์ชันที่จุด x=1
1) ค้นหาอนุพันธ์ของฟังก์ชัน: y"=e^(x^2-6x+5)*(2*x +6)

2) คำนวณค่าของฟังก์ชัน ณ จุดที่กำหนด y"(1)=8*e^0=8

วิดีโอในหัวข้อ

คำแนะนำที่เป็นประโยชน์

เรียนรู้ตารางอนุพันธ์เบื้องต้น ซึ่งจะช่วยประหยัดเวลาได้อย่างมาก

แหล่งที่มา:

  • อนุพันธ์ของค่าคงที่

แล้วสมการอตรรกยะกับสมการตรรกยะแตกต่างกันอย่างไร? ถ้าตัวแปรที่ไม่รู้จักอยู่ใต้เครื่องหมายรากที่สอง จะถือว่าสมการไม่ลงตัว

คำแนะนำ

วิธีการหลักในการแก้สมการดังกล่าวคือวิธีสร้างทั้งสองด้าน สมการเป็นสี่เหลี่ยมจัตุรัส อย่างไรก็ตาม. นี่เป็นเรื่องธรรมชาติ สิ่งแรกที่คุณต้องทำคือกำจัดป้ายนั้นออก วิธีนี้ไม่ใช่เรื่องยากในทางเทคนิค แต่บางครั้งอาจทำให้เกิดปัญหาได้ ตัวอย่างเช่น สมการคือ v(2x-5)=v(4x-7) ยกกำลังสองทั้งสองข้างจะได้ 2x-5=4x-7 การแก้สมการดังกล่าวไม่ใช่เรื่องยาก x=1. แต่จะไม่ให้หมายเลข 1 สมการ- ทำไม แทนค่าหนึ่งลงในสมการแทนค่า x และด้านขวาและด้านซ้ายจะมีนิพจน์ที่ไม่สมเหตุสมผล กล่าวคือ ค่านี้ไม่ถูกต้องสำหรับรากที่สอง ดังนั้น 1 จึงเป็นรากที่ไม่เกี่ยวข้อง ดังนั้นสมการนี้จึงไม่มีราก

ดังนั้นสมการไร้เหตุผลจึงถูกแก้โดยใช้วิธีการยกกำลังสองทั้งสองข้าง และเมื่อแก้สมการได้แล้วจำเป็นต้องตัดรากที่ไม่เกี่ยวข้องออก เมื่อต้องการทำเช่นนี้ ให้แทนที่รากที่พบลงในสมการดั้งเดิม

พิจารณาอีกอันหนึ่ง
2х+vх-3=0
แน่นอนว่าสมการนี้สามารถแก้ไขได้โดยใช้สมการเดียวกันกับสมการก่อนหน้า ย้ายสารประกอบ สมการซึ่งไม่มีรากที่สอง ให้ไปทางด้านขวาแล้วใช้วิธียกกำลังสอง แก้สมการตรรกยะและรากที่เกิดขึ้น แต่ยังอีกอันที่หรูหรากว่าอีกด้วย ป้อนตัวแปรใหม่ vх=y. ดังนั้น คุณจะได้สมการในรูปแบบ 2y2+y-3=0 นั่นคือสมการกำลังสองธรรมดา ค้นหารากของมัน y1=1 และ y2=-3/2 ต่อไปแก้สอง สมการ vh=1; วх=-3/2. สมการที่สองไม่มีราก จากสมการแรกเราพบว่า x=1 อย่าลืมตรวจสอบรากด้วย

การแก้ไขตัวตนนั้นค่อนข้างง่าย ในการทำเช่นนี้จำเป็นต้องทำการเปลี่ยนแปลงที่เหมือนกันจนกว่าจะบรรลุเป้าหมายที่ตั้งไว้ ดังนั้น ด้วยความช่วยเหลือของการดำเนินการทางคณิตศาสตร์อย่างง่าย ปัญหาที่เกิดขึ้นจะได้รับการแก้ไข

คุณจะต้อง

  • - กระดาษ;
  • - ปากกา.

คำแนะนำ

การแปลงที่ง่ายที่สุดคือการคูณพีชคณิตแบบย่อ (เช่น กำลังสองของผลรวม (ผลต่าง), ผลต่างของกำลังสอง, ผลรวม (ผลต่าง), ลูกบาศก์ของผลรวม (ผลต่าง)) นอกจากนี้ยังมีสูตรตรีโกณมิติอีกมากมายซึ่งโดยพื้นฐานแล้วมีเอกลักษณ์เฉพาะตัวที่เหมือนกัน

อันที่จริง ผลคูณกำลังสองของผลรวมของสองเทอมจะเท่ากับกำลังสองของเทอมแรกบวกสองเท่าของผลคูณของเทอมแรกคูณวินาที และบวกด้วยกำลังสองของเทอมที่สอง นั่นคือ (a+b)^2= (a+b )(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2

ลดความซับซ้อนทั้งสองอย่าง

หลักการทั่วไปของการแก้ปัญหา

ทำซ้ำจากหนังสือเรียนเกี่ยวกับการวิเคราะห์ทางคณิตศาสตร์หรือคณิตศาสตร์ชั้นสูงว่าอินทิกรัลจำกัดเขตคืออะไร ดังที่ทราบกันดีว่าคำตอบของอินทิกรัลจำกัดเขตคือฟังก์ชันที่อนุพันธ์จะให้ค่าปริพันธ์ ฟังก์ชันนี้เรียกว่าแอนติเดริเวทีฟ ตามหลักการนี้ อินทิกรัลพื้นฐานจะถูกสร้างขึ้น
กำหนดโดยรูปแบบของปริพันธ์ว่าปริพันธ์ของตารางใดที่เข้าได้ ในกรณีนี้- ไม่สามารถระบุสิ่งนี้ได้ทันทีเสมอไป บ่อยครั้งที่รูปแบบตารางจะสังเกตเห็นได้เฉพาะหลังจากการแปลงหลายครั้งเพื่อทำให้ปริพันธ์ง่ายขึ้น

วิธีการเปลี่ยนตัวแปร

ถ้าปริพันธ์เป็นฟังก์ชันตรีโกณมิติซึ่งมีอาร์กิวเมนต์เป็นพหุนาม ให้ลองใช้วิธีเปลี่ยนตัวแปร เพื่อที่จะทำสิ่งนี้ ให้แทนที่พหุนามในอาร์กิวเมนต์ของปริพันธ์ด้วยตัวแปรใหม่บางตัว ขึ้นอยู่กับความสัมพันธ์ระหว่างตัวแปรใหม่และเก่า ให้กำหนดขีดจำกัดใหม่ของการรวม เมื่อสร้างความแตกต่างให้กับนิพจน์นี้ ให้ค้นหาส่วนต่างใหม่ใน ดังนั้น คุณจะได้รูปแบบใหม่ของอินทิกรัลก่อนหน้า ปิดหรือสอดคล้องกับอินทิกรัลแบบตารางบางอัน

การแก้อินทิกรัลชนิดที่สอง

หากอินทิกรัลเป็นอินทิกรัลชนิดที่สอง ซึ่งเป็นรูปแบบเวกเตอร์ของอินทิกรัล คุณจะต้องใช้กฎในการเปลี่ยนจากอินทิกรัลเหล่านี้เป็นสเกลาร์ กฎข้อหนึ่งคือความสัมพันธ์ระหว่างออสโตรกราดสกี-เกาส์ กฎข้อนี้อนุญาตให้เราย้ายจากฟลักซ์ของโรเตอร์ของฟังก์ชันเวกเตอร์บางฟังก์ชันไปเป็นอินทิกรัลสามส่วนเหนือไดเวอร์เจนต์ของสนามเวกเตอร์ที่กำหนด

การทดแทนขีดจำกัดการรวม

หลังจากค้นหาแอนติเดริเวทีฟแล้ว ก็จำเป็นต้องแทนที่ขีดจำกัดของการอินทิเกรต ขั้นแรก แทนที่ค่าของขีดจำกัดบนลงในนิพจน์ของแอนติเดริเวทีฟ คุณจะได้เลขจำนวนหนึ่ง จากนั้น ให้ลบจำนวนอื่นที่ได้รับจากขีดจำกัดล่างออกจากผลลัพธ์เป็นค่าแอนติเดริเวทีฟ หากหนึ่งในขีดจำกัดของการอินทิเกรตมีค่าอนันต์ เมื่อแทนที่มันลงในฟังก์ชันแอนติเดริเวทีฟ จำเป็นต้องไปที่ขีดจำกัดและค้นหาว่านิพจน์มีแนวโน้มว่าอย่างไร
หากอินทิกรัลเป็นแบบสองมิติหรือสามมิติ คุณจะต้องแสดงขีดจำกัดของอินทิกรัลในเชิงเรขาคณิตเพื่อทำความเข้าใจวิธีประเมินอินทิกรัล อันที่จริง ในกรณีของอินทิกรัลสามมิติ ขีดจำกัดของอินทิเกรตอาจเป็นระนาบทั้งหมดที่จำกัดปริมาตรที่อินทิกรัล