Биографии Характеристики Анализ

Типы реакций перекисного окисления липидов клеточных мембран. Продукты перекисного окисления липидов

Хаотропный эффект избытка жирных кислот и лизофосфатидов поддерживает активацию перекисного окисления липидов (ПОЛ) , инициируемого накоплением в гипоксической клетке активных форм кислорода (АФК). Генерация последних связана с Са 2+ - зависимым повреждением митохондрий и формированием избытка доноров электронов – восстановленных кофакторов.

Образование активных (токсичных) форм кислорода (в невозбужденном состоянии кислород нетоксичен) связано с особенностями его молекулярной структуры: О 2 содержит два неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамически стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять еще один электрон. Таким образом, полное восстановление молекулы кислорода происходит в результате четырех одноэлектронных переносов:

Е - е - е - е - , Н +

О 2 О 2 - Н 2 О 2 `ОН + Н 2 О 2Н 2 О

Образующиеся в ходе неполного восстановления молекул кислорода супероксид (О 2 -), пероксид (Н 2 О 2) и гидроксильный радикал (`ОН) активные формы кислорода , являются окислителями, что представляет серьезную опасность для многих структурных компонентов клетки (Авдеева Л.В., Павлова Н.А., Рубцова Г.В., 2005). Особенно активен гидроксильный радикал ( OH), взаимодействующий с большинством органических молекул. Он отнимает у них электрон и инициирует таким образом цепные реакции окисления.

Основной путь образования АФК в большинстве клеток – утечка электронов из цепи их передачи (дыхательной цепи) и непосредственное взаимодействие этих электронов с кислородом (Губарева Л.Е., 2005). В качестве еще двух источников могут выступать реакции с участиемоксидаз , использующих молекулярный кислород как акцептор электронов и восстанавливающих его до Н 2 О или Н 2 О 2 и реакции с участиемоксигеназ, включающих один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции. В условиях дефицита в тканях кислорода, т.е. в ситуации, когда «спрос» (восстановленные кофакторы) превышает «предложение» (количество молекул кислорода), вероятность усиления образования АФК резко возрастает. Инициируемые ими свободнорадикальные реакции, приводят к повреждению клеточных и субклеточных структур, включая митохондрии, молекулы ДНК и белка. И хотя вклад АФК в развитие гипоксического некробиоза (в отличие от реперфузионного синдрома) расценивается в качестве доминирующего механизма не всеми авторами (Зайчик А.Ш., Чурилов Л.П., 1999), тем не менее их участие в активации свободно-радикальных процессов в клетке, включая ПОЛ, является решающим.

Следует отметить, что ПОЛ представляя собой саморазвивающуюся цепную реакцию, постоянно протекает в клетке, играя роль необходимого звена в ее жизнедеятельности и в адаптационных реакциях. Благодаря перекисному окислению в молекуле фосфолипидов клеточных мембран, содержащих во втором положении жирную кислоту, появляются полярные гидроперекисные группировки (гидроперекиси липидов), обладающие детергентным действием. Появление таких группировок увеличивает подвижность полипептидных цепей, т.е. облегчает конформационные изменения молекул белков, что сопровождается ростом активности мембраносвязанных ферментов, к которым по существу относятся все ферментные системы клетки. И лишь чрезмерная активация ПОЛ, затрагивающая более 3-5% фосфолипидов мембран, превращает его из регуляторного механизма в звено патогенеза их повреждения при клеточной гибели (Ю.А. Владимиров, 1987; 2000).

В результате активации ПОЛ, инициируемого АФК, и прежде всего – гидроксильным радикалом ( OH), происходит образование новых вторичных радикалов: липидного (L ), алкоксильного (LO ), перекисного (LOO ). Рис. 28.

Рис. 28. Перекисное окисление липидов и образование вторичных радикалов

(Ю.А. Владимиров, 2001)

Химическая активность этих вторичных органических радикалов ниже, чем у гидроксильного радикала ( OH), но они активно вовлекаются в цепную реакцию ПОЛ, поддерживая и усугубляя повреждения липидного бислоя клеточных мембран.

Модифицирующие эффекты ПОЛ в отношении фосфолипидов определяют цепь дальнейших событий (Архипенко Ю.В. с соавт., 1983; Меерсон Ф.З., 1989; Владимиров Ю.А., 2001). Прежде всего, в молекулах фосфолипидов, содержащих во втором положении жирную кислоту, появляется полярная гидроперекисная группировка (рис. 29).

При этом накопление гидроперекисей липидов сопровождается уменьшением количества ненасыщенных липидов. При умеренной активации ПОЛ, как отмечалось выше, появление в микроокружении интегральных белков полярных продуктов ПОЛ, обладающих детергентным действием, вызывает увеличение подвижности полипептидной цепи, что, как правило, сопровождается увеличением каталитической активности ферментов. При избыточной активации ПОЛ главное значение приобретает уменьшение количества непредельных фосфолипидов.

Рис. 29. Образование гидроперекиси фосфолипида, начальный этап про­цесса ПОЛ

(Ф.З. Меерсон, 1984).

· Значительное уменьшение содержания непредельных фосфолипидов в мембране под влиянием ПОЛ, повышает регидность (микровязкость) ее липидного бислоя, что сопровождается снижением конформационной подвижности полипептидных цепей белков, встроенных в мембрану (эффект «вмораживания»). Поскольку такая подвижность необходима для нормального функционирования ферментов, рецепторов и каналоформеров, их функциональный ответ ингибируется (рис. 30).


Рис. 30 Изменение активности Са-АТФазы в мембранах саркоплазматического

ретикулума в результате модификации липидного окружения этого фер­мента

процессом ПОЛ (Ф.З. Меерсон, 1984)

А - исходное состояние; Б - умеренная активация Са-АТФазы; В - ингибирование-Са-АТФазы.

· Окисленные в ходе активации ПОЛ фосфолипиды подвергаются латеральной диффузии вдоль мембраны и образуют ассоциаты (кластеры), фиксированные взаимодействием фосфолипидов между собой и молекулами воды. Эти участки мембраны приобретают гидрофильность. Располагаясь друг против друга в каждом из монослоев липидного бислоя, такие ассоциаты образуют каналы в мембране, увеличивая ее проницаемость для воды, кальция и других ионов (рис. 31).


Рис. 31.Схема образования перекисных кластеров и фрагментация мембраны при индукции перекисного окисления липидов (Ф.З. Меерсон, 1984)

Светлый треугольник - гидроперекисная группа.

· Образующиеся продукты распада гидроперекисей фосфолипидов (малоновый, глутаровый и др. диальдегиды) взаимодействуют со свободными аминогруппами мембранных белков, образуя межмолекулярные сшивки и инактивируя эти белки (рис. 32). In vivo этот процесс приводит к образованию т.н. оснований Шиффа пигмента изнашивания липофусцина.

Рис. 32. Образование сшивок и ингибирование мембранных белков-ферментов в результате активации ПОЛ (Ф.З. Меерсон, 1984)

Последний представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами (диальдегидами) продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках в виде пигментных пятен, особенно на дорзальной поверхности ладоней у пожилых людей.

Гидроперекись (2), образовавшаяся в результате реакции фосфолипидов (1) с молекулярным кислородом, распадается на фосфолипид с укороченной углеводородной цепью во втором положении, сходный с лизофосфолипидами (3) и короткий углеводородный фрагмент – диальдегид (4). Взаимодействие бифункциональной по своей природе молекулы диальдегида с аминогруппами одновременно двух молекул белков приводит к формированию сшивки (5).

· Под влиянием ПОЛ происходит окисление сульфгидрильных (-SH) групп мембранных белков: ферментов, ионных каналов и насосов, что приводит к падению их активности.

· Образование полярных продуктов окисления способствует возрастанию на мембране отрицательного поверхностного заряда, обусловливающего фиксацию на ней полиэлектролитов. Среди последних – некоторые белки и пептиды, формирующие белковые поры – один из факторов снижения электрической стабильности мембран.

· Увеличение полярности внутренней оболочки мембраны обусловливает проникновение воды в липидный бислой – т.н. «водную коррозию мембраны».

· «Выталкивание» из мембраны части окислившихся полиненасыщенных жирных кислот приводит к уменьшению площади ее липидного бислоя.

Таким образом, на этом этапе развития гипоксического повреждения клеток ключевым звеном патогенеза выступает дезорганизация липидного бислоя мембран, осуществляемая при участии ионов кальция и липидной триады: активации липаз и фосфолипаз; детергентного действия избытка жирных кислот и лизофосфолипидов, а также активации перекисного окисления липидов.

Существенный вклад в эту дезорганизацию вносят также: механическое (осмотическое) растяжение мембран и адсорбция на липидном бислое полиэлектролитов , способствующие увеличению их порозности. В совокупности указанные нарушения обусловливают снижение электрической прочности мембран и возникновение электрического пробоя липидного бислоя собственным мембранным потенциалом (рис. 33). Последний рассматривается как терминальный механизм нарушения барьерной функции мембраны (Владимиров Ю.А., 2001).

Этот этап патогенетической цепи повреждения клеток при гипоксии, характеризующийся нарастающей утратой барьерной и матричной функций мембран , определяет переход обратимых изменений в клетке – в необратимые .

Последующее развитие событий связано с формированием повреждений клеточных структур, непосредственно приводящих к клеточной гибели. Существенно, что механизмы этих повреждающих эффектов также тесно связаны с повышенным содержанием в цитозоле ионов Са 2+ .

Патогенетические последствия избытка ионов кальция в заключительной стадии гипоксического повреждения клеток (стадия некробиоза) не ограничиваются активацией липаз и фосфолипаз. Ионы Са 2+ прямо участвуют в прямых эффектах повреждения клеточных структур и апоптотической гибели клеток. К числу этих эффектов относятся:

· Разрушение цитоскелета, которое связано с Са 2+ -зависимой активацией кальпаинов. Происходит деструкция некоторых белков цитоплазмы (β-актин, фодрин), что вызывает деформацию клеток, ограничивающую возможность их взаимодействия с микроокружением, а также способность к восприятию регуляторных сигналов. Слабость цитоскелета способствует дезинтеграции некоторых надмолекулярных комплексов в клетке, в частности, отсоединению рибосом от мембран шероховатого эндоплазматического ретикулума. В результате происходит насыщение цитоплазмы белковыми молекулами, подвергающихся деградации.

· Механическое повреждение клеточных структур, обусловленное Са 2+ активацией сократительной функции миофибрилл с одновременной утратой ими способности к расслаблению. Такие контрактурные сокращения сопровождаются механическим повреждением сократительных структур клетки.

· Омыление и эндогенный детергентный эффект. Накопление в клетке жирных кислот в присутствии избытка ионов Са 2+ (и Na +) приводит к образованию мыл – солей высших жирных кислот. По этой причине гидролиз сложноэфирных связей называется омылением . Образование мыл в цитозоле резко увеличивает его детергентную активность которая в буквальном смысле растворяет липидные мембраны (Зайчик А.Ш., Чурилов Л.П., 1999). Мыла, разрушая мембраны органоидов, обрушивают на клетку удар гидролаз, активных радикалов и других метаболитов, которые до этого момента были изолированы в различных отсеках клетки. Этот эндогенный эффект имеет решающее значение в формировании финальной стадии клеточной гибели.

· Наряду с участием в некробиозе, ионы кальция участвуют в реализации механизмов апоптотической гибели клеток. Среди последних: повышение активности Са 2+ -зависимых эндонуклеаз и кальпаинов. Подобная активация несет в себе угрозу для клетки, инициируя ее апоптотическую гибель либо вследствие фрагментации ДНК (эндонуклеазами ), либо в результате протеолиза антиапоптотических белков (bcl-2) кальпаинами . Апоптозу может способствовать и кальпаининдуцированная деградация протеинкиназы С(ПКС), реализующую, в основном, антиапоптотические эффекты и повышающую устойчивость клеток к токсическим продуктам обмена.

· Более того, избыток ионов Са 2+ сам способствует образованию токсических продуктов, в роли которых могут, в частности, выступать молекулы оксида азота в высоких концентрациях, создаваемых Са 2+ -активацией индуцибельной NO-синтазы. Наиболее ярко такой эффект проявляется при т.н. глутаматной гибели нейронов , возникающей при гипоксии (ишемии мозга). Инициация развития событий в этом случае связана с дефицитом энергии в нейронах, выходом ионов калия, деполяризацией мембран и повышением внутриклеточного пула Са 2+ в результате длительного открытия потенциал зависимых кальциевых каналов (рис. 34).

Рис. 34. Механизм развития глутаматной гибели нейронов при гипоксии

Следствием избытка ионов кальция в цитоплазме является повышенное выделение нейромедиатора (глутамата) глутаматергическими нейронами в синаптическую щель. Восприятие данного сигнала постсинаптическими нейронами осуществляется с помощью НМДА-рецепторов (наиболее хорошо изученный подтип рецепторов глутамата с высоким сродством к синтетической аминокислоте Н-метил-Д-аспартату), чувствительность которых к медиатору в условиях гипоксии значительно возрастает (Крыжановский Г.Н., 1997). Результатом «глутаматной бомбардировки» (Акмаев И.Г., 1996; Акмаев И.Г., Гриневич В.В., 2001) постсинаптического нейрона является открытие в нем ионных каналов, приводящее к увеличению поступления кальция в клетку и активация нейрональной NO-синтазы (NOS). Продуцируемый под ее влиянием оксид азота, имея малый размер и липофильную природу молекулы, диффундирует во внеклеточное пространство и поступает через мембраны в близлежащие клетки (нейроны), оказывая на них токсическое влияние. Основу этого токсического влияния составляет энергетический дефицит клеток. Механизм формирования такого дефицита связан со способностью NO вызывать S-нитрозилирование клеточных железосодержащих белков (аконитаза ЦТК, комплексы I-III цепи переноса электронов в МТХ) и их инактивацию. Кроме того, под влиянием NO происходит рибозилирование и нитрозилирование глицеральдегид-3-фосфатдегидро-геназы , обусловливающей торможение гликолиза. Наконец, при взаимодействии NO с другим радикалом – О 2 - образуется пероксинитрит-анион (ONOO -), вызывающий необратимое ингибирование железосодержащих белков.

За счет образования ONOO - возможно включение апоптотического механизма гибели клеток путем реализации следующего каскада:

Особенностью глутаматной гибели нейронов является отсутствие гибели самих NO-продуцирующих нейронов, оказывающихся защищенными от токсического действия NO. Механизм этой защиты связывают с активацией супероксиддисмутазы (СОД) и (или) с переходом NO в окисленную форму (NO +). По сути здесь прослеживается прямая аналогия с макрофагами, которые, продуцируя NO, сами проявляют к нему устойчивость.

Таким образом, гибель клетки при гипоксии представляет собой закономерное развертывание цепи событий, включающих формирование энергодефицита, ингибирование основных метаболических путей, активацию липидной триады и последующее необратимое повреждение клеточных структур. Центральным звеном патогенеза этих событий является повышение внутриклеточной концентрации ионов кальция, а главной мишенью – клеточные мембраны и, прежде всего – митохондрии.

Последовательность рассмотренных изменений при гипоксии (аноксии) одинакова для самых различных тканей. Об этом свидетельствуют опыты со срезами тканей, изолированными клетками и изолированными органеллами (Владимиров Ю.А., 2001). Рис. 35.

Различие состоит лишь в скорости протекания этих процессов, которая при температуре тела человека в 2-3 раза выше. Кроме того, эта скорость различна для разных тканей и с наибольшей быстротой указанные процессы протекают в ткани мозга, с меньшей – в печени, с еще более низкой скоростью – в мышечной ткани.

Рис. 35. Последовательность нарушений в клетках печени при аноксии

по Ю.А. Владимирову, 2001

XIV. ГИПЕРОКСИЯ

Гипероксия – повышенное поступление кислорода в организм . В отличие от гипоксии, гипероксия всегда носит экзогенный характер и в естественных условиях практически не встречается. В связи с этим, адаптивные механизмы к данному состоянию эффективны лишь в условиях относительно невысокой кислородной нагрузки, определяемой величиной парциального давления кислорода и продолжительностью его действия. Примером такой зависимости может служить кривая безопасных сроков дыхания кислородом человека (рис. 36).

Рис. 36.Граница действия кислорода на человека (по Hartmann, 1966).

Цитируется по А.Г. Жиронкину (1979).

По оси абсцисс - длительность дыхания кислородом, часы; по оси ординат - парциальное дав­ление кислорода, атм.

Как видно из рисунка, зона т.н. «физиологического действия кислорода» наиболее продолжительна при небольших значениях его парциального давления (около 0,5 атм.), когда защитно-приспособительные реакции в состоянии обеспечить сохранение нормального напряжения кислорода в тканях. Основу этих реакций составляют механизмы, направленные на ограничение поступления и транспорта кислорода. На это, в частности, направлена первичная реакция системы внешнего дыхания, в виде снижения легочной вентиляции и показателя минутного объема дыхания.

Данные сдвиги являются следствием прекращения в условиях повышенного поступления кислорода нормальной естественной импульсации с артериальных хеморецепторов. Вместе с тем, ограничение вентиляции не только снижает поступление кислорода в организм, но и приводит к развитию гиперкапнии. Последняя определяет вторую фазу реакции системы дыхания, характеризующуюся усилением вентиляции, направленным на снижение РаСО 2 и ликвидацию газового ацидоза. Важнейшим сдвигом со стороны системы кровообращения при гипероксии является закономерное сужение мелких кровеносных сосудов, сопровождающееся ростом периферического сопротивления, замедлением общего и локального кровотока, повышением диастолического давления. Еще одним проявлением реакции со стороны этой системы служит брадикардия, регистрируемая до появления признаков кислородного отравления. Изменения со стороны системы крови в ответ на гипероксию проявляются в начальный период преходящей эритропенией и снижением уровня гемоглобина, что обусловлено перемещением тканевой жидкости в кровь и депонированием эритроцитов (Жиронкин А.Г., 1979).

При возрастании парциального давления кислорода во вдыхаемой газовой смеси, на первый план выступает его токсическое действие, поскольку защитный эффект приспособительных реакций минимизируется. В этой зоне кислород уже играет роль фактора не обеспечивающего, а угнетающего окислительные процессы в тканях. Что касается механизмов самого токсического влияния, то сегодня наиболее принятой является точка зрения R. Gershman (1964), связывающего этот механизм с образованием активных форм кислорода и с активацией свободнорадикального окисления.

В условиях перенасыщения тканей кислородом, т.е. в ситуации, когда «предложение» (избыток кислорода) превышает «спрос» (количество восстановленных кофакторов, подлежащих окислению), вероятность повышенного образования АФК возрастает. Соответственно, усиливается свободнорадикальное окисление, сопровождающееся повреждением клеточных и субклеточных структур, и, прежде всего, митохондрий.

Очевидно, что дезорганизация и повреждение митохондрий будут сопровождаться нарушением цепи транспорта электронов и окислительного фосфорилирования. Т.е. нарушениями, определяющими суть понятия «гипоксия». Соответственно, такое состояние называется гипероксической гипоксией.

Повреждение клеточных и субклеточных структур при активации свободнорадикальных процессов, приводит к развитию многочисленных нарушений специфических функций различных органов и систем. Так, ингибирование ферментов в головном мозге снижает продукцию γ-аминомасляной кислоты – важнейшего тормозного медиатора, что служит одним из механизмов развития при гипероксии судорожного синдрома кортикального генеза . Нарушение продукции сурфактанта легочным эпителием обусловливает резкое уменьшение компенсаторных резервов системы внешнего дыхания, повышая поверхностное натяжение альвеол, и способствуют появлению микроателектазов . В тяжелых случаях нарушение продукции сурфактанта может сопровождаться отеком легких . У некоторых детей первого года жизни дыхание чистым кислородом приводит к развитию респираторного дистресса – бронхопульмональной дисплазии (Маляренко Ю.Е., Пятин В.Ф., 1998). Активация свободнорадикального окисления при гипероксигенации лежит в основе формирования дефектов зрения у маленьких детей, в связи с нарушением созревания фоторецепторов.

Наряду с АФК токсическое действие кислорода опосредуется и чрезмерным напряжением некоторых защитно-приспособительных реакций. К числу таких реакций, в частности, относится длительный спазм сосудов (реакция на гипероксию). У недоношенных детей он способствует развитию ретролентальной фиброплазии (образованию фиброзной ткани за хрусталиком), приводящей к слепоте. Аналогичный спазм сосудов в легких обусловливает легочную гипертензию, расстройства микроциркуляции и повреждение легочного эпителия – нарушений, предрасполагающих к развитию воспаления .

Указанные обстоятельства заставляют ограничивать применение кислорода для лечебных целей, при которых РО 2 не должен превышать 380 мм рт. ст. (Березовский В.А., 1975).

Особую чувствительность к токсическому действию избытка кислорода проявляет ткань мозга плода , которая характеризуется значительно более низким напряжением кислорода, чем церебральные структуры зрелого организма . «Этот факт не является результатом несовершенства процессов кислородного снабжения организма во внутриутробном периоде, а напротив, отражает сбалансированность этих процессов, обеспечивающих, с одной стороны, адекватную оксигенацию мозга, а с другой - защиту его от избыточного потока О 2 » (Рагузин А.В., 1990). Экспериментально установлено, что напряжение кислорода тканей фетального мозга является относительно стабильным параметром гомеостаза внутриутробно развивающегося организма, который мало меняется даже при значительных сдвигах кислородного режима беременных животных . Такое постоянство РО 2 тканей мозга плода при сдвигах РаО 2 (от 50 до 370 мм рт. ст.) материнского организма определяется механизмами, локализованными прежде всего в маточно-плацентарной области, но не системными реакциями дыхания и кровообращения. К рождению формирование механизмов стабилизации кислородного гомеостаза мозга не завершено, что служит причиной более значимого (чем у взрослых) увеличения РО 2 церебральных структур новорожденных при ингаляции чистым кислородом. Подобный прирост РО 2 сопровождается активацией свободнорадикального окисления в ткани мозга и развитием негативных качественных изменений параметров условно оборонительных рефлексов в зрелом возрасте (Рагузин А.В., 1990). В связи с данным положением обосновывается подход к коррекции тяжелой степени гипоксии новорожденных с использованием для ингаляции не чистого кислорода, а газовых смесей с его пониженным содержанием.

Судорожная форма кислородного отравления возникает при остром отравлении кислородом и известна с конца XIX столетия как симптом Бэра , впервые обнаруженный и описанный этим автором. Судороги возникают, как правило, при дыхании кислородом под давлением, превышающим 3-4 атм. и очень напоминают по своему течению эпилептические судорожные припадки.

Клинически различают три стадии этого процесса (Черешнев В.А., Юшков Б.Г., 2001):

I стадия – учащение дыхания и сердцебиения, повышение артериаль­ного давления, расширение зрачков, усиление активности с отдельными по­дергиваниями мышц.

II стадия – стадия судорог, похожих на эпилептические с клоническими и тоническими проявлениями.

III стадия – терминальная – ослабление судорог с расстройством ды­хания, которое переходит на отдельные вдохи. Смерть наступает от парали­ча дыхательного центра.

Активные формы кислорода (свободные радикалы)

В организме в результате окислительно- восстановительных реакций постоянно происходитгенерация активных форм кислорода (АФК) при одноэлектронном восстановлении кислорода (молекула имеет неспаренный электрон на молекулярной или внешней атомной орбите).


Источники АФК:

1) цепь тканевого дыхания (утечка электронов с восстановленного убихинона KoQH 2 на кислород);

2) реакции, катализируемые оксидазами, гемопротеинами, цитохромом Р 450 ;

3) реакции окисления в лейкоцитах, макрофагах и пероксисомах;

4) радиолиз воды;

5) под воздействием ксенобиотиков, пестицидов;

6) реакции самопроизвольного (неферментативного) окисления ряда веществ.

Супероксид-анион – является одним из наиболее широко распространенных в организме свободных радикалов:

Он образуется в клетках болезнетворных бактерий и является повреждающим фактором для мембран клеток паренхиматозных органов человеческого организма. Для лейкоцитов и макрофагов супероксид-анион является фактором бактерицидности, с помощью которого клетки инактивируют патогенные микроорганизмы.

Другой путь образования свободных радикалов – взаимодействие кислорода с металлами переменной валентности. При этом образуется пероксидныйрадикал:


Fe 2+ + O 2 + H + → Fe 3+ + HO 2

O 2 - + Н + → HO 2

Взаимодействие супероксиданиона с пероксидным радикалом (1) или одноэлектронное восстановление супероксид-аниона (2) в водной среде приводят к образованию пероксида водорода

O 2 - + НО 2 + Н + → Н 2 О 2 + О 2 (1)


О 2 - + е - + 2Н + → Н 2 О 2 (2)


Гидроксильный радикал ОН образуется при взаимодействии пероксида водорода с супероксид-анионом (1) либо с металлами (2):


Н 2 О 2 + О 2 - → ОН + ОН - + О 2 (1)


Н 2 О 2 + Fe 2+ → ОН + ОН - + Fe 3+ (2)

Кислородные радикалы обладают высокой реакционной способностью и легко вступают в химические реакции с органическими молекулами для приобретения недостающего электрона. Кислородные радикалы оказывают воздействие на различные структурные компоненты клеток: ДНК (повреждение азотистых оснований); белки (окисление аминокислотных остатков, образование ковалентных «сшивок»); липиды; мембранные структуры.

Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, и инициируют тем самым цепные окислительные реакции. Если в реакцию с АФК вступают ненасыщенные жирные кислоты плазматических мембран, говорят о перекисном окислении липидов.



Реакции ПОЛ являются свободнорадикальными и постоянно протекают в организме, также как и реакции образования АФК. В норме они поддерживаются на определенном уровне и выполняют ряд функций:

· индуцируют апоптоз (запрограммированную гибель клеток);

· регулируют структуру клеточных мембран и тем самым обеспечивают функционирование ионных каналов, рецепторов, ферментных систем;

· обеспечивают освобождение из мембраны арахидоновой кислоты, из которой синтезируются биорегуляторы (простагландины, тромбоксаны, лейкотриены);

· ПОЛ может выступать в качестве вторичного мессенджера, участвуя в трансформации сигналов из внешней и внутренней среды организма, обеспечивая их внутриклеточную передачу;

· АФК участвуют в клеточном иммунитете и фагоцитозе.

Механизм ПОЛ :

1) Инициация.

Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН 2 - групп ненасыщенной жирной кислоты L, что приводит к образованию липидного радикала L·:

L + OН → L·

2) Развитие цепи.

Развитие цепи происходит при присоединении кислорода, в результате чего образуется пероксидный радикал LOO· или пероксид липида LOOH (гидроперекиси липидов)

L· + O 2 → LOO·

LOО· + LH → LOOH + LR∙·

3) Обрыв цепи.

Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами (витамином Е), которые являются донорами электронов:

LOO·∙ + L· → LOOH + LH

L∙·+ вит Е → LH + вит Е·∙

ВИТ Е· + L· → LH + ВИТ Е окисл

В результате ПОЛ происходит преобразование обычных липидов в первичные продукты ПОЛ (гидроперекиси липидов). Это приводит к появлению в мембранах участков («дыр»), через которые наружу выходит содержимое как самих клеток, так и их органелл.

Первичные продукты ПОЛ разрушаются с образованием вторичных продуктов ПОЛ : альдегидов, кетонов, малонового диальдегида, диеновых коньюгатов. Накоплением в крови малонового диальдегида (МДА) объясняется синдром интоксикации, сопровождающий многие заболевания внутренних органов. Реагируя с SH- и СН 3 -группами белков, МДА подавляет активность цитохром-оксидаз (угнетая тем самым тканевое дыхание) и гидроксилаз. МДА обуславливает также ускоренное развитие атеросклероза.

При взаимодействии МДА с аминогруппами фосфолипидов образуются конечные продукты ПОЛ – Шиффовы основания. Примером этих соединений является пигмент липофусцин, появляющийся на оболочке глаза, на коже с возрастом. Липофусцин представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, накапливается в клетках, нарушая их функцию.

Негативные последствия активации ПОЛ :

· Повреждение липидного бислоя мембран, в результате чего в клетки проникает вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.

· Преждевременное старение клеток и организма в целом.

· Взаимодействие высокореактивных продуктов ПОЛ с аминогруппами белков с образованием Шиффовых оснований.

· Изменение текучести (вязкости) мембран, в результате чего нарушается транспортная функция мембран (функционирование ионных каналов).

· Нарушение активности мембраносвязанных ферментов, рецепторов.

Активация ПОЛ характерна для многих заболеваний и патологических состояний:

· атеросклероз и другие сердечнососудистого заболевания;

· поражения ЦНС (болезнь Паркинсона, Альцгеймера);

· воспалительные процессы любого генеза;

· дистрофия мышц (болезнь Дюшенна);

· онкологические заболевания;

· радиационные поражения;

· бронхолегочные патологии.

Окисление перекисное

сложный многостадийный цепной процесс окисления кислородом липидных субстратов, главным образом полиненасыщенных жирных кислот, включающий стадии взаимодействия липидов со свободнорадильными соединениями и образования свободных радикалов липидной природы. О. п. фосфолипидов биологических мембран играет важную роль в жизнедеятельности живых организмов. Усиление процессов О. п. имеет существенное значение в этиологии и патогенезе многих заболеваний и развитии последствий различных экстремальных воздействий.

Перекисное окисление является частным случаем жидкофазного окисления углеводородов. Оно представляет собой типичный цепной процесс с выраженным разветвлением. О. п. может включить стадии неферментативного аутоокисления и ферментативные реакции. Ферментативный и неферментативный пути О. п. приводят к образованию свободных радикалов липидов в несколько основных этапов: инициирование (зарождение цепи) , , продолжение цепи ; разветвление цепи ; обрыв цепи молекулярные продукты, молекулярные продукты, молекулярные продукты, где RH - субстрат окисления (полиненасыщенная жирная кислота). В инициировании О. п. решающую роль играют так называемые активные формы кислорода, в первую очередь кислородные радикалы, содержащие неспаренные электроны. В результате одноэлектронного восстановления молекулярного кислорода О 2 в клетках образуется супероксидный анион-радикал который возникает в электронпереносящей цепи митохондрий, хлоропластов, в реакциях, катализируемых некоторыми окислительными ферментами, при аутоокислении моноаминов и других соединений. При реакции дисмутации двух супероксидных радикалов образуется молекула перекиси водорода Н 2 О 2 ; Другими источниками перекиси водорода являются реакции, катализируемые некоторыми оксидазами. В клетках существуют специальные системы обезвреживания токсичных кислородных радикалов, в частности ферментные: супероксиддисмутаза, катализирующая превращение супероксида в перекись водорода, и пероксидазы, катализирующие реакции, в которых перекись водорода восстанавливается до воды. К наиболее реакционноспособным и поэтому наиболее опасным радикалам кислорода относится гидроксильный радикал ОН - один из основных повреждающих факторов при действии на живой ионизирующего излучения (Ионизирующие излучения). Значительная часть радикалов ОН в живых организмах генерируется в результате реакций перекиси водорода и супероксидных радикалов с каталитическими количествами металлов переменной валентности, в первую очередь, с ионами и меди. Относительно малоактивные и долгоживущие и Н 2 О 2 могут служить источником взаимодействующего практически со всеми классами биомолекул радикала ОН в присутствии микроколичеств свободных железа или меди. Наряду с радикалом ОН непосредственными инициаторами О. п. могут быть и другие свободные радикалы, например протонированный супероксид-анион , а также синглетный и ряд других активных форм кислорода.

Продукты О. п., в частности перекиси липидов, используются в организме для синтеза биологически активных веществ - простагландинов (Простагландины), тромбоксанов, стероидных гормонов (Гормоны) и т.д. Интенсивность О. п. непосредственно связана с процессами обновления состава фосфолипидов биологических мембран, изменения относительного содержания липидов и белков и как следствие с изменением структуры биологических мембран и их функционирования. В живых организмах существует сложная регуляции интенсивности процесса О. п. В норме процессы образования и расходования продуктов О. п. хорошо сбалансированы, что определяет их относительно низкое содержание в клетках. Скорость О. п. на уровнях инициирования, продолжения и обрыва цепи в значительной степени определяется структурной организацией липидов в биологической мембране. которая влияет на остатков ненасыщенных жирных кислот (Жирные кислоты) для кислорода. Факторы, нарушающие «упаковку» липидов в биологической мембране, ускоряют, а факторы, поддерживающие структурированность липидов (например ), тормозят О. п. Другим регуляторным компонентом системы О. п. являются , участвующие в образовании (например, некоторые ) или гибели (супероксиддисмутаза) активных форм кислорода и свободных радикалов, а также в разложении перекисей без образования свободных радикалов (каталаза, пероксидазы). этих ферментов также может зависеть структурированности липидного бислоя биологической мембраны. Практически на всех стадиях О. п. существенную модуляторную роль играют факторы, регулирующие фосфолипидов биологических мембран и влияющие на скорость окисления путем изменения липидного состава мембран. Чрезвычайно важное значение в регуляции О. п. имеют многочисленные низкомолекулярные соединения, выполняющие функции инициаторов, катализаторов, ингибиторов, тушителей, синергистов этого процесса. К числу важнейших стабилизаторов биологических мембран относится природный антиоксидант ( О. п.) Е; другими природными антиоксидантами являются тироксин и , витамин К, . Свойствами прооксидантов (веществ, усиливающих О. п.) обладают ионы металлов переменной валентности, С, D и др.

При развитии патологического процесса баланс образования и расходования перекисей и других продуктов О. п. может нарушаться, О. п. накапливаются в тканях и биологических жидкостях, что приводит к серьезным нарушениям, в первую очередь, в биологических мембранах. Следствием активизации О. п. может быть изменение физико-химических свойств мембранных белков и липидов, изменение активности мембранно-связанных ферментов, нарушение проницаемости мембран (в т.ч. для протонов и ионов кальция), ионного транспорта (например, угнетение натриевого насоса), уменьшение электрической стабильности липидного бислоя мембран. Активация О. п. приводит к изменению структуры липопротеинов сыворотки крови и гиперхолестеринемии, нарушает разнообразные процессы клеточного метаболизма практически на всех уровнях.

Токсичными для организма являются не только образующиеся в результате О. п. перекиси, но и продукты более глубокого окисления липидов альдегиды, кислоты. Карбонильные продукты О. п. ингибируют ряд ферментов, подавляют ДНК, увеличивают капилляров, модифицируют агрегацию тромбоцитов и проявляют ряд других нежелательных эффектов. Инициирующие О. п. и возникающие в процессе окисления реактивные свободные радикалы вызывают структуры нуклеиновых кислот (Нуклеиновые кислоты), прежде всего ДНК, деструкцию нуклеотидных коферментов (Коферменты), нарушения функционирования ферментов (в первую очередь SH-ферментов), ковалентную модификацию различных биомолекул. Следствием избыточной генерации свободных радикалов могут быть патологические изменения свойств сосудов.

Для профилактики и терапии состояний, связанных с чрезмерной активацией О. п., могут быть использованы , вещества, специфически реагирующие с определенными свободными радикалами (ловушки или перехватчики), специфические вещества, образующие комплексные соединения с металлами переменной валентности, а также различные пути активации эндогенных систем антирадикальной защиты организма (например, постепенная к гипоксии или другим факторам).

В связи с важной ролью О. п. в патогенезе различных заболеваний определение продуктов этого процесса (главным образом конъюгированных диенов, малонового диальдегида), спонтанной и индуцированной хемилюминесценции в биологическом материале (сыворотке и плазме крови, эритроцитах, моче, конденсате выдыхаемого воздуха и т.д.) имеет все возрастающее диагностическое и прогностическое значение.

1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Окисление перекисное" в других словарях:

    перекисное окисление липидов - Процесс взаимодействия липидов (их ненасыщенных участков), входящих в состав клеточных мембран, с окисляющими агентами (анион О2 , радикал НО и др.), образующимися под действием ионизирующего облучения и в процессах метаболизма некоторых веществ; … Справочник технического переводчика

    Механизм ПОЛ Перекисное окисление липидов (ПОЛ) окислительная деградация липидов, происходящая, в основном, под действием свободных радикалов. Одно из главных п … Википедия

    Lipid peroxidation перекисное окисление липидов. Процесс взаимодействия липидов (их ненасыщенных участков), входящих в состав клеточных мембран, с окисляющими агентами (анион О2 , радикал НО и др.), образующимися под действием ионизирующего… … Молекулярная биология и генетика. Толковый словарь.

    Совокупность процессов переваривания и всасывания нейтральных жиров (триглицеридов) и продуктов их распада в желудочно кишечном тракте, промежуточного обмена жиров и жирных кислот и выведение жиров, а также продуктов их обмена из организма.… … Медицинская энциклопедия - совокупность процессов всасывания, распределения, усвоения и выделения минеральных веществ, находящихся в организме преимущественно в виде неорганических соединений. Минеральные вещества играют главную роль в поддержании кислотно щелочного… … Медицинская энциклопедия

    Механизм ПОЛ. Перекисное окисление липидов (ПОЛ) окислительная деградация липидов, происходящая, в основном, под действием свободных радикалов. Одно из главных последствий облучения. Один из продуктов этого процесса малондиальдегид. Литература Ю … Википедия

    Молодые деревья в ботаническом саду … Википедия

    - (синоним: нейтральные жиры, триглицериды) сложные эфиры трехатомного спирта глицерина и высших или средних жирных кислот, главная составная часть животных жиров и растительных масел, присутствуют во всех животных и растительных тканях, в питании… … Медицинская энциклопедия

Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.

К активным формам кислорода относят:

ОН. — гидроксильный радикал;

О 2 . — супероксидный анион;

Н 2 O 2 — пероксид водорода.

Активные формы кислорода образуются во многих клетках в результате последовательного одноэлектронного присоединения 4 электронов к 1 молекуле кислорода. Конечный продукт этих реакций — вода, но по ходу реакций образуются химически активные формы кислорода. Наиболее активен гидроксильный радикал, взаимодействующий с большинством органических молекул. Он отнимает от них электрон и инициирует таким образом цепные реакции окисления. Эти свободнорадикальные реакции окисления могут выполнять полезные функции, например, когда клетки белой крови с участием активных форм кислорода разрушают фагоцитированные клетки бактерий. Но в остальных клетках свободнорадикальное окисление приводит к разрушению органических молекул, в первую очередь липидов, и, соответственно, мембранных структур клеток, что часто заканчивается их гибелью. Поэтому в организме функционирует эффективная система ингибирования перекисного окисления липидов (ПОЛ).

А. Источники активных форм кислорода

ЦПЭ как источник активных форм кислорода

Утечка электронов из ЦПЭ и непосредственное их взаимодействие с кислородом — основной путь образования активных форм кислорода в большинстве клеток.

Кофермент Q в ЦПЭ принимает от доноров последовательно по одному электрону, превращаясь в форму семихинона (рис. 8-55) — КоQН. (см. раздел 6).

Этот радикал может непосредственно взаимодействовать с кислородом, образуя супероксидный анион О 2 . , который, в свою очередь, может превращаться в другие активные формы кислорода:

Рис. 8-55. Реакции последовательного восстановления убихинона в дыхательной цепи.

Реакции, катализируемые оксидазами и оксигеназами

Многие оксидазы — ферменты, непосредственно восстанавливающие кислород, образуют пероксид водорода — Н 2 O 2 . Оксидазы образуют пероксид водорода по схеме:

O 2 + SН 2 —> S + Н 2 O 2 , где SН 2 — окисляемый субстрат.

Примеры таких оксидаз — оксидазы аминокислот, супероксид дисмутаза, оксидазы, локализованные в пероксисомах. Оксидазы пероксисом окисляют, в частности, жирные кислоты с очень длинной углеродной цепью (более 20 углеродных атомов) до более коротких, которые далее подвергаются β-окислению в митохондриях.

Монооксигеназы, например, цитохром Р 450 , включающий один атом кислорода в окисляемую молекулу, и диоксигеназы, включающие оба атома кислорода, также служат источниками активных форм кислорода.

Пероксид водорода химически не очень активен, но способствует образованию наиболее токсичной формы кислорода — гидроксильного радикала (ОН.) по следующей реакции:

Fе 2+ + Н 2 O 2 —>Fе 3+ + ОН - + ОН. .

Наличие в клетках Fе 2+ или ионов других переходных металлов увеличивает скорость образования гидроксильных радикалов и других активных форм кислорода. Например, в эритроцитах окисление иона железа гемоглобина способствует образованию супероксидного аниона.

Б. Перекисное окисление липидов

Реакции перекисного окисления липидов (ПОЛ) являются свободнорадикальными и постоянно происходят в организме. Свободнорадикальное окисление нарушает структуру многих молекул. В белках окисляются некоторые аминокислоты. В результате разрушается структура белков, между ними образуются ковалентные «сшивки», всё это активирует протеолитические ферменты в клетке, гидролизующие повреждённые белки. Активные формы кислорода легко нарушают и структуру ДНК. Неспецифическое связывание Fе 2+ молекулой ДНК облегчает образование гидроксильных радикалов, которые разрушают структуру азотистых оснований. Но наиболее подвержены действию активных форм кислорода жирные кислоты, содержащие двойные связи, расположенные через СН 2 -группу. Именно от этой СН 2 -группы свободный радикал (инициатор окисления) легко отнимает электрон, превращая липид, содержащий эту кислоту, в свободный радикал.

ПОЛ — цепные реакции, обеспечивающие расширенное воспроизводство свободных радикалов, частиц, имеющих неспаренный электрон, которые инициируют дальнейшее распространение перекисного окисления.

Стадии перекисного окисления липидов

1) Инициация: образование свободного радикала (L.)

Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН 2 -групп полиеновой кислоты, что приводит к образованию липидного радикала.

2) Развитие цепи:

Развитие цепи происходит при присоединении O 2 , в результате чего образуется липопероксирадикал LOO. или пероксид липида LOOH.

ПОЛ представляет собой свободнорадикальные цепные реакции, т.е. каждый образовавшийся радикал инициирует образование нескольких других.

3) Разрушение структуры липидов

Конечные продукты перекисного окисления полиеновых кислот — малоновый диальдегид и гидропероксид кислоты.

4) Обрыв цепи — взаимодействие радикалов между собой:

Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами, например, витамином Е, который отдаёт электроны, превращаясь при этом в стабильную окисленную форму.

В. Повреждение клеток в результате перекисного окисления липидов

Активные формы кислорода повреждают структуру ДНК, белков и различные мембранные структуры клеток. В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жирных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению. Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, при которых ПОЛ разрушает нервные клетки в стволовой части мозга, при атеросклерозе, развитии опухолей. Перекисное окисление активируется также в тканях, подвергшихся сначала ишемии, а затем реоксигенации, что происходит, например, при спазме коронарных артерий и последующем их расширении.

Такая же ситуация возникает при образовании тромба в сосуде, питающем миокард. Формирование тромба приводит к окклюзии просвета сосуда и развитию ишемии в соответствующем участке миокарда (гипоксия ткани). Если принять быстрые лечебные меры по разрушению тромба, то в ткани восстанавливается снабжение кислородом (реоксигенация). Показано, что в момент реоксигенации резко возрастает образование активных форм кислорода, которые могут повреждать клетку. Таким образом, даже несмотря на быстрое восстановление кровообращения, в соответствующем участке миокарда происходит повреждение клеток за счёт активации перекисного окисления.

Изменение структуры тканей в результате ПОЛ можно наблюдать на коже: с возрастом увеличивается количество пигментных пятен на коже, особенно на дорсальной поверхности ладоней. Этот пигмент называют липофусцин, представляющий собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках, нарушая их функции.

ПОЛ происходит не только в живых организмах, но и в продуктах питания, особенно при неправильном приготовлении и хранении пищи. Прогоркание жиров, образование более тёмного слоя на поверхности сливочного масла, появление специфического запаха у молочных продуктов — всё это признаки ПОЛ. В продукты питания, содержащие ненасыщенные липиды, обычно добавляют антиоксиданты — вещества, ингибирующие ПОЛ и сохраняющие структуру компонентов пищи.

Г. Системы защиты клеток от активных форм кислорода

Ферменты антиоксидантного действия

К ферментам, защищающим клетки от действия активных форм кислорода, относят супероксиддисмутазу, каталазу и глутатионпероксидазу. Наиболее активны эти ферменты в печени, надпочечниках и почках, где содержание митохондрий, цитохрома Р 450 и пероксисом особенно велико. Супероксиддисмутаза (СОД) превращает супероксидные анионы в пероксид водорода:

2 О2 . + 2 Н + —> Н 2 О 2 + О 2 .

Изоферменты СОД находятся и в цитозоле и в митохондриях и являются как бы первой линией защиты, потому что супероксидный анион образуется обычно первым из активных форм кислорода при утечке электронов из дыхательной цепи.

СОД — ицдуцируемый фермент, т. е. синтез его увеличивается, если в клетках активируется перекисное окисление.

Пероксид водорода, который может инициировать образование самой активной формы ОН. , разрушается ферментом каталазой:

2 Н 2 О 2 —> 2 Н 2 О + О 2 .

Каталаза находится в основном в пероксисомах, где образуется наибольшее количество пероксида водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва» (см. раздел 6).

Глутатионпероксидаза — важнейший фермент, обеспечивающий инактивацию активных форм кислорода, так как он разрушает и пероксид водорода и гидропероксиды липидов. Он катализирует восстановление пероксидов с помощью трипептида глутатиона (y-глутамилцистеинилглицин). Сульфгидрильная группа глутатиона (GSН) служит донором электронов и, окисляясь, образует дисульфидную форму глутатиона, в которой 2 молекулы глутатиона связаны через дисульфидную группу.

Н 2 O 2 + 2 GSH —> 2 Н 2 O + G-S-S-G.

Окисленный глутатион восстанавливается глутатионредуктазой:

GS-SG + NADPH + Н + —> 2 GSH + NADP + .

Глутатионпероксидаза, которая восстанавливает гидропероксиды липидов в составе мембран, в качестве кофермента использует селен (необходимый микроэлемент пищи). При его недостатке активность антиоксидантной защиты снижается.

Витамины, обладающие антиоксидантным действием

Витамин Е (α-токоферол) — наиболее распространённый антиоксидант в природе — является липофильной молекулой, способной инактивировать свободные радикалы непосредственно в гидрофобном слое мембран и таким образом предотвращать развитие цепи перекисного окисления. Различают 8 типов токоферолов, но α-токоферол наиболее активен.

Витамин Е отдаёт атом водорода свободному радикалу пероксида липида (ROO .), восстанавливая его до гидропероксида (ROOH) и таким образом останавливает развитие ПОЛ (рис. 8-56).

Рис. 8-56. Механизм антиоксидантного действия витамина Е. Витамин Е (α-токофероп) ингибирует свободнорадикальное окисление путём отдачи электрона, что приводит к инактивации радикала липида, а витамин Е превращается в стабильный, полностью окисленный токоферолхинон.

Свободный радикал витамина Е, образовавшийся в результате реакции, стабилен и не способен участвовать в развитии цепи. Наоборот, радикал витамина Е непосредственно взаимодействует с радикалами липидных перекисей, восстанавливая их, а сам превращается в стабильную окисленную форму — токоферолхинон.

Витамин С (аскорбиновая кислота) также является антиоксидантом и участвует с помощью двух различных механизмов в ингибировании ПОЛ. Во-первых, витамин С восстанавливает окисленную форму витамина Е и таким образом поддерживает необходимую концентрацию этого антиоксиданта непосредственно в мембранах клеток. Во-вторых, витамин С, будучи водорастворимым витамином и сильным восстановителем, взаимодействует с водорастворимыми активными формами кислорода — O 2 . , Н 2 O 2 , ОН. и инактивирует их.

β-Каротин, предшественник витамина А, также обладает антиоксидантным действием и ингибирует ПОЛ. Показано, что растительная диета, обогащённая витаминами Е, С, каротиноидами, существенно уменьшает риск развития атеросклероза и заболеваний ССС, подавляет развитие катаракты — помутнения хрусталика глаза, обладает антиканцерогенным действием. Имеется много доказательств в пользу того, что положительное действие этих компонентов пищи связано с ингибированием ПОЛ и других молекул и, следовательно, с поддержанием нормальной структуры компонентов клеток.

В последние годы рядом отечественных и зарубежных авторов уделяется особое внимание изучению процессов перекисного окис­ления липидов (З.П.Чеботарева, 1968; Ю. А.Владимиров и соавт., 1972; Н.Г.Зрапова, 1981; Е.А.Чернуха и соавт., 1986; В.В.Абрам- ченко, 1988; М.В.Биланко, 1989; Л.М.Рзакулиева и соавт.,

1991; Л.Й.Малоштан, 1994; Hicks й соавт., 1979; Yoshloka и соавт., 1979, 1982), которые являются необходимым метаболи­ческим звеном в нормальной жизнедеятельности организма.

Они участвуют в реакциях окислительного фосфорилирования, в биосин­тезе простагландинов и нуклеиновых кислот, в регулировании ляполитяческой активности, в регуляции физико-жимических свойств мембран и функций клеток в целом (Д.Р.Ракита и соавт., 1983;

В.П.Петренко, 1986; Hogberg и соавт., 19*йЗ; Ohel и соавт., 1985).

Добыв нарушения в липидном обмене, как правило, приводят к накоплению недокясленных продуктов, оказывающих повреждающее действие на биологические мембраны (Ю.П. Коз лов, 1975; А.А.Ана- ненко и соавт., 1977; В.П.Петренко, 1986; ffiarkose , 1976).

Процесс свободнорадикального окисления является универсаль­ным, проявляясь на уровне всех тканей и органов, в том числе и в эритроцитах. Вовлечение липидов клеточных мембран в процесс перекисного окисления представляет собой первый этап мембрано- деструкцяя. В результате этих изменений в организме накаплива­ются биоактивные радикалы - перекиси липидов, которые воздей­ствуют на мембрану вторично, приводя ее к дестабилизации за счет инактивированяя мембранных ферментов, образования в

структуре мембраны каналов. Перекиси липидов не являются "кле­точными шлаками", а сами участвуют как активные интермедиаторы в клеточном метаболизме. Комплекс этих изменений в конечном итоге приводит к гибели клетки в целом (Тарреї , 1973).

Появление свободных радикалов в клетках живого организма происходит непрерывно (В.А.Барабой и соавт., 1983; witting , 1980; Gulyaeva , 1989; Clemens , 1989). Начавшееся свобод­норадикальное окисление протекает по типу сам ©ускоряющихся цеп­ных реакций автоокисленая и приводит к образованию большого чис­ла перекисных радикалов. Однако в норме перекисное окисление поддерживается на определенном уровне благодаря действию специ­фических ингибиторов - антиокислителей (И.И.Рюмина, 1985;

М.В.Биленко, 1989). Поддержание процессов образования перекисей имеет важное биологическое значение. Оно необходимо для нормаль­ного функционирования клеток, активности ферментных систем, об­разования липидных комплексов (М.А.Асаков, 1978).

Физиологическое течение беременности сопровождается выра­женными эндокринно-метаболическими перестройками в организме, ведущими к изменениям ПОЛ (А.Р.Бабаянц, 1987). При этом в 7-12 недель содержание гидроперекисей липидов снижалось по сравнению с контролем (здоровые небеременные женщины), затем происходило увеличение и к 28-32 неделям уровень их достигал уровня у небе­ременных женщин (В.М.Садаускас и соавт., 1972). Возрастание ин­тенсивности ПОЛ параллельно увеличению срока нормальной беремен­ности отмечали и другие исследователи (В.К.Ашмис, 1985;

Selvaraj И соавт., 1982).

Seivaraj а соавт. (Х9ТО) сообщают о снижении интенсив­ности ПОЛ в течение 1-й недели послеродового периода.

Данные А.Р.Бабаянц (1987) свидетельствуют о достоверном возрастании

всех показателей ПОЛ уже через 5-Ю часов после родов. В норме сложная система антирацикальной, антяперекясной защиты в орга­низме ограничивает ПОЛ мембран. При развитии патологического процесса отмечается ускорение свободнорадикальных реакций ПОЛ, которые разобщают окислительное фосфорилирование, нарушают проницаемость клеточных мембран и ведут к гибели клетки (Р.Р.Фархутдинов и с оавт., 19 83).

Показано, что интенсификация перекисного окисления липидов является неспецифическям ответом клетки на любое экстремальное воздействие (Й.Г.Храдова и соавт., 1981; С.А.Сторожок, 1988; И.И.$омяна и соавт., 1985).

Повреждающий эффект перекисей связан с процессом окисления фосфолипидов мембран, входящих в их состав ненасыщенных жирных кислот. Фосфолипиды составляют значительную часть липидов кле­точных мембран, которые принимают непосредственное участив в транспорте веществ, рецепция гормонов, биосинтезе ряда фермен­тов и т.д. (Т.С.Саатов, 1979; ЕЛ.Крепс, 1981).

Обычно изменение показателей ПОЛ связано с нарушением обменных процессов и, как правило, обусловлено гипоксическим состоянием организма. Так в исследованиях М.З.Исраиловой и соавт. (1990) накопление в крови продуктов ПОЛ сопровождалось увеличением уровня недоокисленных продуктов обмена (лактата, пирувата), что свидетельствует о нарастании анаэробных процес­сов в ответ на гипоксию.

По современным представлениям поддерживание процессов перекисного окисления липидов на определенном стационарном уровне осуществляется антиоксидантной системой организма, со­стоящей из двух систем? ферментативной и неферментативной (Й.Г.Храпова, 1981; Chavapil и соавт., 1982).

Активными ферментами, оказывающими антикислородный эффект, являются супероксиддисмутаза, глутатионпероксидаза, глутатион- редуктаза. Антиоксидантную роль в организме выполняют различ­ные биологически активные вещества! токоферол, убихиноны, ви­тамины группы К, стероидные гормоны (Г.В.Донченко и соавт., 1982; Cornwell и соавт., 1979; Prank я соавт., 1980). При­родные антиоксиданты могут непосредственно взаимодействовать с перекисными радикалами, уменьшая их концентрацию, т.е. обла­дают определенной антирадикальной активностью (Э.К.Айламазян, 1991). В липидах эти вещества существуют в двух формах: окис­ленной (хинонной) и восстановленной (фенольной). Однако только восстановленные формы, имеющие свободные гидроксильные группы, активно взаимодействуют с перекисными радикалами.

Вещества, способные восстанавливать хинонные формы при­родных антиоксидантов, регенерируя их антирадикальную актив­ность будут увеличивать общую антиокиолительную активность липидов, являясь синергистами природных антиоксидантов. Как правило, роль синергистов выполняют вещества, имеющие невысо­кий окислительно-восстановительный потенциал и легко переходя­щие из одной формы в другую, например, аскорбиновая кислота, некоторые меркаптосоединения (М.Х.Агеева и соавт., 1981; В.Б.Опиричев и соавт., 1981; В.Б.Бурлакова и соавт., 1985).

Повышение концентрации липидных радикалов в мембранах приводит к увеличению общей скорости окисления, которая прямо пропорциональна квадрату их концентрации. Уничтожить избыток продуктов перекисного окисления могут только природные анти­оксиданты, причем эффективность их влияния на общую скорость окисления значительно превышает эффективность воздействия дру­гих систем. Это определяет особую роль природных антиокеидан-

тов в регуляций скорости процессов перекисного окисления липи­дов (Н.Г.Храпова и соавт., 1981). В отличие от других регули­рующих систем, антиоксидантная находится в жесткой зависимости от поступлений ее экзогенных компонентов (токоферол, аскорби­новая кислота, селен, эрготионеин, бяофлавонояды). Лишение ор­ганизма антиоксидантов приводит к срыву системы ингибирования перекисного окисления мембранных липидов и развитию синдрома липидной пероксидации: повреждение мембран, деструкция фермен­тов, снижение митозов, накопление инертных полимеров.

Перекиси липидов оказывают свое разрушительное действие не только на узловые ферменты (цитохром С, моноаминоксидаза, сукцинатдегидрогеназа, трипсин, папаян, РНК-аза, уреаза, холин- дегидрогеназа и т.д.) гликолиза и трякарбонового цикла дыха­тельной цепи, но также на основное макроэргическое вещество организма АТФ. Даже кратковременный период недостаточности антиоксидантной системы организма вызывает необратимое повреж­дение мембран клеток, тогда как временная недостаточность дру­гих физиологических систем (эндокринной, гемокоагуляцяи) про­ходит бесследно (Ю.П.Козлов и соавт., 1975; О.Н.Воскресенский, 1981; С.Ю.Русанов и соавт., 1985).

Активация процессов свободнорадикального окисления липидов отмечена при ряде патологических состояний: воспалительные, нейроэндокринные, сердечно-сосудистые заболевания, стресс (Л.0.Лукьянова и соавт., 1988; А.0.Олейник, 1988).

Экспериментальными исследованиями было установлено, что содержание животных на рационе, лишенном экзогенных антиокси­дантов, приводит к развитию у последних ояндрома пероксидации я гиперлипидемии (В.Н.Бобырев и соавт., 1982).

По мнению Е.И.Кузьминой, Н.А.Добротиной, Н.П.Недуговой

(1983) интенсивность процессов перекисного окисления липидов находится в прямой зависимости от количества липидов, соотно­шения ненасыщенных и насыпанных жирных кислот, входящих в со­став липидов, от содержания в организме антиоксидантов.

М.Э.Саава и соавт. (1981) в своих работах подчеркивают сезонную зависимость гиперлипидемии от алиментарных факторов (избыток животных и рафинированных продуктов, дефицит расти­тельных масел, дисбаланс аминокислот, недостаточность витаминов)

Нарушение процессов перекисного окисления липидов, в частности под воздействием факторов питания, может привести к развитию синдрома липидной пероксидации, в основе которого лежит высокая реакционная способность и токсичность перекисных радикалов и продуктов их превращения (В.Б.Спяричев и соавт., 1981).

В результате проведенных исследований и наблюдений В.И.Хаснулян и соавт. (1978) высказали предположение, что синдром липидной гипероксидаций является результатом дисбалан­са в системе антиокислители - перекисное окисление липидов и может играть важную патогенетическую роль в возникновении целого ряда патологических расстройств, возникающих в процессе адапта­ций организма. їйвестно, что процессы адаптации в организме женщины во время беременности имеют большое значение для нор­мального физиологического течения последней (Ю.И.Савченко,

1982; В.В.Щербакова, 1985; Selvara и соавт., Х982). В сыво­ротке крови у беременных женщин содержание конечных продуктов перекисного окисления в 1,4 раза выше по сравнению с аналогич­ными показателями у не бе реме иных женщин (В.А.Бурлзв и соавт., 1987). Это, по мнению авторов, говорит об усилении процессов ПОЛ, акцентируя внимание на зависимости проницаемости клеточ-

них мембран от определенного уровня продуктов пероксидации. Авторы считают, что усиление процессов ПОЛ является необходи­мым условием для адекватной проницаемости маточно-плацентар­ного барьера.

Особого обсуждения требует аамо понятие "усиление процес­сов ПОЛ”, так как известно, что регистрация степени выраженнос­ти этих процессов в основном проводится путем оценки аккумуля­ций в мембранных структурах или гомогенате органа продуктов ПОЛ, содержание которых, как практически всех других продуктов жизнедеятельности клетки, является интегральной величиной и зависит от двух разнонаправленных процессов: скорости образова­ния и скорости удаления (метабодизирования, потребления, вымы­вания) из органа.

Увеличение содержания продуктов ПОЛ в органе свидетель­ствует об ускорении их образования, т.е. истинном, абсолютном ускорении процессов ПОЛ лишь в том случае, если ему соответ­ствует сохранение стационарной скорости метабодизирования и вы­ведения этих продуктов. Однако при многих патологических со­стояниях, в том числе и при невынашивании беременности, ско­рость метаболизирования и потребления продуктов ПОЛ снижается, а выведение продуктов ПОЛ из органа либо замедляется, либо

> прекращается. Увеличение содержания продуктов ПОЛ в этих усло­

виях может происходить либо за счет истинного усиления скорос­ти, либо за счет аккумуляции продуктов ПОЛ. В любом случав они свидетельствуют о нарушении баланса между образованием и выве­дением продуктов ПОЛ и превалировании скорости генерации липид­ных метаболитов над скоростью их потребления. Лишь в таком ус­ловном аспекте сждует рассматривать термин "увеличение содер­жания продуктов ПОЛ" (М. В.Биленко, 1989). Различают промажуточ-

ныв продукты радикальной природы, первичные, вторичные и конеч­ные. Наиболее устойчивыми продуктами ПОД являются диеновые конъюгаты (ДК) - первичные продукты ПОЛ и малоновый дяальде- гид (МДА), относящийся к вторичным продуктам ПОЛ. Поэтому, для изучения процессов свободнорадикального окисления липидов наи­более информативным является определение этих продуктов в ис­следуемом материале (й.И.Рюмяна и соавт., 1986).

В литературе имеются многочисленные и нередко противоречи­вые данные о динамике процессов ПОЛ при осложненной беремен­ности. Рад авторов отмечают увеличение МДА и гидроперекисей при гестоэе, гипотрофии плода, экстрагенитальной патологии, иммунологическом конфликте (И.С.Смиян и соавт., 1986; С.А.ІЬнь, 1988).

Накопление продуктов ПОЛ приводит к гипоксии материнского организма, которая в свою очередь влечет за собой усиление реакций свободнорадикального окисления, клинически проявляясь различными осложнении беременности, родов, состояния фето- плацентарного комплекса. Накапливающиеся в фетоплацентарной системе продукты ПОЛ, по мнению В.Н.Серова (1989), являются високотоксичними веществами, повреждающими клеточные мембраны. При этом создаются условия для оксягенного пути утилизации кислорода, что приводит к накоплению агрессивных форм гидрокси­ла (Ой) .супероксида (0 2) и перекиси (HgOg), активирующих в свою очередь реакции свободнорадикального окисления (Ohsnoe и соавт., 1979; sarrowciiffe и соавт., Х987). Кроме того, в результате этого процесса в биосястемах снижается содержание многих витаминов и особенно витамина *Е", обладающих антиокси­дантной активностью (ind© , 1978). Параллельно с дефицитом витамина *Е" в организме, процессы пероксидации ведут к раз-

рушению мембран эритроцитов, вызывая их гемолиз (Yoshioka и соавт., 1979).

В результате этих изменений могут возникать деструктивные процессы в эндотелии сосудов плаценты (G.В.Камышников и соавт., 1988), что приводит к дес с аминированному сосудистому свертыва­нию, а следовательно, к ухудшению функции плаценты о вытекающи­ми отсюда последствиями как для матери, так и для внутриутроб­ного плода.

Доказано, что уровень ПОЛ может оказывать существенное влияние на функцию иммунокомпетентных клеток. О одной стороны, с активацией реакции свободнорадикального окисления связан фаго­цитоз (Т.Ш.Шарманов, 1986; Prili P k ° , 1983; Ка1га д СО авт., 1988), а с другой - при избыточном свободнорадикальном окисле­нии нарушается структура и функции рецепторов, мембранных кана-

Т лов. ингибируется активность АТФ-аза, разрывается лизосомальная

мембрана Mackenzie д соавт., 1980), активируется изанилат- циклазная система (В,А.Ткачук, 1983), что ведет к повреждению иммунокомпетентных клеток и снижению их функциональной актив­ности. Поэтому регламентация уровня ПОЛ рассматривается как не­обходимое условие для обеспечения адекватного функционирования клеток иммунной системы (Т.Ш.Шарманов, 1986).

Свободнорадикальные процессы в организме человека происхо­дят непрерывно, в них вовлечены все органические молекулы, но в большей степени и с наибольшей активностью липиды, особенно фосфолипиды клеточных мембран. Липиды - низкомолекулярные веще­ства с гидрофобными свойствами. В среднем липиды составляют 40-50^ сухой массы мембран, из них 80-90^ приходится на холе­стерин и фосфолипиды (П.Г.Богач и соавт., X98I). Мембраны, вы­полняющие функцию барьеров, содержат более высокий процент

липидов - 60-80%.

Исследованиями Т.А.Готца (1984) показано, что перестройка структуры мембраны, особенно липидной фракция, влечет за собой изменение функциональных свойств клетки в целом.

В нормально функционирующей клетке ПОЛ выступает в каче­стве одного из способов модификации фосфолипидного биослоя мембран, в том числе и мембраны эритроцитов, участвует в раз­борке мембранных структур и обновлении мембранных фосфолипидов (В.П.Верболович и соавт., 19895 Kitagawa и соавт., 1988; Ciuffi и соавт., 1988; Vanella и соавт., 1989).

Вовлечение липидов клеточных мембран в процессы перекис­ного окисления представляет собой I этап мембранодеструкции. В настоящее время установлены закономерности, которым подчиняет­ся развитие процесса ПОЛ, они сводятся к тому, что перекисное окисление липидов проходит 4 условных стадии; инициирования окисления, его продолжение, разветвление процесса и отрывы его (Ю.В.Владимиров и соавт., 1972; Zimmeiraan и соавт., 1982). Появление свободных радикалов в клетках живого организма и его молекулярных структур происходит, как сказано выше, непрерывно (В.А.Барабой и соавт., 1983).

В.В.Абрамченко и соавт. (1988) проведено изучение роли антиоксидантной недостаточности в патогенезе позднего токсикоза беременных. Результаты проведанных исследований свидетельствуют о снижении буферной емкости антиокислительной системы организма беременной на фоне многократного усиления реакций свободноради­кального окисления при всех клинических формах позднего токси­коза.

Однако еще нельзя оценивать реальные масштабы перекисного окисления из-за несовершенства имеющихся методов и трудности

интерпретации полученных результатов с помощью этих методов. Следует также учитывать чрезвычайную сложность взаимодействия процессов ПОЛ и эндогенных антиокислительных систем (ВД.Ми­щенко, 1981). Так, например, известно, что антиоксидантным дей­ствием обладают некоторые гормоны: гормон щитовидной железы - тироксин - является не менее эффективным антиоксидантом, чем витамин "Б" (В.В.Лвмещко и соавт., 1982).

Достаточно изучены мембранотропные и антиоксидантные свой­ства эстрогенов, сильно ингибирующих ПОЛ и действующих подобно токоферолу и другим фенольным антярадикальнш соединениям. В группу эстрогенных препаратов нестероидного строения входит сигетин, способный улучшать плацентарное кровообращение, в связи с чем успешно используется для лечения фетоплацентарной недоста­точности.

Старение живого организма можно рассматривать как повреж­дение в сиотеме ПОЛ - антиоксидантная защита. При этом снижает­ся эффективность защиты, т.е. уменьшается содержание эндогенных антиоксидантов (ЮД.Козлов, 1975f Н.М.Мануэль, 1984). Этот продаос, вероятно, имеет немаловажное значение в проблеме старе­ния плаценты, возникновения плацентарной недостаточности.

Во время беременности происходит разбалансировка этой си­стемы, а от степени дисбаланса зависит и формирование адаптаци­онно-приспособительных и защитно-компенсаторных реакций. Во вто­ром триместре беременности происходит интенсификация процессов ПОЛ, обусловленная образованием плаценты. Это связано, во-первых с повышением в организме беременной уровня и активности плацен­тарных гормонов и, во-вторых, выступая в качестве своеобразного "системообразующего фактора", плацента играет роль "ловушки" антиоксидантов, изменяя тем самым взаимоотношения в реакции

"перекисное окисление липидов - антиоксидантная защита". Акку­мулируя антиоксиданты, плацента становится очень чувствитель­ной к их недостатку (О.Б.Саялян и соавт., 1988).

В работе В. А.Чернухи и соавт. (1986) получены новые данные о показателях липидной пероксидации амниотической жидкости, от­ражающие компенсаторно-приспособительные реакции в системе мать- плаце нта-плод, как при нормальном течении гестационного процесса, так и при патологических отклонениях.

По мнению В.П.Казначеева и соавт. (1979) развитие синдро­ма липидной гиперпероксидации приводит к срыву адаптационных возможностей организма и возникновению осложнений беременности (самопроизвольные выкидыши, преждевременные роды).

Во время беременности повышается усвоение организмом жи­ров, что сопровождается увеличением их содержания в крови жен­щины. Несмотря на повышенное содержание липидов и холестерина в плазме крови у здоровых беременных женщин, без наличия мета­болических нарушений в анамнезе, патологического проявления этого состояния не наблюдается. Эти соединения хорошо усваивают­ся тканями матки и плода, обеспечивая необходимый уровень энергетических и пластических процессов (В.Т.Михайленко и соавт., 1980; Punnonen , 1977; Skryten и соавт., 1980; Ordovas и соавт., 1984).

В сыворотке крови беременных женщин, страдающих привычным недонашиванием, обнаружено значительное снижение содержания фосфолипидов (З.П.Чеботарева, 1968), а также снижение и неравно­мерное их распределение в синцитиальной ткани (Л.Г.Вишневская и соавт., 1966).

Невынашивание беременности характеризуется значительной активацией ПОЛ, связанной со снижением уровня антиокиояительной

активности сыворотки крови (Л.М.Шипилова, 1985; Т.Ю.Пестрикова, 1986; В.А.Бурлев, 1987; А.Ю.Щербаков, 1997).

В исследованиях Т.Ю.Пестряковой (1986) показано, что у беременных группы риска по невынашиванию первоначально снижают­ся показатели антиокислительной активности (АОА) крови при не­изменном уровне ПОЛ, причем снижение АОА крови отмечается за 5-6 недель до появления клинических признаков угрозы прерыва­ния. При угрозе прерывания беременности уровень ПОЛ значительно повышен, что, по-видимому, тесно взаимосвязано с изменением уровня эстрогенов, обладающих антиоксидантным действием. Усиле­ние ПОЛ, вызывая изменение липидного спектра крови, приводит к снижению энергообеспеченности метаболических процессов в раз­личных органах и тканях, в том числе и в плаценте (Б.Б.Бурла­кова, 1985; М.З.Корнилова, Х990).

Исследования ВД.Отт и соавт. (1981) указывают на снижен­ный уровень антиокислительной ферментативной активности в эрит­роцитах крови женщин, страдающих привычным невынашиванием бере­менности.

Помимо снижения антиокислительной ферментативной активнос­ти при невынашивании беременности, отмечено нарушение синтеза половых гормонов, являющихся активными антиоксидантами. В этой связи, значительный интерес представляют данные, свидетельствую­щие о значений эстриола для нормального развития беременности. Установлено, что, если явления угрозы нормального развития беременности протекали на фоне нормального содержания эстриола беременность прогрессировала, тогда как при снижении уровня этого гормона ниже нормы беременность заканчивалась абортом (Г.М.Пзрасимович и соавт., 1984).

Эстриол в такой же степени, как эстрадиол бензоат, ингяби-

рует процесс перекисного окисления липидов мембран и митохонд­рий (П.В.Сергеев и соавт., 1974; А.Р.Бабаянц, Х987).

Следовательно, у женщин, страдающих невынашиванием беремен­ности, наблюдается дисбаланс в соотношениях между продуктами свободнорадикального окисления и антиоксидантной системой в сторону усиления процессов ПОЛ, т.к. антиоксидантная система не справляется со своей функцией. Срыв системы антиоксидантной защиты и развитие синдрома пероксидации ведут к нарушению го­меостаза в биологической системе мать-пколоплодная среда-плод, нормальное состояние которого очень важно для поддержания вы­сокого уровня пролиферативных процессов, характерных для физио­логического развития беременности (Г.А.Паляади и соавт.,1980).

Различные заболевания (Ю.П.Козлов, 1975), нерациональное питание, эмоционально-физические нагрузки и другие факторы (Л.Е.Панин, 1978; А.В.Семенюк и ооавт, Х983; Рг У°г й соавт., 1982; Tribble й соавт., 1987) приводят, в конечном итоге, к нарушению баланса в системе антиокислители-перекиснов окисление липидов, что выражается в нарушении гомеостаза в организме, а при развитии беременности в биологической системе мать-около- плодная среда-плод и развитию ряда патологических состояний плода, способных вызвать спонтанное преждевременное прерывание беременности,

Необходимо отметить, что при выборе рациональной терапии нельзя забывать о том, что максимальная активность процессов свободнорадикального окисления приходится на утренние часы (О.В.Черноглазова и соавт., 1988).

Коррекция наметившихся отклонений в процессах ПОЛ включает три главных направления: использование фармакологических препа­ратов, специальных программ физических упражнений и диетотерапии

О.К.Айламаяян,І99І>.

Таким образом, проеденные литературные данные указывают на общность процессов перекисного окисления липидов в патогене­зе ряда патологических состояний, способных, в свою очередь, послужить причиной невынашивания беременности. Поэтому для разработки наиболее рациональной профилактики невынашивания бе­ременности важно как можно раньше диагностировать угрозу преры­вания с выявлением ведущей причины, которая должна учитываться при выборе комплексной терапии,

Ййвнно поэтому возникает необходимость в изучении показа­телей перекисного окисления липидов и антиоксидантной системы защиты у женщин при невынашивании с учетом многофакторности этой патологии.

Имеющиеся литературные данные о состоянии процессов ПОЛ при невынашивании беременности малочисленны, недостаточно осве­щен вопрос и об активности антиокислительной системы при этой патологии, необходим поиск новых антиоксидантов, способствую­щих нормализации процессов ПОЛ-АОСЗ.