Биографии Характеристики Анализ

Траектория значение. V

Цели урока:

  • Образовательная:
    – ввести понятия “перемещение”, “путь”, “траектория”.
  • Развивающая:
    – развивать логическое мышление, правильную физическую речь, использовать соответствующую терминологию.
  • Воспитательная:
    – достигать высокой активности класса, внимания, сосредоточенности учащихся.

Оборудование:

  • пластмассовая бутылка вместимостью 0,33 л с водой и со шкалой;
  • медицинский флакончик вместимостью 10 мл (или малая пробирка) со шкалой.

Демонстрации: Определение перемещения и пройденного пути.

Ход урока

1. Актуализация знаний.

– Здравствуйте, ребята! Садитесь! Сегодня мы с вами продолжим изучать тему “Законы взаимодействия и движения тел” и на уроке познакомимся с тремя новыми понятиями (терминами), касающихся этой темы. А пока проверим выполнение вами домашнего задания у данному уроку.

2. Проверка домашнего задания.

Перед уроком один учащийся выписывает на доске решение следующего домашнего задания:

Двум учащимся раздаются карточки с индивидуальными заданиями, которые выполняются во время устной проверки упр. 1 стр. 9 учебника.

1. Какую систему координат(одномерную, двухмерную, трехмерную) следует выбрать для определения положения тел:

а) трактор в поле;
б) вертолет в небе;
в) поезд
г) шахматная фигура на доске.

2. Дано выражение: S = υ 0 · t + (а · t 2) / 2, выразите: а, υ 0

1. Какую систему координат (одномерную, двухмерную, трехмерную) следует выбрать для определения положения таких тел:

а) люстра в комнате;
б) лифт;
в) подводная лодка;
г) самолет на взлетной полосе.

2. Дано выражение: S = (υ 2 – υ 0 2) / 2 · а, выразите: υ 2 , υ 0 2 .

3. Изучение нового теоретического материала.

С изменениями координат тела связана величина, вводимая для описания движения, – ПЕРЕМЕЩЕНИЕ.

Перемещением тела (материальной точки) называется вектор, соединяющий начальное положение тела с его последующим положением.

Перемещение принято обозначать буквой . В СИ перемещение измеряется в метрах (м).

– [ м ] – метр.

Перемещение – величина векторная, т.е. кроме числового значения имеет еще и направление. Векторную величину изображают в виде отрезка , который начинается в некоторой точке и заканчивается острием, указывающим направление. Такой отрезок-стрелка называется вектором.

– вектор, проведенный из точки М в М 1

Знать вектор перемещения – значит, знать его направление и модуль. Модуль вектора – это скаляр, т.е. численное значение. Зная начальное положение и вектор перемещения тела, можно определить, где находится тело.

В процессе движения материальная точка занимает различные положения в пространстве относительно выбранной системы отсчета. При этом движущаяся точка “описывает” в пространстве какую-то линию. Иногда эта линия видна, – например, высоко летящий самолет может оставлять за собой след в небе. Более знакомый пример – след куска мела на доске.

Воображаемая линия в пространстве, по которой движется тело называется ТРАЕКТОРИЕЙ движения тела.

Траектория движения тела – это непрерывная линия, которую описывает движущееся тело (рассматриваемое как материальная точка) по отношению к выбранной системе отсчета.

Движение, при котором все точки тела движутся по одинаковым траекториям , называется поступательным .

Очень часто траектория – невидимая линия. Траектория движущейся точки может быть прямой или кривой линией. Соответственно форме траектории движение бывает прямолинейным и криволинейным .

Длина траектории – это ПУТЬ . Путь является скалярной величиной и обозначается буквой l. Путь увеличивается, если тело движется. И остается неизменным, если тело покоится. Таким образом, путь не может уменьшаться с течением времени.

Модуль перемещения и путь могут совпадать по значению, только в том случае, если тело движется вдоль прямой в одном направлении.

Чем же отличается путь от перемещения? Эти два понятия часто смешивают, хотя на самом деле они очень сильно отличаются друг от друга. Рассмотрим эти отличия: (Приложение 3 ) (раздаются в виде карточек каждому ученику)

  1. Путь – скалярная величина и характеризуется только числовым значением.
  2. Перемещение – векторная величина и характеризуется как числовым значением (модулем), так и направлением.
  3. При движении тела путь может только увеличиваться, а модуль перемещения может как увеличиваться, так и уменьшаться.
  4. Если тело вернулось в начальную точку, его перемещение равно нулю, а путь нулю не равен.
Путь Перемещение
Определение Длина траектории, описываемой телом за определенное время Вектор, соединяющий начальное положение тела с его последующим положением
Обозначение l [ м ] S [м ]
Характер физических величин Скалярная, т.е. определяется только числовым значением Векторная, т.е. определяется числовым значением (модулем) и направлением
Необходимость введения Зная начальное положение тела и путь l, пройденный за промежуток времени t, нельзя определить положение тела в заданный момент времени t Зная начальное положение тела и S за промежуток времени t, однозначно определяется положение тела в заданный момент времени t
l = S в случае прямолинейного движения без возвратов

4. Демонстрация опыта (учащиеся выполняют самостоятельно на своих местах за партами, учитель вместе с учащимися выполняет демонстрацию этого опыта)

  1. Заполните водой до горловины пластмассовую бутылку со шкалой.
  2. Флакончик со шкалой заполните водой на 1/5 его объема.
  3. Наклоните бутылку так, чтобы вода подошла к горловине, но не вытекала из бутылки.
  4. Быстро опустите флакончик с водой в бутылку (не закрывая его пробкой) так, чтобы горловина флакончика вошла в воду бутылки. Флакончик плавает на поверхности воды в бутылке. Часть воды при этом из бутылки выльется
  5. Завинтите крышку бутылки.
  6. Сжимая боковые стенки бутылки, опустите поплавок на дно бутылки.

  1. Ослабляя давление на стенки бутылки, добейтесь всплытия поплавка. Определите путь и перемещение поплавка:________________________________________________________
  2. Опустите поплавок на дно бутылки. Определите путь и перемещение поплавка:______________________________________________________________________________
  3. Заставьте поплавок всплыть и утонуть. Каков путь и перемещение поплавка в этом случае?_______________________________________________________________________________________

5. Упражнения и вопросы для повторения.

  1. Путь или перемещение мы оплачиваем при поездке в такси? (Путь)
  2. Мяч упал с высоты 3 м, отскочил от пола и был пойман на высоте 1 м. найти путь и перемещение мяча. (Путь – 4 м, перемещение – 2 м.)

6. Итог урока.

Повторение понятий урока:

– перемещение;
– траектория;
– путь.

7. Домашнее задание.

§ 2 учебника , вопросы после параграфа, упражнение 2 (стр.12) учебника , повторить выполнение опыта урока дома.

Список литературы

1. Перышкин А.В., Гутник Е.М . Физика. 9 кл.: учеб.для общеобразоват.учреждений – 9-е изд., стереотип. – М.: Дрофа, 2005.

Траектория - это линия, которую тело описывает при движении.

Траектория пчелы

Путь - это длина траектории. То есть длина той, возможно, кривой линии, по которой двигалось тело. Путь скалярная величина ! Перемещение - векторная величина ! Это вектор, который проведен из начальной точки отправления тела в конечную точку. Имеет численное значение, равное длине вектора. Путь и перемещение - это существенно разные физические величины.

Обозначения пути и перемещения вы можете встретить разное:

Сумма перемещений

Пусть в течение промежутка времени t 1 тело совершило перемещение s 1 , а в течение следующего промежутка времени t 2 - перемещение s 2 . Тогда за все время движения перемещение s 3 - это векторная сумма

Равномерное движение

Движение с постоянной по модулю и по направлению скоростью. Что это значит? Рассмотрим движение машины. Если она едет по прямой линии, на спидометре одно и то же значение скорости (модуль скорости), то это движение равномерное. Стоит машине изменить направление (повернуть), это будет означать, что вектор скорости изменил свое направление. Вектор скорости направлен туда же, куда едет машина. Такое движение нельзя считать равномерным, несмотря на то, что спидометр показывает одно и то же число.

Направление вектора скорости всегда совпадает с направлением движения тела

Можно ли движение на карусели считать равномерным (если не происходит ускорение или торможение)? Нельзя, постоянно изменяется направление движения, а значит и вектор скорости. Из рассуждений можно сделать вывод, что равномерное движение - это всегда движение по прямой линии! А значит при равномерном движении путь и перемещение одинаковы (поясни почему).

Нетрудно представить, что при равномерном движении за любые равные промежутки времени тело будет перемещаться на одинаковое расстояние.

Она представляет собой множество точек, через которые прошел, проходит или пройдет некий объект. Сама по себе эта линия указывает путь данного объекта. По ней нельзя узнать о том, объект начал двигаться или почему искривился его путь. Но соотношение между силами и параметрами объекта позволяют вычислить траекторию. При этом сам объект должен быть значительно меньше пройденного им пути. Только в этом случае его можно считать материальной точкой и говорить о траектории.

Линия движения объекта обязательно непрерывна. В математике и принято говорить о движении свободной или несвободной материальной точки. На первую действуют только силы. Несвободная точка находится под воздействием связей с другими точками, которые тоже влияют на ее движение и в конечном итоге на его след.

Для описания траектории той или иной материальной точки необходимо определить систему отсчета. Системы могут быть инерциальными и неинерциальными, и след от движения одного и того же объекта будет выглядеть по-разному.

Способом описания траектории является радиус-вектор. Его параметры зависят от времени. К данным, для описания траектории, начальная точка радиус-вектора, его длина и направление. Конец радиус-вектора описывает в пространстве кривую, которая состоит из одной или нескольких дуг. Радиус каждой дуги чрезвычайно важен, поскольку он позволяет определить ускорение объекта в определенной точке. Это ускорение вычисляется как частное от деления квадрата нормальной скорости на радиус. То есть a=v2/R, где а - ускорение, v – нормальная скорость, а R- радиус дуги.

Реальный объект практически всегда находится под действием тех или иных сил, которые могут инициировать его движение, прекращать его или менять направление и скорость. Силы могут быть как внешними, так и внутренними. Например, при движении на него действует сила притяжения Земли и других космических объектов, сила двигателя и еще множество факторов. Они и определяют траекторию .

Баллистическая траектория представляет собой свободное движение объекта под воздействием одной только силы тяжести. Таким объектом может быть снаряд, аппарат, бомба и другие. В этом случае нет ни тяги, ни других сил, способных изменить траекторию. Этим видом движения занимается баллистика.

Можно провести несложный опыт, позволяющий увидеть, как меняется баллистическая траектория в зависимости от начального ускорения. Представьте себе, что вы сбрасываете камень с высокой . Если вы не сообщите камню начальную скорость, а просто отпустите его, движение данной материальной точки будет прямолинейным по вертикали. Если же вы бросите его в горизонтальном направлении, то под воздействием различных силданном случае силы вашего броска и силы тяжести) траектория движения будет представлять собой параболу. В данном случае вращение Земли можно не учитывать.

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы и ), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия .

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

S x = A x B x

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

S x = x – x 0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

S y = y – y 0 S z = z – z 0

Здесь x 0 , y 0 , z 0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

S x = x – x 0 S y = y – y 0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

АС = s x CB = s y

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

Во многих задачах интерес представлю не только перемещения материальных точек в пространстве, но и траектории их движения.

Определение

Линию, которую описывает частица при своем движении, называется траекторией движения .

В зависимости от формы траектории механическое движение можно разделить на:

  • прямолинейное движение, траекторией движения точки в этом случае является прямая линия;
  • и криволинейное перемещение (траектория - кривая линия).

Форма траектории зависит от выбора системы отсчета. В разных системах отсчета траектории могут быть представлены разными линиями, могут быть прямыми и кривыми.

При движении точки с постоянным ускорением, которое описывает уравнение:

\[\overline{r}\left(t\right)={\overline{r}}_0+{\overline{v}}_0t+\frac{\overline{a}t^2}{2}\left(1\right),\]

(где $\overline{r}\left(t\right)$ - радиус-вектор точки в момент времени $t$; ${\overline{v}}_0$ - начальная скорость движения точки; $\overline{a}$ - ускорение точки,) траектория движения представляет собой плоскую кривую, что означает все точки этой кривой находятся в одной плоскости. Положение этой плоскости в пространстве задают векторы ускорения и начальной скорости. Ориентацию координатных осей чаще всего выбирают так, чтобы плоскость движения совпадала с одной из координатных плоскостей. В этом случае векторное уравнение (1) можно свести к двум скалярным уравнениям.

Уравнение траектории движения

Рассмотрим свободное движение тела около поверхности Земли. Начало координат разместим в точке бросания тела (рис.1). Оси координат направим так, как изображено на рис.1.

Тогда уравнение движения тела (1) в проекциях на координатные оси декартовой системы координат принимает вид системы из двух уравнений:

\[\left\{ \begin{array}{c} x=v_0t{\cos \alpha \left(2\right),\ } \\ y=v_0t{\sin \alpha \ }-\frac{gt^2}{2}\left(3\right). \end{array} \right.\]

Для того чтобы получить уравнение траектории движения тела ($y=y(x)$) следует исключить время движения тела из уравнений (2) и (3). Выразим из уравнения (2) $t$ и подставим его в выражение (3), получим:

Выражение (4) это уравнение параболы, проходящей через начало координат. Ее верви направлены вниз, так как коэффициент при $x^2$ меньше нуля.

Вершина этой параболы находится в точке с координатами:

\[\left\{ \begin{array}{c} x=\frac{v^2_0{\sin \alpha {\cos \alpha \ }\ }}{g} \\ y=\frac{v^2_0{sin}^2\alpha }{2g} \end{array} \right.\left(5\right).\]

Найти координаты вершины траектории можно при помощи известных правил исследования функций на экстремум. Так, положение максимума функции $y(x)$ определяют, приравнивая к нулю первую производную ($\frac{dy}{dx}$) от нее по $x$.

Обратимость движения

Из представления о траектории можно конкретизировать смысл обратимости механического движения.

Пусть частица движется в силовом поле таком, что ее ускорение в любой точке обладает определенной величиной, не зависящей от скорости. Как будет двигаться эта частица, если, в какой то точке ее траектории направление скорости заменить противоположным? С точки зрения математики это эквивалентно замене $t\ $ на $-t$ для всех уравнений. Уравнение траектории время не содержит, получается, что частица будет перемещаться «вспять» по той же самой траектории. При этом отрезки времени между любыми точками траектории будут одинаковы при прямом и обратном движении. Всякой точке траектории ставится в соответствие определенное значение величины скорости независимо от направления движения по данной траектории. Данные свойства наглядны в колебательных движениях маятника.

Все сказанное выше справедливо тогда, когда можно пренебречь любым сопротивлением движению. Обратимость движения существует, когда выполняется закон сохранения механической энергии.

Параметры траектории движения

Положение точек системы отсчета можно определять при помощи разных способов. В соответствии с этими способами описывают и движение точки или тела:

  • Координатная форма описания движения. Выбирается система координат, в ней положение точки характеризуют тремя координатами (в трехмерном пространстве). Это могут быть координаты $x_1=x,x_2=y,x_3=z$, в декартовой системе координат. $x_1=\rho ,x_2=\varphi ,x_3=\ z$ в цилиндрической системе и т.д. При перемещении точки координаты являются функциями времени. Описать движение точки - это значит указать эти функции:
  • \
  • При описании движения в векторной форме положение материальной точки задает радиус-вектор ($\overline{r}$) по отношению к точке, которую принимают начальной. В этом случае вводят точку (тело) отсчета. При перемещении точки вектор $\overline{r}$ постоянно изменяется. Конец этого вектора описывает траекторию. Движение задает выражение:
  • \[\overline{r}=\overline{r}\left(t\right)\left(7\right).\]
  • Третьим способом описания движения является описание с помощью параметров траектории.

Путь - это скалярная величина, равная длине траектории.

Если траектория задана, то задачу описания движения сводят к определению закона движения вдоль нее. При этом выбирается начальная точка траектории. Любая другая точка характеризуется расстоянием $s$ по траектории от начальной точки. В таком случае движение описывают выражением:

Пусть по окружности радиуса R равномерно перемещается точка. Закон движения точки по окружности в рассматриваемом методе запишем как:

где $s$ - путь точки по траектории; $t$ - время движения; $A$ - коэффициент пропорциональности. Известными являются окружность и точка начала движения. Отсчет положительных величин $s$ совпадает с направлением перемещения точки по траектории.

Знание траектории движения тела во многих случаях существенно упрощает процесс описания движения тела.

Примеры задач с решением

Пример 1

Задание: Точка движется в плоскости XOY из начала координат со скоростью $\overline{v}=A\overline{i}+Bx\overline{j}\ ,\ $где $\overline{i}$, $\overline{j}$ - орты осей X и Y; $A$,B - постоянные величины. Запишите уравнение траектории движения точки ($y(x)$). Изобразите траекторию. \textit{}

Решение: Рассмотрим уравнение изменения скорости частицы:

\[\overline{v}=A\overline{i}+Bx\overline{j}\ \left(1.1\right).\]

Из этого уравнения следует, что:

\[\left\{ \begin{array}{c} v_x=A, \\ v_y=Bx \end{array} \right.\left(1.2\right).\]

Из (1.2) имеем:

Для получения уравнения траектории следует решить дифференциальное уравнение (1.3):

Мы получили уравнение параболы, ветви которой направлены вверх. Эта парабола проходит через начало координат. Минимум этой функции находится в точке с координатами:

\[\left\{ \begin{array}{c} x=0 \\ y=0. \end{array} \right.\]

Пример 2

Задание: Движение материальной точки в плоскости описывает система уравнений: $\left\{ \begin{array}{c} x=At. \\ y=At(1+Bt) \end{array} \right.$, где $A$ и $B$ - положительные постоянные. Запишите уравнение траектории точки.

Решение: Рассмотрим систему уравнений, которая задана в условии задачи:

\[\left\{ \begin{array}{c} x=At. \\ y=At\left(1+Bt\right) \end{array} \right.\left(2.1\right).\]

Исключим время из уравнений системы. Для этого из первого уравнения системы выразим время, получим:

Подставим вместо $t$ правую (2.2) часть во второе уравнение системы (2.1), имеем:

Ответ: $y=x+\frac{B}{A}x^2$