Биографии Характеристики Анализ

Твердые растворы и жидкие кристаллы. Жидкие кристаллы в технике

Жидкими кристаллами называют анизотропные жидкости, которые состоят из молекул, сохраняющих определенный порядок в своем расположении относительно друг друга. (Анизотропия - зависимость физических свойств вещества от направления.) Например, атомы в молекулах могут располагаться вдоль определенной оси, и такие продолговатые молекулы ориентируются в жидком кристалле, как в твердом кристалле, вдоль особого направления. Особые направления в жидких и твердых кристаллах называются оптическими осями, так как с их существованием связаны замечательные оптические свойства этих материалов (двойное лучепреломление, поворот плоскости поляризации света и др.). В отличие от твердых кристаллов, где оптические оси жестко закреплены, в жидких кристаллах направления оптических осей можно легко изменять с помощью электрического поля. Для управления оптическими свойствами жидких кристаллов требуются весьма малые напряжения.

Электрический диполь возникает вдоль длинной оси гораздо легче, чем вдоль короткой оси, т. е., другими словами, электронное облако легко смещается относительно положительного ядра вдоль молекулы и с трудом - поперек нее. Таким образом, возникает пара сил, создающая крутящий момент, который и поворачивает молекулу так, чтобы она своей длинной осью ориентировалась вдоль поля Е.

Если бы жидкокристаллическая среда простиралась неограниченно по всем направлениям, то оптическая ось поворачивалась бы сколь угодно слабым полем. В действительности слой жидкого кристалла имеет конечную толщину (около 0,01 мм) и относительно жесткую ориентацию молекул на твердой поверхности, ограничивающей слой. Поэтому отклоняющее действие поля вступает в противоборство со стабилизирующим действием упругих сил. Фактически отклонение оптической оси в слое жидкого кристалла начинается тогда, когда крутящий момент электрических сил станет больше возвращающего момента упругих сил. Существует определенный порог разности потенциалов (около 1 В), выше которого уже нетрудно управлять оптической осью в разнообразных жидкокристаллических индикаторах.

Это объясняется тем, что все молекулы жидких кристаллов взаимосвязаны и ориентированы одинаково, и достаточно повернуть одну из них, чтобы весь коллектив молекул изменил свою ориентацию.

Падающий свет поляризуется верхним поляризатором, проходит стеклянную пластинку и попадает в слой жидкого кристалла. Если электрическая цепь разомкнута, как на пути левого пучка света, то в данном месте винтовая ориентация оптической оси сохраняется. Поэтому по мере прохождения левого пучка света его поляризация поворачивается в соответствии с поворотом оптической оси. На выходе из слоя и нижней стеклянной пластинки этот поворот составит 90°, причем поляризация света совпадает с осью нижнего поляризатора. В результате левый пучок пройдет поляризатор, отразится от зеркала и проделает весь путь в обратном направлении. Этот участок индикатора выглядит для наблюдателя светлым.

На соседнем правом участке индикатора пучок света проходит в момент замыкания цепи на цифру 8. Поляризованный свет, попав в слой жидкого кристалла, встретит здесь вертикально ориентированную оптическую ось. Именно так электрическое поле поворачивает молекулы, хорошо поляризующиеся вдоль длинной оси. Поэтому свет пройдет слой под сегментом цифры 8, не изменив своей поляризации, и будет встречен нижним поляризатором, ось которого перпендикулярна поляризации света. Следовательно, этот пучок света не дойдет до зеркала, так как будет поглощен по пути, и не вернется к наблюдателю - цифра 8 будет выглядеть темной на светлом фоне.

Так устроены буквенно-цифровые индикаторы в калькуляторах, электронных переводчиках, шкалах измерительных приборов и шкалах настройки, разнообразных табло и т. п. Жидкокристаллические экраны (дисплеи) с большим числом сегментов - электродов и сложной электронной схемой управления служат в качестве телевизионных экранов, преобразователей изображения (приборы ночного видения), средств управления световым лучом в быстродействующих электронных вычислительных машинах .

Некоторые вещества в жидкокристаллическом состоянии способны смешиваться между собой и образовывать жидкие кристаллы, обладающие различными структурами и свойствами. Это расширяет диапазон их использования в технике.


КУРСОВАЯ РАБОТА

Жидкие кристаллы. Их технологическое примен е ние

Введение

Необычное сочетание слов «жидкие кристаллы», вероятно, многим уже знакомо, хотя далеко не все себе представляют, что же стоит за этим странным и, казалось бы противоречивым понятием. Эти удивительные вещества удачно сочетают в себе анизотропные свойства кристаллов и текучие свойства жидкостей.

В то же время, вероятно, каждый второй человек носит при себе жидкокристаллические (ЖК) индикаторы и по несколько десятков раз в день посматривает на свои электронные часы. ЖК - циферблат которых аккуратно отсчитывает часы, минуты, секунды, а иногда и доли секунд. Именно ЖК-индикаторы являются основой современных калькуляторов, портативных компьютеров «Notebooks», миниатюрных плоских экранов телевизоров, словарей-переводчиков, пейджеров и многих других современных электронных технических и бытовых приборов и устройств.

Мировое производство ЖК - индикаторов и дисплеев исчисляется миллиардами и, по прогнозам будет увеличиваться и дальше. Уже сейчас без преувеличения можно сказать, что прогресс и развитие ряда отраслей науки и техники немыслимы без развития исследований в области жидких кристаллов. Не меньший интерес представляют собой жидкие кристаллы с точки зрения биологии и процессов жизнедеятельности. Функционирование клеточных мембран и ДНК, передача нервных импульсов, работа мышц, формирование атеросклеротических бляшек - вот далеко неполный перечень процессов, протекающих в ЖК - фазе, с присущими этой фазе особенностями - склонностью к самоорганизации и сохранении высокой молекулярной подвижности.

1. Виды и свойства жидких кристаллов

1.1 История открытия жидких кристаллов

Со времени открытия жидких кристаллов прошло более 100 лет. Впервые их обнаружил австрийский ботаник Фридрих Рейнитцер, наблюдая две точки плавления сложного эфира холестерина - холестерилбензоата (рис. 1).

При температуре плавления (T пл), 145 0 C, кристаллическое вещество превращалось в мутную, сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется (точка просветления (T пр)), т.е. начинает вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холестерилбензоата обнаружились в мутной фазе. Рассматривая эту фазу под поляризационным микроскопом, Рейнитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т.е. скорость света в этой фазе, зависит от поляризации.

Явление двупреломления-это типично кристаллический эффект, состоящий в том, что скорость света в кристалле зависит от ориентации плоскости поляризации света. Существенно, что она достигает экстремального максимального и минимального значений для двух взаимно ортогональных ориентаций плоскости поляризации. Разумеется, ориентации поляризации, соответствующие экстремальным значениям скорости свете в кристалле, определяются анизотропией свойств кристалла и однозначно задаются ориентацией кристаллических осей относительно направления распространения света.

Поэтому сказанное поясняет, что существование двупреломления в жидкости, которая должна быть изотропной, т.е. что ее свойства должны быть независящими от направления, представлялось парадоксальным. Наиболее правдоподобным в то время могло казаться наличие в мутной фазе нерасплавившихся малых частичек кристалла, кристаллитов, которые и являлись источником двупреломления. Однако более детальные исследования, к которым Рейнитцер привлек известного немецкого физика Отто Лемана, показали, что мутная фаза не является двухфазной системой, а является анизатропной. Поскольку свойства анизотропии присуще твердому кристаллу, а вещество в мутной фазе было жидким, Леман назвал его жидким кристаллом.

С тех пор вещества, способные в определенном температурном интервале выше точки плавления сочетать одновременно свойства жидкостей (текучесть, способность к образованию капель) и свойства кристаллических тел (анизотропии), стали называться жидкими кристаллами или жидкокристаллическими. ЖК - вещества часто называют мезоморфными, а образуемую ими ЖК - фазу - мезофазой. Такое состояние является термодинамически стабильным фазовым состоянием и по праву на ряду с твердым, жидким и газообразным может рассматриваться как четвертое состояние вещества

Однако понимание природы ЖК - состояния веществ установление и исследование их структурной организации приходит значительно позднее. Серьезное недоверие к самому факту существования таких необычных соединений в 20-30-х годах сменилось их активным исследованием. Работы Д. Форлендера в Германии во многом способствовали синтезу новых ЖК - соединений. Достаточно сказать, что под его руководством было выполнено 85 диссертаций по жидким кристаллам. В двадцатые годы Фридель предложил разделить все жидкие кристаллы на три большие группы. Ггруппы жидких кристаллов Фридель назвал:

1. нематическими

2. смектическими

3. холестерический

Он же предложил общий термин для жидких кристаллов - «мезоморфная фаза». Этот термин происходит от греческого слова «мезос» (промежуточный), а вводя его, Фридель хотел подчеркнуть, что жидкие кристаллы занимают промежуточное положение между истинными кристаллами и жидкостями как по температуре, так и по своим физическим свойствам.

Затем голландец С. Озеен и чех Х. Цохер создали теорию упругости, русские ученые В.К. Фредерикс и В.Н. Цветков в СССР в 30-х годах впервые исследовали поведение жидких кристаллов в электрических и магнитных полях. Однако до 60-х годов изучение жидких кристаллов не представляло существенного практического интереса, и все научные исследования имели достаточно ограниченный, чисто академический интерес.

Ситуация резко изменилась в середине 60-х годов, когда в связи с бурным развитием микроэлектроники и микроминиатюризации приборов потребовались вещества, способные отражать и передавать информацию, потребляя при этом минимум энергии. И вот здесь на помощь пришли жидкие кристаллы, двойственный характер которых (анизотропия свойств и высокая молекулярная подвижность) позволили создать управляемые внешним электрическим полем быстродействующие и экономичные ЖК - индикаторы, являющиеся по существу основным элементом многомиллионной «армии» часов, калькуляторов, плоских экранов телевизоров и т.д.

Жидкокристаллический бум, в свою очередь, стимулировал активную научную деятельность, созывались международные симпозиумы и конференции по жидким кристаллам, организовывались школы для молодых ученых, выпускались сборники и монографии.

Что же представляют собой эти необычные кристаллы, и каковы особые свойства, сделавшие их сегодня практически незаменимыми?

1.2 Молекулярное строение и структура жидких кристаллов

Сейчас известно уже около сотни тысяч органических веществ, которые могут находиться в ЖК-состоянии, и число таких соединений непрерывно растет. Если первые десятилетия после открытия жидких кристаллов основными представителями этих соединений являлись только вещества, состоящие из асимметрических молекул стержнеобразной формы, - так называемые каламитики (от греч. «каламис» - тростник), то в последствии было обнаружено, что в ЖК-состояние могут переходить самые разнообразные вещества, имеющие молекулы более сложной формы (диски, пластины и др.). Молекулы ЖК-соединений очень часто называют мезогенами, а группировки или фрагменты молекул, способствующие формированию ЖК-фазы, - мезогенными группами. На рисунке 1а приведены примеры стержнеобразных мезогенов - каломитиков, а также химические формулы дискообразных (дискотики) и планкообразных мезогенов (санидики) (от греч. «санидис» - планка).

Как видно изрисунка 1а, среди мезогенных групп чаще всего встречаются бензольные кольца, связанные непосредственно друг с другом с помощью различных химических группировок (-CH=CH-, - CH=N-, - NH-CO и др.). Характерной особенностью всех ЖК-соединений является асимметричная форма малеку, обеспечивающая анизотропию поляризуемости и тенденцию к расположению молекул преимущественно параллельно друг другу вдоль их длинных (каламитики и санидики) и коротких (дискотики) осей.

1.3 Термотропные жидкие кристаллы

В зависимости от характера расположения молекул согласно классификации, предложенной еще Фриделем, различают три основных типа структур ЖК-соединений: смектический, нематический и холестерический. Указанные типы структур относятся к так называемым термотропным жидким кристаллам, образование которых осуществляется только при термическом воздействии на вещество (нагревание или охлаждение). На рис. 2 показаны схемы расположения стержне- и дискообразных молекул в трех перечисленных структурных модификациях жидких кристаллов.

Смектический тип жидких кристаллов (смектики - от греч. слова «смегма» - мыло) ближе всего к истинно кристаллическим телам. Молекулы располагаются в слоях, и их центры тяжести подвижны в двух измерениях (на смектической плоскости). При этом длинные оси молекул в каждом слое могут располагаться как перпендикулярно плоскости слоя (ортогональные смектики), так и под некоторым углом (наклонные смектики). Направление преимущественной ориентации осей молекул принято называть директором, который обычно обозначается вектором n (рис. 2, а).

Нематический тип жидких кристаллов (нематики от греч. «нема» - нить) характеризуется наличием только одномерного ориентационного порядка длинных (каламитики) или коротких (дискотики) осей молекул (рис. 2 б и г соответственно). При этом центры тяжести молекул расположены в пространстве хаотично, что свидетельствует об отсутствии трансляционного порядка.

Наиболее сложный тип упорядочения молекул жидких кристаллов холестерический (холестерики), образуемый хиральными (оптически активными) молекулами, содержащими асимметрический атом углерода. Это означает, что такие молекулы являются зеркально-несимметричными в отличие от зеркально-симметричных молекул нематиков. Впервые холестерическая мезофаза наблюдалась для производных холестерина, откуда и произошло ее название. Холестерики во многих отношениях подобны нематикам, в которых реализуется одномерный ориентационный порядок; они образуются также при добавлении небольших количеств хиральных соединений (1-2 мол.%) к нематикам. Как видно из рис. 2, в, в этом случае дополнительно реализуется спиральная закрученность молекул, и очень часто холестерик называют закрученным нематиком.

Периодическая спиральная структура холестериков определяет их уникальную особенность - способность селективно отражать падающий свет, «работая» в этом случае как дифракционная решетка. При фиксированном угле отражения условия интерференции выполняются только для лучей одного цвета, и слой (или пленка) холестерика кажется окрашенным в один цвет. Этот цвет определяется шагом спирали Р, который при нормальном угле падения света простым образом связан с максимумом длины волны отраженного света max:

P = max / n, (1)

где n - показатель преломления холестерика. Этот эффект избирательного отражения пленкой холестерика света с определенной длиной волны получил название селективного отражения. В зависимости от величины шага спирали, который определяется химической природой холестерика, максимум длины волны отраженного света может располагаться в видимой, а также в ИК- и УФ-областях спектра, определяя широкие области использования оптических свойств холестериков.

Любой из трех типов мезофаз рассматривается обычно как непрерывная анизотропная среда, где в небольших по размерам микрообьемах (их часто называют роями или доменами), состоящих, как правило, из 10 4 -10 5 молекул, молекулы ориентированы параллельно друг другу.

Теперь рассмотрим макроскопическую структуру жидких кристаллов, которую чаще всего называют текстурой, понимая под этим совокупность структурных деталей образца жидкого кристалла, помешенного между двумя стеклами и исследуемого с помощью оптического поляризационного микроскопа. Каждый тип жидкого кристалла самопроизвольно образует свои характерные текстуры, по которым их часто удается идентифицировать. Как правило, текстуры жидких кристаллов настолько «фотогеничны», что их красивые микрофотографии часто помешают на обложках научных журналов и научно-популярных изданий.

Нематические жидкие кристаллы характеризуются так называемой шлирен-текстурой (рис. 3, а), представляющей собой систему тонких нитевидных линий и точек с нитеобразными черными «хвостами». Эти линии называют дисклинациями (от греч. «клине» - наклон). Они представляют собой места резкого изменения направления ориентации длинных осей молекул. Характерной текстурой смектиков является веерная текстура, которая во многом напоминает кристаллы обычных твердых тел (рис. 3, б), что подчеркивает наибольшую аналогию в структурной организации двумерно-упорядоченных смектиков и трехмерно-упорядоченных кристаллов. Неориентированные холестерики образуют конфокальную текстуру, которая состоит из отдельных и связанных между собой сложных образований, называемых конфокальными доменами (рис. 3, в).

Важно отметить, что все рассмотренные текстуры чрезвычайно лабильны и легко подвергаются структурным перестройкам под действием небольших внешних воздействий (механические напряжения, электрические поля, температура и др.).

1.4 Лиотропные жидкие кристаллы

В отличие от термотропных жидких кристаллов лиотропные жидкие кристаллы образуются при растворении ряда амфифильных соединений в определенных растворителях и имеют, как правило, более сложную структуру, чем термотропные жидкие кристаллы. Амфифильные соединения состоят из молекул, содержащих гидрофильные и гидрофобные группы. Такие соединения широко распространены в природе. Так, например, любая жирная кислота является амфифильной. Ее молекулы состоят из двух частей: полярной «головки» (СООН-группа) и углеводородного «хвоста» [СН 3 (СН 2) n -]. Подобные соединения при растворении в воде, как правило, образуют мицеллярные растворы, в которых полярные головки торчат наружу, находясь в контакте с водой, а углеводородные хвосты, контактируя друг с другом, смотрят вовнутрь. Такие мицеллы (рис. 4, а) и являются теми структурными элементами, из которых строятся лиотропные жидкие кристаллы, формируя, например, цилиндрическую или ламеллярную формы (рис. 4, б, в).

В отличие от термотропных жидких кристаллов, где формирование определенного типа мезофазы определяется лишь температурой, в лиотропных системах тип структурной организации определяется уже двумя параметрами: концентрацией вещества и температурой. Лиотропные жидкие кристаллы наиболее часто образуются биологическими системами, функционирующими в водных средах. Именно в этих системах в наиболее яркой форме проявляются уникальные особенности жидких кристаллов, сочетающих лабильность с высокой склонностью к самоорганизации. Ограничимся лишь одним примером, относящимся к клеткам и внутриклеточным органеллам, покрытым тонкими высокоупорядоченными оболочками - мембранами. Современные структурные исследования показывают, что мембраны представляют собой типичные лиотропные ламеллярные лабильные ЖК-структуры, составленные из двойного слоя фосфолипидов, в котором «растворены» белки, полисахарилы, холестерин и другие жизненно важные компоненты (рис. 4, г). Такое анизотропное строение мембраны, с одной стороны, позволяет защищать ее внутреннюю часть от нежелательных внешних воздействий, а с другой стороны, ее «жидкостной» характер обеспечивает высокие транспортные свойства (проницаемость, перенос ионов и др.), что придает клетке определяющую роль в процессах жизнедеятельности.

1.5 Анизотропия физических свойств - основная особенность жидких кристаллов

Поскольку основным структурным признаком жидких кристаллов является наличие ориентационного порядка, обусловленного анизотропной формой молекул, то естественно, что все их свойства, так или иначе определяются степенью ориентаци-ониого упорядочения. Количественно степень упорядоченности жидкого кристалла определяется параметром порядка S, введенным В.И. Цветковым в 40-х годах:

S = 0,5 (3cos 2 - 1) (2)

где - угол между осью индивидуальной молекулы жидкого кристалла и преимущественным направлением всего ансамбля, определяемым директором n (рис. 2) (угловые скобки означают усреднение по всем ориентациям молекул). Легко понять, что в полностью разупорядоченной изотропно-жидкой фазе S = 0, а в полностью твердом кристалле S = 1. Параметр порядка жидкого кристалла лежит в пределах от 0 до 1. Именно существование ориентационного порядка обусловливает анизотропию всех физических свойств жидких кристаллов. Так, анизотропная форма молекул каламитиков определяет появление двойного лучепреломления (n) и диэлектрической анизотропии (), величины которых могут быть выражены следующим образом:

n = n - n и = - (3)

где n , n и, - показатели преломления и диэлектрические постоянные соответственно, измеренные при параллельной и перпендикулярной ориентации длинных осей молекул относительно директора. Значения n для ЖК - соединений обычно весьма велики и меняются в широких пределах в зависимости от их химического строения, достигая иногда величины порядка 0,3-0,4. Величина и знак зависят от соотношения между анизотропией поляризуемости молекулы, величиной постоянного дипольного момента, а также от угла между направлением дипольного момента и длинной молекулярной осью. Примеры двух ЖК-соединений, характеризующихся положительной и отрицательной величиной, приведены ниже:

Нагревание жидкого кристалла, понижая его ориентационный порядок, сопровождается монотонным снижением значений n и, так что в точке исчезновения ЖК-фазы при Т пр анизотропия свойств полностью исчезает.

В то же время именно анизотропия всех физических характеристик жидкого кристалла в сочетании с низкой вязкостью этих соединений и позволяет с высокой легкостью и эффективностью осуществлять ориентацию (и переориентацию) их молекул под действием небольших «возмущающих» факторов (электрические и магнитные поля, механическое напряжение), существенно изменяя их структуру и свойства. Именно поэтому жидкие кристаллы оказались незаменимыми электрооптически - активными средами, на основе которых и было создано новое поколение так называемых ЖК-индикаторов.

2. Технологическая методика

2.1 Способы управления жидкими кристаллами

кристалл молекулярный жидкий управление

Основой любого ЖК - индикатора является так называемая электрооптическая ячейка, устройство которой изображено на рис. 5. Две плоские стеклянные пластинки с нанесенным на них прозрачным проводящим слоем из окиси олова или окиси индия, выполняющие роль электродов, разделяются тонкими прокладками из непроводящего материала (полиэтилен, тефлон). Образовавшийся зазор между пластинками, который колеблется от 5 до 50 мкм (в зависимости от назначения ячейки), заполняется жидким кристаллом, и вся «сандвичевая» конструкция по периметру «запаивается» герметикой или другим изолирующим материалом (рис. 5). Полученная таким образом ячейка может быть помешена между двумя очень тонкими пленочными поляризаторами, плоскости поляризации которых образуют определенный угол с целью наблюдения эффектов ориентации молекул под действием электрического поля. Приложение к тонкому ЖК - слою даже небольшого электрического напряжения (1,5-3 В) вследствие относительно низкой вязкости и внутреннего трения анизотропной жидкости приводит к изменению ориентации жидкого кристалла. При этом важно подчеркнуть, что электрическое поле воздействует не на отдельные молекулы, а на ориентированные группы молекул (рои или домены), состоящие из десятков тысяч молекул, вследствие чего энергия электростатического взаимодействия значительно превышает энергию теплового движения молекул. В итоге жидкий кристалл стремится повернуться таким образом, чтобы направление максимальной диэлектрической постоянной совпало с направлением электрического поля. А вследствие большой величины двулучепреломления n процесс ориентации ведет к резкому изменению структуры и оптических свойств жидкого кристалла.

Впервые воздействие электрических и магнитных полей на жидкие кристаллы было исследовано русским физиком В.К. Фредериксом, и процессы их ориентации получили название электрооптических переходов (или эффектов) фредерикса. Один из трех, наиболее часто встречающихся вариантов ориентации молекул показан на рис. 5. а. Это планарная ориентация, которая характерна для нематиков с отрицательной диэлектрической анизотропией (< 0), когда длинные оси молекул параллельны стеклянным поверхностям ячейки.

Гомеотропная ориентация реализуется для жидких кристаллов с положительной диэлектрической анизотропией (> 0) (рис. 5, б). В этом случае длинные оси молекул с продольным дипольным моментом располагаются вдоль направления поля перпендикулярно поверхности ячейки. И наконец, возможна твист- или закрученная ориентация молекул (рис. 5, в). Такая ориентация достигается специальной обработкой стеклянных пластинок, при которой длинные оси молекул поворачиваются в направлении от нижнего к верхнему стеклу электрооптической ячейки. Обычно это достигается натиранием стекол в разных направлениях или использованием специальных веществ - ориентантов, задающих направление ориентации молекул.

В основе действия любого ЖК - индикатора лежат структурные перестройки между указанными типами ориентации молекул, которые индуцируются при приложении слабого электрического поля. Рассмотрим, например, как работает ЖК - циферблат электронных часов. Основу циферблата составляет уже знакомая нам электрооптическая ячейка, правда несколько дополненная (рис. 6, а, б). Помимо стекол с напыленными электродами, двух поляризаторов, плоскости поляризации которых противоположны, но совпадают с направлением длинных осей молекул у электродов, добавляется еще располагающееся под нижним поляризатором зеркало (на рисунке не показано). Нижний электрод обычно делают сплошным, а верхний - фигурным, состоящим из семи небольших сегментов-электродов, с помощью которых можно изобразить любую цифру или букву (рис. 6, в). Каждый такой сегмент «питается» электричеством и включается согласно заданной программе от миниатюрного генератора. Исходная ориентация нематика закрученная, то есть мы имеем так называемую твист-ориентацию молекул (см. рис. 5, в и 6, а). Свет падает на верхний поляризатор и становится плоскополяризованным в соответствии с его поляризацией.

При отсутствии электрического поля (то есть в выключенном состоянии) свет, «следуя» твист - ориентации нематика, меняет свое направление в соответствии с оптической осью нематика и на выходе будет иметь то же направление поляризации, что и нижний поляризатор (см. рис. 6, а). Другими словами, свет отразится от зеркала, и мы увидим светлый фон. При включении электрического поля для нематического жидкого кристалла с положительной диэлектрической анизотропией (> 0) произойдет переход от закрученной твист-ориентации к гомеотропной ориентации молекул, то есть длинные оси молекул повернутся в направлении, перпендикулярном к электродам, и спиральная структура разрушится (рис. 6, б). Теперь свет, не изменив направления исходной поляризации, совпадающей с поляризацией верхнего поляризатора, будет иметь направление поляризации, противоположное нижнему поляроиду, а они, как видно на рис. 6, б, находятся в скрещенном положении. В этом случае свет не дойдет до зеркала, и мы увидим темный фон. Другими словами, включая поле, можно рисовать любые темные символы (буквы, цифры) на светлом фоне, используя, например, простую семисегментную систему электродов (рис. 6, в).

Таков принцип действия любого ЖК - индикатора. Основными преимуществами этих индикаторов являются низкие управляющие напряжения (1,5-5 В), малые потребляемые мощности (1-10 мкВт), высокая контрастность изображения, легкость встраивания в любые электронные схемы, надежность в работе и относительная дешевизна.

2.2 Способы управления холестерической спиралью

Среди рассмотренных типов жидких кристаллов, пожалуй, наиболее экзотическими оптическими свойствами обладают холестерики. Необычайно тонко организованная спиральная структура холестерических жидких кристаллов (см. рис. 2, в) чрезвычайно чувствительна к самым различным внешним воздействиям. Изменяя температуру, давление, прикладывая электромагнитные поля и механические напряжения, можно существенным образом менять шагхолестерической спирали, а в соответствии с уравнением (1) легко менять цвет холестерика. Огромная чувствительность этих соединений, позволяющая «пробегать» все цвета спектра в интервале 0,01 -0,001°С. показывает, какие необыкновенные возможности открывает использование этих веществ в качестве высокоэффективных термоиндикаторов.

У большинства холестериков с ростом температуры шаг спирали уменьшается, а следовательно, уменьшается и длина волны селективно отраженного света max (рис. 7). Иными словами, каждой из указанных на рис. 7 температур - Т 0 , Т 1 , Т 2 и Т 3 - соответствует свой цвет. Таким образом, нанося холестерические жидкие кристаллы на поверхности различных объектов, можно получать топографию распределения температуры, что делает их незаменимыми термоиндикаторами и визуализаторами для различного рода применений в технике и медицине. Вводя холестерики в полимерные пленки, то есть получая так называемые капсулированные жидкие кристаллы, можно создавать весьма удобные в обращении пленочные материалы, которые можно использовать в качестве термометров, а также для визуализации и «фотографирования» тепловых полей.

В последние годы разрабатываются смеси холестерических жидких кристаллов, резко изменяющие цвет (а следовательно, и шаг спирали) под действием малых, но опасных концентраций вредных паров различных химических соединений. Такие ЖК - индикаторы могут за очень короткое время (1-2 мин) менять цветовую окраску при превышении допустимой концентрации вредных паров, выполняя таким образом роль своеобразных химических датчиков.

Одним из внешних факторов, с помощью которого можно управлять шагом холестерической спирали, может служить электрическое или магнитное поле. При приложении поля холестерическая спираль начинает постепенно раскручиваться, при этом шаг спирали увеличивается, четко «отслеживая» величину поданного напряжения. А это означает, что можно непрерывно управлять и цветом холестерического слоя жидкого кристалла. При некотором так называемом критическом напряжении поля спираль можно полностью раскрутить, превратив таким образом холестерический жидкий кристалл а нематический (один из видов эффекта Фредерикса). Процесс раскрутки спирали в настоящее время активно исследуется с целью использования в цветных плоских экранах с электронной системой управления.

3. Применение жидких кристаллов

3.1 Жидкие кристаллы сегодня и завтра

Многие оптические эффекты в жидких кристаллах, о которых рассказывалось выше, уже освоены техникой и используются в изделиях массового производства. Например, всем известны часы с индикатором на жидких кристаллах, но не все еще знают, что те же жидкие кристаллы используются для производства наручных часов, в которые встроен калькулятор. Тут уже даже трудно сказать, как назвать такое устройство, то ли часы, то ли компьютер. Но это уже освоенные промышленностью изделия, хотя всего десятилетия назад подобное казалось нереальным. Перспективы же будущих массовых и эффективных применений жидких кристаллов еще более удивительны. Поэтому стоит рассказать о нескольких технических идеях применения жидких кристаллов, которые пока что не реализованы, но, возможно, в ближайшие несколько лет послужат основой создания устройств, которые станут для нас такими же привычными, какими, скажем, сейчас являются транзисторные приемники.

3.2 Оптический микрофон

В системах оптической обработки информации и связи возникает необходимость преобразовывать не только световые сигналы в световые, но и другие самые разнообразные воздействия в световые сигналы. Такими воздействиями могут быть давление, звук, температура, деформация и т.д. И вот для преобразования этих воздействий в оптический сигнал жидкокристаллические устройства оказываются опять-таки очень удобными и перспективными элементами оптических систем.

Конечно, существует масса методов преобразовывать перечисленные воздействия в оптические сигналы, однако подавляющее большинство этих методов связано сначала с преобразованием воздействия в электрический сигнал, с помощью которого затем можно управлять световым потоком. Таким образом, методы эти двуступенчатые и, следовательно, не такие уж простые и экономичные в реализации. Преимущество применения в этих целях жидких кристаллов состоит в том, что с их помощью самые разнообразные воздействия можно непосредственно переводить в оптический сигнал, что устраняет промежуточное звено в цепи воздействие-световой сигнал, а значит, вносит принципиальное упрощение в управление световым потоком. Другое достоинство ЖК-элементов в том, что они легко совместимы с узлами волоконно-оптических устройств.

Чтобы проиллюстрировать возможности с помощью ЖК управлять световыми сигналами, расскажем о принципе работы «оптического микрофона» на ЖК-устройства, предложенного для непосредственного перевода акустического сигнала в оптический.

Принципиальная схема устройства оптического микрофона очень проста. Его активный элемент представляет собой ориентированный слой нематика. Звуковые колебания создают периодические во времени деформации слоя, вызывающие также переориентации молекул и модуляцию поляризации (интенсивности) проходящего поляризованного светового потока.

Исследования характеристик оптического микрофона на ЖК показали, что по своим параметрам он не уступает существующим образцам и может быть использован в оптических линиях связи, позволяя осуществлять непосредственное преобразование звуковых сигналов в оптические. Оказалось также, что почти во всем температурном интервале существования нематической фазы его акустооптические характеристики практически не изменяются

3.3 Как сделать стереотелевизор

В качестве еще одного заманчивого, неожиданного и касающегося практически всех применений жидких кристаллов стоит назвать идею создания системы стереотелевидения с применением жидких кристаллов. Причем, что представляется особенно заманчивым, такая система «стереотелевидения на жидких кристаллах» может быть реализована ценой очень простой модификации передающей телекамеры и дополнением обычных телевизионных приемников специальными очками, стекла которых снабжены жидкокристаллическими фильтрами.

Идея этой системы стереотелевидения чрезвычайно проста. Если учесть, что кадр изображения на телеэкране формируется построчно, причем так, что сначала высвечиваются нечетные строчки, а потом четные, то с помощью очков с жидкокристаллическими фильтрами легко сделать так, чтобы правый глаз, например, видел только четные строчки, а левый - нечетные. Для этого достаточно синхронизировать включение и выключение жидкокристаллических фильтров, т.е. возможность воспринимать изображение на экране попеременно то одним, то другим глазом, делая попеременно прозрачным то одно, то другое стекло очков с высвечиванием четных и нечетных строк.

Теперь совершенно ясно, какое усложнение передающей телекамеры даст стереоэффект телезрителю. Надо, чтобы передающая телекамера была стерео, т.е. чтобы она обладала двумя объективами, соответствующими восприятию объекта левым и правым глазом человека, четные строчки на экране формировались с помощью правого, а нечетные-с помощью левого объектива передающей камеры.

Система очков с жидкокристаллическими фильтрами-затворами, синхронизированными с работой телевизора, может оказаться непрактичной для массового применения. Возможно, что более конкурентоспособной окажется стереосистема, в которой стекла очков снабжены обычными поляроидами. При этом каждое из стекол очков пропускает линейно-поляризованный свет, плоскость поляризации которого перпендикулярна плоскости поляризации света, пропускаемого вторым стеклом. Стерео же эффект в этом случае достигается с помощью жидкокристаллической пленки, нанесенной на экран телевизора и пропускающей от четных строк свет одной линейной поляризации, а от нечетных-другой линейной поляризации, перпендикулярной первой.

Какая из описанных систем стереотелевидения будет реализована или выживет совсем другая система, покажет будущее.

3.4 Очки для космонавтов

Знакомясь ранее с маской для электросварщика, а теперь с очками для стереотелевидения, бы заметили, что в этих устройствах управляемый жидкокристаллический фильтр перекрывает сразу все поле зрения одного или обоих глаз. Между тем существуют ситуации, когда нельзя перекрывать все поле зрения человека и в то же время необходимо перекрыть отдельные участки поля зрения.

Например, такая необходимость может возникнуть у космонавтов в условиях их работы в космосе при чрезвычайно ярком солнечном освещении, не ослабленном ни атмосферой, ни облачностью. Эту задачу как в случае маски для электросварщика или очков для стереотелевидения позволяют решить управляемые жидкокристаллические фильтры.

Усложнение очков в этом случае состоит в том, что поле зрения каждого глаза теперь должен перекрывать не один фильтр, а несколько независимо управляемых фильтров. Например, фильтры могут быть выполнены в виде концентрических колец с центром в центре стекол очков или в виде полосок на стекле очков, каждая из которых при включении перекрывает только часть поля зрения глаза.

Такие очки могут быть полезны не только космонавтам, но и людям других профессий, работа которых может быть связана не только с ярким нерассеянным освещением, но и с необходимостью воспринимать большой объем зрительной информации.

Например, в кабине пилота современного самолета огромное количество панелей приборов. Однако не все из них нужны пилоту одновременно. Поэтому использование пилотом очков, ограничивающих поле зрения, может быть полезным и облегчающим его работу, так как помогает сосредоточивать его внимание только на части нужных в данный момент приборов и устраняет отвлекающее влияние не нужной в этот момент информации.

Подобные очки будут очень полезны также в биомедицинских исследованиях работы оператора, связанной с восприятием большого количества зрительной информации. В результате таких исследований можно выявить скорость реакции оператора на зрительные сигналы, определить наиболее трудные и утомительные этапы в его работе и в конечном итоге найти способ оптимальной организации его работы. Последнее значит определить наилучший способ расположения панелей приборов, тип индикаторов приборов, цвет и характер сигналов различной степени важности.

Фильтры подобного типа и индикаторы на жидких кристаллах, несомненно, найдут (и уже находят) широкое применение в кино-, фотоаппаратуре. В этих целях они привлекательны тем, что для управления ими требуется ничтожное количество энергии, а в ряде случаев позволяют исключить из аппаратуры детали, совершающие механические движения. А как известно, механические системы часто оказываются наиболее громоздкими и ненадежными.

Какие механические детали кино-, фотоаппаратуры имеются в виду? Это прежде всего диафрагмы, фильтры - ослабители светового потока, наконец, прерыватели светового потока в киносъемочной камере, синхронизованные с перемещением фотопленки и обеспечивающие покадровое ее экспонирование.

Принципы устройства таких ЖК-элементов ясны из предыдущего. В качестве прерывателей и фильтров-ослабителей естественно использовать ЖК-ячейки, в которых под действием электрического сигнала изменяется пропускание света по всей их площади. Для диафрагм без механических частей-системы ячеек в виде концентрических колец, которых могут под действием электрического сигнала изменять площадь пропускающего свет прозрачного окна. Следует также отметить, что слоистые структуры, содержащие жидкий кристалл и фотополупроводник, т.е. элементы типа управляемых оптических транспарантов, могут быть использованы не только в качестве индикаторов, например, экспозиции, но и для автоматической установки диафрагмы в кино-, фотоаппаратуре.

При всей принципиальной простоте обсуждаемых устройств их широкое внедрение в массовую продукцию зависит от ряда технологических вопросов, связанных с обеспечением длительного срока работы ЖК-элемен-тов, их работы в широком температурном интервале, наконец, конкуренции с традиционными и устоявшимися техническими решениями и т.д. Однако решение всех этих проблем - это только вопрос времени, и скоро, наверное, трудно будет себе представить совершенный фотоаппарат, не содержащий ЖК-устройства.

Заключение

Итак, жидкие кристаллы обладают двойственными свойствами, сочетая в себе свойство жидкостей(текучесть) и свойство кристаллических тел (анизотропию). Их поведение не всегда удается описать с помощью привычных методов и понятий. Но именно в этом и заключена их привлекательность для исследователей, стремящихся познать еще неизведанное.

Недавно открыты и интенсивно исследуются жидкокристаллические полимеры, появились полимерные ЖК-сегнетоэлектрики, идет активное исследование гибкоцепных элементоорганических и металлсодержащих ЖК-соединений, образующих новые типы мезофаз. Мир жидких кристаллов бесконечно велик и охватывает широчайший круг природных и синтетических объектов, привлекая внимание не только ученых - физиков, химиков и биологов, но и исследователей-практиков, работающих в самых разнообразных отраслях современной техники (электронике, оптоэлектронике, информатике, голографии и т.п.).

Список используемой литературы

1. Шибаев В.П. Необычные кристаллы или загадочные жидкости // Соросовский Образовательный Журнал. 1996. N11. С. 37-46.

2. Чандрасекар С. Жидкие кристаллы - М.: Мир, 1980 с. 344

3. Титов В.В., Севостьянов В.П., Кузьмин Н.Г., Семенов А.М. Жидкокристаллические дисплеи: строение, синтез, свойства жидких кристаллов. - Минск: Изд-во НПООО «Микровидеосистемы», 1998 с. 238

Подобные документы

    История открытия жидких кристаллов. Их классификация, молекулярное строение и структура. Термотропные жидкие кристаллы: смектический, нематический и холестерический тип. Лиотропные ЖК. Анизотропия физических свойств. Как управлять жидкими кристаллами.

    реферат , добавлен 27.05.2010

    Общая характеристика поверхностных явлений в жидких кристаллах. Рассмотрение отличительных особенностей смектических жидких кристаллов, различных степеней их упорядочения. Исследование анизотропии физических свойств мезофазы, степени упорядочения.

    реферат , добавлен 10.10.2015

    Твёрдые кристаллы: структура, рост, свойства. "Наличие порядка" пространственной ориентации молекул как свойство жидких кристаллов. Линейно поляризованный свет. Нематические, смектические и холестерические кристаллы. Общее понятие о сегнетоэлектриках.

    курсовая работа , добавлен 17.11.2012

    Жидкокристаллическое (мезоморфное) состояние вещества. Образование новой фазы. Типы жидких кристаллов: смекатические, нематические и холестерические. Термотропные и лиотропные жидкие кристаллы. Работы Д. Форлендера, способствовавшие синтезу соединений.

    презентация , добавлен 27.12.2010

    Основные виды кристаллов. Естественный и искусственный рост кристаллов. Выращивание кристаллов как физико-химический процесс, требуемое оборудование. Способы образования кристаллов. Выращивание монокристаллов из расплава, растворов и паровой фазы.

    реферат , добавлен 07.06.2013

    Изучение понятия, видов и способов образования кристаллов - твердых тел, в которых атомы расположены закономерно, образуя трехмерно-периодическую пространственную укладку - кристаллическую решетку. Образование кристаллов из расплава, раствора, пара.

    презентация , добавлен 08.04.2012

    Причины и условия кристаллизации материальных частиц. Теории зарождения и роста идеальных кристаллов в работах Гиббса, Фольмера, Косселя и Странского. Описание точечных, линейных, двухмерных и объемных дефектов. История получения искусственных кристаллов.

    реферат , добавлен 18.11.2010

    Понятие строения вещества и основные факторы, влияющие на его формирование. Основные признаки аморфного и кристаллического вещества, типы кристаллических решеток. Влияние типа связи на структуру и свойства кристаллов. Сущность изоморфизма и полиморфизма.

    контрольная работа , добавлен 26.10.2010

    Структура углеродных наноструктур. История открытия, геометрическое строение и способы получения фуллеренов. Их физические, химические, сорбционные, оптические, механические и трибологические свойства. Перспективы практического использования фуллеренов.

    курсовая работа , добавлен 13.11.2011

    История открытия водорода. Общая характеристика вещества. Расположение элемента в периодической системе, строение его атома, химические и физические свойства, нахождение в природе. Практическое применение газа для полезного и вредного использования.

Жидкие кристаллы - это такие вещества, которые находятся в состоянии мезоморфном (среднем, промежуточном) между изотропным жидким и твердым кристаллическим. Эти элементы обладают текучестью, способны пребывать в виде капель. Вместе с проявлением указанных свойств, жидкие кристаллы проявляют анизотропию магнитных, электрических, оптических и прочих свойств, обусловленных с упорядоченностью в молекулярной ориентации. Другими словами, вещества обладают разнонаправленными характеристиками. При отсутствии внешнего влияния анизотропны в жидких кристаллах теплопроводность, электропроводность, магнитная восприимчивость, В веществах отмечаются дихроизм и двойное лучепреломление.

Жидкие кристаллы смектические

Впервые их обнаружили в мыле (отсюда и название - "смегма" - мыло). Концы молекул как будто закрепляются в перпендикулярных их продольным осям плоскостях. Смектические кристаллы жидкие отличаются слоистым строением. К этим веществам относят растворы мыл водные, эфир этиловый кислоты азоксибензойной.

"Смектики" считаются самым обширным классом жидких кристаллов. Отдельные их разновидности обнаруживают и сегнетоэлектрические (наличие самопроизвольной поляризации в определенном температурном интервале). Высокая вязкость не позволила найти широкое применение жидких кристаллов смектических в технике.

Нематики

Нематические кристаллы жидкие отличаются ориентацией продольных молекулярных осей по некоторому направлению. Другими словами, они характеризуются дальним ориентационным порядком. Название кристаллов произошло от греческого определения "нема" - нить. Дисинклинации (нити) обладают высокой подвижностью, в естественном свете они хорошо заметны.

Холестерические жидкие кристаллы и их применение

Молекулярная форма веществ этого типа представляет собой расположенные параллельно продолговатые пластинки. Холестерики дают эфир пропиловый холестерина, холестерилциннамат, прочие производные холестерина.

Термоиндикаторы жидких кристаллов холестерического типа широко применяются в медицинской и технической дианостике. Чувствительность этих веществ к температуре позволяет визуализировать температурное распределение по поверхности. Это, в свою очередь, применяется в интроскопии (наблюдение процессов внутри тел, оптически непрозрачных), при выявлении некоторых заболеваний, а также в Эти кристаллы формируют температурную картину в форме цветовой диаграммы. Холестерики могут применяться также и при визуализации полей СВЧ. Для производства индикаторов используется эффект динамического светового рассеяния. В жидкокристаллических индикаторах применяется окружающий свет. Это позволяет значительно снизить потребляемую мощность. Так, мощность на порядок ниже, чем в пленочных и порошковых люминофорах, светодиодах, газоразрядных индикаторах. Холестерики используются в основе преобразования в видимое изображение инфракрасного.

В холестерическом жидком кристалле (в отличие от нематического) динамическое световое рассеивание может иметь память - состояние, рассеивающее свет, может сохраняться и после удаления поля. При этом определенные свойства холестерика оказывают влияние на продолжительность состояния. Так, память может сохраняться от нескольких минут до нескольких лет. В первоначальное состояние (нерассеивающее) холестерика приводит переменное напряжение. Указанное свойство применяется при формировании ячеек памяти.

Жидкие кристаллы — графическая визуализация

Жидкий кристалл – это такое фазовое состояние, во время которого вещество одновременно обладает как свойствами жидкостей, так и свойствами кристаллов. То есть они обладают текучестью, и вместе с тем им присуща анизотропия – различие свойств данной среды в зависимости от направления внутри нее (например, показатель преломления, скорость звука или теплопроводность).

Жидкие кристаллы имеют структуру вязких жидкостей, которая состоит из молекул дискообразной формы. Ориентация данных молекул может изменяться при взаимодействии с электрическими полями.

В 1888-м году австрийский ботаник Фридерих Рейнитцер выяснил, что у некоторых типов кристаллов имеется две точки плавления, из чего следует, что существует два различных жидких состояния, в одном из которых вещество прозрачное, а в другом – мутное.

И хотя в 1904-м году немецкий физик Отто Леман предоставил ряд научных доказательств в пользу жидких кристаллов в своей одноименной книге, все же долгое время жидкие кристаллы не признавались как отдельные состояния вещества. В 1963-м году американский изобретатель Джеймс Фергюсон нашел применение одному из свойств ЖК – изменение цвета в зависимости от температуры. Американец получил патент на изобретение, которое способно обнаруживать невидимые для глаз тепловые поля. С этого популярность жидких кристаллов начала расти.

Группы жидких кристаллов и их свойства

Жидкие кристаллы обычно разделяют на две группы:


  1. Лиотропные – образовываются в смесях, состоящих из стержневидных молекул данного вещества и полярных растворителей (например, воды).

Применение жидких кристаллов

ЖК-дисплеи

Прежде всего следует отметить не наиболее полезное, но наиболее известное применения ЖК – жидкокристаллические дисплеи. Иногда они называются LCD-дисплеи, что есть сокращением английского «liquid crystal display». В век гаджетов такие дисплеи присутствуют практически в любом электронном устройстве: телевизоры, мониторы компьютеров, цифровые фотоаппараты, навигаторы, калькуляторы, электронные книги, планшеты, телефоны, электронные часы, плееры и др.

Устройство ЖК-дисплеев достаточно сложное, однако в общем виде представляет собой набор стеклянных пластин, между которыми расположены жидкие кристаллы (ЖК-матрица), и множество источников света. Пиксель ЖК-матрицы включает в себя пару прозрачных электродов, которые позволяют менять ориентацию молекул жидкого кристалла, а также пару поляризационных фильтров, которые регулируют степень прозрачности и др.

Термография

Менее популярное, но более важное применение ЖК – это термография. Термография позволяет получить тепловое изображение объекта, в результате регистрации инфракрасного излучения – тепла. Инфракрасные приборы ночного зрения используются пожарными, в случае задымления помещения, с целью обнаружения пострадавших в пожаре. Также они нашли применение у служб безопасности и военных служб.

Тепловые изображения позволяют обнаруживать места перегрева, нарушения теплоизоляции, или другие аварийные участки при обслуживании линий электропередачи или строительстве.

Также термография используется при медицинской визуализации, в основном для наблюдения молочных желез. Это позволяет обнаруживать различные онкологические заболевания, вроде рака молочной железы.

Электронные индикаторы

Электронные индикаторы, создаваемые при помощи жидких кристаллов, реагируют на различные температуры, в результате чего могут проинформировать о сбоях и нарушениях в электронике. К примеру, ЖК в виде пленки наносят на печатные платы и интегральные схемы, а также – транзисторы. Неисправные сегменты электроники легко отличить при наличии такого индикатора.

Помимо этого, ЖК-индикаторы, расположенные на коже пациента, позволяют обнаруживать воспаления и опухоли у человека.

Индикаторы из жидких кристаллов используют и для обнаружения паров различных вредных химических соединений, а также обнаружения ультрафиолетового и гамма-излучения. С применением ЖК разрабатываются детекторы ультразвука и измерители давления.

Помимо прямого применения ЖК в перечисленных выше сферах, следует отметить, что жидкие кристаллы во многом похожи на некоторые клеточные структуры, и иногда присутствуют в них. В силу своих диэлектрических свойств жидкие кристаллы регулируют взаимоотношения внутри клетки, между клетками и тканями, а также между клеткой и окружающей средой. Таким образом, изучение природы и поведения жидких кристаллов может привнести вклад в молекулярную биологию.

Св-в (оптич., электрич., магнитных и др.) при отсутствии трехмерного дальнего порядка в расположении частиц ( , ). Поэтому жидкокристаллич. состояние часто наз. также мезоморфным (мезофазой). На температурный интервал существования жидких ограничен т-рой твердых и т. наз. т-рой просветления, при к-рой жидкокристаллич. мутные образцы становятся прозрачными вследствие мезофазы и превращения ее в изотропную . жидкокристаллич. соед. обладают стержнеобразной или дискообразной формой и имеют тенденцию располагаться преим. параллельно друг другу. Т. наз. термотропные жидкие образуются при термич. воздействии на в-во. Такие жидкие образуют, напр., производные ароматич. соед., содержащие чередующиеся линейные и циклич. группировки (бензольные кольца). Жидкокристаллич. фаза образуется чаще всего в том случае, если заместители в располагаются в пара-положении. Большое кол-во термотропных жидкокристаллич. соед. м. б. изображено общей формулой:

X обычно -СН=N-, - СН 2 -СН 2 -, - НС=СН-, , -С(О)-NH-. Концевыми группами Y и Z м. б. алкильные и алкоксильные группировки, циано-, нитро- и и др. Примеры нек-рых жидких приведены в таблице. Часто жесткие фрагменты , напр., циклич. группировки, определяющие существование мезофазы, наз. "мезогенными". Наличие разветвлений в приводит к сужению температурного интервала существования мезофазы.

K - твердое кристаллич. состояние, I - изотропная (), N - нeматики, S(S A , S B , S F - смектики, D - дискотики, Ch - холестерики. Лиотропные жидкие образуются при нек-рых в-в в определенных р-рителях. Напр., водные р-ры , и др. образуют жидкие в определенном интервале и т-р. Структурными единицами лиотропных жидких являются надмолекулярные образования разл. типов, распределенные в среде р-рителя и имеющие цилиндрич., сферич. или др. форму. В зависимости от характера расположения стержнеобразных различают три осн. типа жидких - смектический, нематический и холестерический. В смектич. жидких (их наз. смектиками, обозначают S) располагаются в слоях. Центры тяжести удлиненных находятся в равноотстоящих друг от друга плоскостях и подвижны в двух измерениях (на смектич. плоскости). Длинные оси могут располагаться как перпендикулярно к плоскости смектич. слоя (ортогональные смектики, рис. 1,а), так и под нек-рым углом к слою (наклонные смектики, рис. 1,б).


Рис. 1. Структура смектических (а и б) и нематических (в) жидких (а - ортогональное, б - наклонное расположение ).

Кроме того, возможно упорядоченное и неупорядоченное расположение в самих слоях. Все это обусловливает возможности образования разл. полиморфных модификаций. Известно св. десятка полиморфных смектич. модификаций, обозначаемых буквами латинского , смектики А, В, С и т. д. (или S А, S В, S C и т. д.). Формирование смектич. фаз характерно для жидкокристаллич. соед., к-рых содержат длинные концевые алкильные или алкоксильные группы Y и Z с числом / 4-6. Нематич. жидкие (нематики N) характеризуются наличием ориентационного порядка, при к-ром длинные оси расположены однонаправленно при беспорядочном расположении центров тяжести (рис. 1,в). Нематич. тип жидких образуют соед., в к-рых имеются короткие алкильные или алкоксильные группы (число [ 3).

Рис. 2. Структура холестерических жидких ; пунктиром изображен шаг ; стрелки указывают направление длинных осей .

Холестерич. тип мезофазы (холестерики Сhоl) образуется двумя группами соед.: производными оптически активных , гл. обр. (отсюда назв.), и нестероидными соед., принадлежащими к тем же классам соед., к-рые образуют нематич. жидкие , но обладающими (алкил-, алкокси-, ацилоксизамещенные азометины, производные коричной к-ты, азо- и и др.). В холестерич. жидких расположены так же, как в нематических, но в каждом слое повернуты относительно их расположения в соседнем слое на определенный угол. В целом реализуется структура, описываемая спиралью (рис. 2). В-ва с дискообразными (дискотики D) могут образовывать жидкие , в к-рых упакованы в колонки (имеется дальний порядок в ориентации плоскостей дискообразных ) или расположены так же, как в нематиках (дальний порядок отсутствует) (рис. 3, а и б). Своеобразная структура жидкокристаллич. соед., обеспечивающая сочетание упорядоченности в расположении с их высокой подвижностью, определяет широкие области практич. использования жидких . Направление преимуществ. ориентации , характеризуемое аксиальным единичным , или директором, может легко изменяться под воздействием разл. внеш. факторов - т-ры, мех. напряжений, напряженности электрич. и магн. полей.

Рис. 3. Структура дискотических жидких : а - колончатая фаза; б - нематическая фаза.

Непосредственная причина ориентации или переориентации директора - вязкоупругих, оптич., электрич. или магн. св-в среды. В свою очередь, изменение преимуществ. ориентации вызывает изменение оптич., электрич. и др. св-в жидких , т. е. создает возможность управления этими св-вами посредством сравнительно слабых внеш. воздействий, а также позволяет регистрировать указанные воздействия. Электрооптич. св-ва нематич. жидких широко используют в системах обработки и отображения информации, в буквенно-цифровых (электронные часы, микрокалькуляторы, дисплеи и т. п.), оптич. затворах и др. светоклапанных устройствах. Преимущества этих приборов - низкая потребляемая мощность (порядка 0,1 мВт/см 2), низкое напряжение питания (неск. В), что позволяет, напр., сочетать жидкокристаллич. дисплеи с интегральными схемами и тем самым обеспечивать миниатюризацию индикаторных приборов (плоские телевиз. экраны). Спиральная структура холестериков определяет их высокую оптич. (к-рая на неск. порядков выше, чем у обычных орг. и твердых ) и способность селективно отражать циркулярно поляризованный свет видимого, ИК и УФ диапазонов. При изменении т-ры, состава среды, напряженности электромагн. поля изменяется шаг , что сопровождается изменением оптич. св-в, в частности цвета. Это позволяет измерять т-ру тела по изменению цвета жидкого