Биографии Характеристики Анализ

Ученые создавшие ядерное оружие. Создание атомной бомбы в ссср

В США и СССР одновременно начались работы над проектами атомной бомбы. В 1942 году в августе в одном из зданий, находившихся во дворе Казанского университета, стала действовать засекреченная Лаборатория №2. Руководителем этого объекта стал Игорь Курчатов, русский "отец" атомной бомбы. В это же время в августе неподалеку от Санта-Фе, штат Нью-Мексико, в здании бывшей местной школы заработала "Металлургическая лаборатория", также секретная. Руководил ею Роберт Оппенгеймер, "отец" атомной бомбы из Америки.

На решение поставленной задачи ушло в общей сложности три года. Первая США была взорвана на полигоне в июле 1945 года. Еще две в августе сброшены были на Хиросиму и Нагасаки. Семь лет понадобилось для рождения атомной бомбы в СССР. Первый взрыв состоялся в 1949 году.

Игорь Курчатов: краткая биография

"отец" атомной бомбы в СССР, появился на свет в 1903 году, 12 января. Произошло это событие в Уфимской губернии, в сегодняшнем городе Симе. Курчатова считают одним из основоположников в мирных целях.

Он окончил с отличием Симферопольскую мужскую гимназию, а также ремесленную школу. Курчатов в 1920 году поступил в Таврический университет, на физико-математическое отделение. Уже спустя 3 года он с успехом досрочно закончил этот вуз. "Отец" атомной бомбы в 1930 году начал работать в физико-техническом институте Ленинграда, где возглавлял физический отдел.

Эпоха до Курчатова

Еще в 1930 годах в СССР начались работы, связанные с атомной энергией. Химики и физики из различных научных центров, а также специалисты из других государств принимали участие во всесоюзных конференциях, которые устраивала АН СССР.

Образцы радия были получены в 1932 году. А в 1939 рассчитана цепная реакция деления тяжелых атомов. 1940 год стал знаковым в ядерной области: была создана конструкция атомной бомбы, а также предложены методы выработки урана-235. Обычную взрывчатку впервые было предложено использовать в качестве запала для инициирования цепной реакции. Также в 1940 году Курчатов представил свой доклад, сделанный на тему деления тяжелых ядер.

Исследования в период Великой Отечественной войны

После того как в 1941 году немцы напали на СССР, были приостановлены ядерные исследования. Основные ленинградские и московские институты, которые занимались проблемами ядерной физики, срочно были эвакуированы.

Глава стратегической разведки Берия знал о том, что физики Запада считают атомное оружие достижимой реальностью. Согласно историческим данным, в СССР еще в 1939 году в сентябре приезжал инкогнито Роберт Оппенгеймер, руководитель работ по созданию атомной бомбы в Америке. Советское руководство могло узнать о возможности получения этого оружия из информации, которую сообщил этот "отец" атомной бомбы.

В СССР в 1941 году начали поступать данные разведки из Великобритании и США. Согласно этим сведениям, на Западе была развернута интенсивная работа, цель которой - создание ядерного оружия.

Весной 1943 года была создана Лаборатория №2 для производства первой атомной бомбы в СССР. Возник вопрос о том, кому поручить руководство ею. Список кандидатур первоначально включал около 50 фамилий. Берия, однако, свой выбор остановил на Курчатове. Его вызвали в октябре 1943 года на смотрины в Москву. Сегодня научный центр, выросший из этой лаборатории, носит его имя - "Курчатовский институт".

В 1946 году, 9 апреля, вышло постановление о создании при Лаборатории №2 конструкторского бюро. Лишь в начале 1947 года были готовы первые производственные корпуса, которые находились в зоне Мордовского заповедника. Некоторые из лабораторий находились в монастырских строениях.

РДС-1, первая русская атомная бомба

Назвали советский прототип РДС-1, что, по одной из версий, означало специальный". Через некоторое время данную аббревиатуру начали расшифровывать несколько иначе - "Реактивный двигатель Сталина". В документах для обеспечения секретности советская бомба именовалась "ракетным двигателем".

Она представляла собой устройство, мощность которого составляла 22 килотонны. Свои разработки атомного оружия велись в СССР, однако необходимость догнать Соединенные Штаты, которые ушли вперед во время войны, вынудила отечественную науку использовать данные, полученные разведкой. За основу первой русской атомной бомбы был взят "Толстяк", разработанный американцами (на фото ниже).

Именно его 9 августа 1945 года США сбросили на Нагасаки. Работал "Толстяк" на распаде плутония-239. Схема подрыва была имплозивной: заряды взрывались по периметру делящегося вещества и создавали взрывную волну, которая "сжимала" вещество, находящееся в центре, и вызывала цепную реакцию. Данная схема в дальнейшем признана была малоэффективной.

Советская РДС-1 выполнена была в виде большого диаметра и массы свободнопадающей бомбы. Из плутония был сделан заряд взрывного атомного устройства. Электрооборудование, а также баллистический корпус РДС-1 были отечественной разработки. Бомба состояла из баллистического корпуса, ядерного заряда, взрывного устройства, а также оборудования систем автоматики подрыва заряда.

Дефицит урана

Советская физика, взяв за основу плутониевую бомбу американцев, столкнулась с проблемой, которую предстояло решить в предельно сжатые сроки: производство плутония на момент разработок еще не началось в СССР. Поэтому первоначально использовался трофейный уран. Однако реактору требовалось по меньшей мере 150 тонн этого вещества. В 1945 году свою работу возобновили рудники в Восточной Германии и Чехословакии. Месторождения урана в Читинской области, на Колыме, в Казахстане, в Средней Азии, на Северном Кавказе и на Украине были найдены в 1946 году.

На Урале, вблизи города Кыштым (недалеко от Челябинска), принялись строить "Маяк" - радиохимический завод, и первый в СССР промышленный реактор. Курчатов лично руководил закладкой урана. Строительство было развернуто в 1947 году еще в трех местах: двух на Среднем Урале и одном - в Горьковской области.

Быстрыми темпами шли строительные работы, однако урана все равно не хватало. Первый промышленный реактор даже к 1948 году не мог быть запущен. Лишь 7 июня этого года загрузили уран.

Эксперимент по пуску ядерного реактора

"Отец" советской атомной бомбы лично взял на себя обязанности главного оператора на пульте управления ядерным реактором. 7 июня, между 11 и 12 часами ночи, Курчатов начал эксперимент по его пуску. Реактор 8 июня достиг мощности 100 киловатт. После этого "отец" советской атомной бомбы заглушил начавшуюся цепную реакцию. Два дня продолжался следующий этап подготовки ядерного реактора. После того как была подана охлаждающая вода, стало понятно, что урана, имеющегося в распоряжении, недостаточно для осуществления эксперимента. Реактор лишь после загрузки пятой порции вещества достиг критического состояния. Цепная реакция стала возможной вновь. Произошло это в 8 часов утра 10 июня.

17 числа этого же месяца Курчатов - создатель атомной бомбы в СССР - в журнале начальников смены сделал запись, в которой предупреждал, что подача воды ни в коем случае не должна быть прекращена, иначе произойдет взрыв. 19 июня 1938 года в 12:45 состоялся промышленный пуск атомного реактора, первого в Евразии.

Успешные испытания бомбы

В 1949 году в июне в СССР было накоплено 10 кг плутония - то количество, которое было заложено в бомбу американцами. Курчатов, создатель атомной бомбы в СССР, следуя указу Берии, распорядился назначить на 29 августа испытание РДС-1.

Участок прииртышской безводной степи, находящийся в Казахстане, недалеко от Семипалатинска, был отведен под испытательный полигон. В центре этого опытного поля, диаметр которого составлял около 20 км, была сконструирована металлическая башня высотой 37,5 метроа. РДС-1 установили на ней.

Заряд, использованный в бомбе, был многослойной конструкцией. В ней перевод в критическое состояние активного вещества осуществлялся с помощью сжатия его с использованием сферической сходящейся детонационной волны, которая образовывалась во взрывчатом веществе.

Последствия взрыва

Башня после взрыва была полностью уничтожена. На ее месте возникла воронка. Однако основные повреждения нанесены были ударной волной. По описанию очевидцев, когда 30 августа состоялась поездка на место взрыва, опытное поле представляло собой страшную картину. Шоссейный и железнодорожный мосты были отброшены на расстояние 20-30 м и искорежены. Машины и вагоны разбросаны на расстоянии 50-80 м от места, где они находились, полностью разрушенными оказались жилые дома. Танки, использованные для проверки силы удара, лежали со сбитыми башнями на боку, а пушки стали грудой искореженного металла. Также сгорело 10 автомашин "Победа", специально привезенных сюда для опыта.

Всего бомб РДС-1 было изготовлено 5. Они не передавались в ВВС, а хранились в Арзамасе-16. Сегодня в Сарове, который ранее был Арзамасом-16 (лаборатория представлена на фото ниже), экспонируется макет бомбы. Он находится в местном музее ядерного оружия.

"Отцы" атомной бомбы

В создании американской атомной бомбы участвовали только 12 Нобелевских лауреатов, будущих и настоящих. Кроме того, им помогала группа ученых из Великобритании, которая была командирована в Лос-Аламос в 1943 году.

В советские времена считалось, что СССР совершенно самостоятельно решил атомную задачу. Везде говорилось о том, что Курчатов, создатель атомной бомбы в СССР, был ее "отцом". Хотя слухи о секретах, украденных у американцев, изредка просачивались. И лишь в 1990 годах, через 50 лет, Юлий Харитон - один из главных участников событий того времени - рассказал о большой роли разведки в деле создания советского проекта. Технические и научные результаты американцев добывал Клаус Фукс, прибывший в английской группе.

Поэтому Оппенгеймера можно считать "отцом" бомб, которые были созданы по обе стороны океана. Можно сказать, что создателем первой в СССР атомной бомбы является именно он. Оба проекта, американский и русский, были основаны на его идеях. Неправильно считать Курчатова и Оппенгеймера лишь выдающимися организаторами. Про советского ученого, а также про вклад, который внес создатель первой атомной бомбы в СССР, мы уже рассказали. Главные достижения Оппенгеймера были научными. Он оказался руководителем атомного проекта именно благодаря им, как и создатель атомной бомбы в СССР.

Краткая биография Роберта Оппенгеймера

Родился этот ученый в 1904 году, 22 апреля, в Нью-Йорке. в 1925 году закончил Гарвардский университет. Стажировался будущий создатель первой атомной бомбы в течение года в Кавендишской лаборатории у Резерфорда. Через год ученый перебрался в Геттингенский университет. Здесь под руководством М. Борна он защитил докторскую диссертацию. В 1928 ученый вернулся в США. "Отец" американской атомной бомбы с 1929 по 1947 годы преподавал в двух вузах этой страны - Калифорнийском технологическом институте и Калифорнийском университете.

16 июля 1945 года было проведено успешное испытание первой бомбы в США, а вскоре после этого Оппенгеймер, вместе с другими членами созданного при президенте Трумэне Временного комитета, был вынужден выбирать объекты для будущей атомной бомбардировки. Многие из его коллег к тому времени активно выступили против применения опасного ядерного оружия, необходимости в котором не было, поскольку капитуляция Японии была предрешена. Оппенгеймер к ним не присоединился.

Объясняя свое поведение в дальнейшем, он говорил о том, что полагался на политиков и военных, которые лучше были знакомы с реальной обстановкой. В октябре 1945 года Оппенгеймер перестал быть директором Лос-Аламосской лаборатории. Он начал работу в Пристоне, возглавив местный исследовательский институт. Его слава в США, а также за пределами этой страны, достигла кульминации. Нью-Йоркские газеты о нем писали все чаще и чаще. Президент Трумэн вручил Оппенгеймеру "Медаль за заслуги", которая являлась высшим орденом в Америке.

Им было написано, кроме научных работ, несколько "Открытый разум", "Наука и обыденное познание" и другие.

Скончался этот ученый в 1967 году, 18 февраля. Оппенгеймер еще с юности был заядлым курильщиком. У него в 1965 году нашли рак гортани. В конце 1966 года, после операции, не принесшей результатов, он подвергся химио- и радиотерапии. Однако лечение эффекта не дало, и 18 февраля ученый умер.

Итак, Курчатов - "отец" атомной бомбы в СССР, Оппенгеймер - в США. Теперь вы знаете имена тех, кто первыми трудились над разработкой ядерного оружия. Ответив на вопрос: "Кого называют отцом атомной бомбы?", мы рассказали лишь о начальных этапах истории этого опасного оружия. Она продолжается до сих пор. Более того, сегодня в этой области активно ведутся новые разработки. "Отец" атомной бомбы - американец Роберт Оппенгеймер, а также русский ученый Игорь Курчатов были лишь пионерами в этом деле.

Созда́ние сове́тской а́томной бо́мбы (военная часть атомного проекта СССР) - фундаментальные исследования , разработка технологий и практическая их реализация в СССР, направленные на создание оружия массового поражения с использованием ядерной энергии . Мероприятия в немалой степени были стимулированы деятельностью в этом направлении научных учреждений и военной промышленности других стран, в первую очередь нацистской Германии и США [ ] . В 1945 году 9 августа американикие самолёты сбросили на японские города Хиросиму и Нагасаки две атомные бомбы. Почти половина мирных жителей погибли сразу при взрывах, другие тяжело болели и продолжают умирать до сих пор.

Энциклопедичный YouTube

  • 1 / 5

    В 1930-1941 годах активно проводились работы в ядерной области.

    В это десятилетие проводились фундаментальные радиохимические исследования, без которых вообще немыслимо полное понимание этих проблем, их развитие и, тем более - реализация.

    Работа в 1941-1943 годах

    Информация внешней разведки

    Уже с сентября 1941 года в СССР начала поступать разведывательная информация о проведении в Великобритании и США секретных интенсивных научно-исследовательских работ, направленных на разработку методов использования атомной энергии для военных целей и создание атомных бомб огромной разрушительной силы. Одним из наиболее важных, полученных ещё в 1941 году советской разведкой, документов является отчёт британского «Комитета MAUD ». Из материалов этого отчёта, полученного по каналам внешней разведки НКВД СССР от Дональда Маклина , следовало, что создание атомной бомбы реально, что вероятно она может быть создана ещё до окончания войны и, следовательно, может повлиять на её ход.

    Разведывательная информация о работах по проблеме атомной энергии за рубежом, имевшаяся в СССР к моменту принятия решения о возобновлении работ по урану, была получена как по каналам разведки НКВД, так и по каналам Главного разведывательного управления Генерального штаба (ГРУ) Красной армии.

    В мае 1942 года руководство ГРУ информировало Академию наук СССР о наличии сообщений о работах за рубежом по проблеме использования атомной энергии в военных целях и просило сообщить, имеет ли в настоящее время эта проблема реальную практическую основу. Ответ на указанный запрос в июне 1942 года дал В. Г. Хлопин, который отметил, что за последний год в научной литературе почти совершенно не публикуются работы, связанные с решением проблемы использования атомной энергии.

    Официальное письмо главы НКВД Л. П. Берия на имя И. В. Сталина с информацией о работах по использованию атомной энергии в военных целях за рубежом, предложениями по организации этих работ в СССР и секретном ознакомлении с материалами НКВД видных советских специалистов, варианты которого были подготовлены сотрудниками НКВД ещё в конце 1941 - начале 1942 годов, было отправлено И. В. Сталину только в октябре 1942 года, уже после принятия распоряжения ГКО о возобновлении в СССР работ по урану.

    Советская разведка имела подробные сведения о работах по созданию атомной бомбы в США , исходившие от специалистов, понимавших опасность ядерной монополии или сочувствующих СССР, в частности, Клауса Фукса , Теодора Холла , Жоржа Коваля и Давида Грингласа . Однако решающее значение, как полагают некоторые, имело адресованное Сталину в начале 1943 года письмо советского физика Г. Флёрова , который сумел разъяснить суть проблемы популярно. С другой стороны, имеются основания предполагать, что работа Г. Н. Флёрова над письмом Сталину завершена не была и отправлено оно не было.

    Охота за данными уранового проекта Америки началась по инициативе начальника отдела научно-технической разведки НКВД Леонида Квасникова еще в 1942 году, но полностью развернулась только после прибытия в Вашингтон знаменитой пары советских разведчиков: Василия Зарубина и его жены Елизаветы. Именно с ними взаимодействовал резидент НКВД в Сан-Франциско Григорий Хейфиц, сообщивший, что виднейший физик Америки Роберт Оппенгеймер и многие его коллеги выехали из Калифорнии в неизвестное место, где будут заниматься созданием какого-то сверхоружия.

    Перепроверить данные «Харона» (таким было кодовое имя Хейфица) было поручено подполковнику Семену Семенову (псевдоним «Твен»), работавшему в США с 1938 года и собравшего там большую и активную агентурную группу. Именно «Твен» подтвердил реальность работ по созданию атомной бомбы, назвал код Манхэттенского проекта и местонахождение его главного научного центра - бывшей колонии для малолетних преступников Лос-Аламос в штате Нью-Мексико. Семенов также сообщил фамилии некоторых ученых, работавших там, которые в своё время были приглашены в СССР для участия в больших сталинских стройках и которые, вернувшись в США, не потеряли связей с крайне левыми организациями.

    Таким образом и были внедрены советские агенты в научные и конструкторские центры Америки, где создавался ядерный боеприпас. Однако в самый разгар налаживания агентурных действий, Лиза и Василий Зарубины были срочно отозваны в Москву. Они терялись в догадках, ведь ни одного провала не произошло. Выяснилось, что в Центр поступил донос сотрудника резидентуры Миронова, обвинявшего Зарубиных в предательстве. И почти полгода московская контрразведка проверяла эти обвинения. Они не подтвердились, тем не менее, Зарубиных больше за границу не выпускали.

    Тем временем, работа внедренной агентуры уже принесла первые результаты - стали поступать донесения, и их надо было немедля отправлять в Москву. Эта работа была возложена на группу специальных курьеров. Самыми оперативными и не знавшими страха были супруги Коэны, Морис и Лона. После того, как Мориса призвали в американскую армию, Лона стала самостоятельно доставлять информационные материалы из штата Нью-Мексико в Нью-Йорк. Для этого она ездила в небольшой городок Альбукерке, где для видимости посещала туберкулезный диспансер. Там она встречалась с агентами по агентурной кличке «Млад» и «Эрнст».

    Однако НКВД все-таки удалось добыть несколько тонн малообогащённого урана в .

    Первоочерёдными задачами были организация промышленного производства плутония-239 и урана-235 . Для решения первой задачи было необходимо создание опытного, а затем и промышленного ядерных реакторов, строительство радиохимического и специального металлургического цехов. Для решения второй задачи было развёрнуто строительство завода по разделению изотопов урана диффузионным методом.

    Решение этих задач оказалось возможным в результате создания промышленных технологий, организации производства и наработки необходимых больших количеств чистого металлического урана, окиси урана, гексафторида урана , других соединений урана, графита высокой чистоты и целого ряда других специальных материалов, создания комплекса новых промышленных агрегатов и приборов. Недостаточный объём добычи урановой руды и получения урановых концентратов в СССР (первый комбинат по производству урановго концентрата - «Комбинат № 6 НКВД СССР » в Таджикистане был основан в 1945 г.) в этот период был компенсирован трофейным сырьём и продукцией урановых предприятий стран Восточной Европы, с которыми СССР заключил соответствующие соглашения.

    В 1945 году Правительством СССР были приняты следующие важнейшие решения:

    • о создании на базе Кировского завода (г. Ленинград) двух специальных опытно-конструкторских бюро, предназначенных для разработки оборудования, производящего обогащённый по изотопу 235 уран методом газовой диффузии;
    • о начале строительства на Среднем Урале (около посёлка Верх-Нейвинский) диффузионного завода для получения обогащённого урана-235;
    • об организации лаборатории для работ по созданию тяжеловодных реакторов на природном уране;
    • о выборе площадки и начале строительства на Южном Урале первого в стране предприятия по производству плутония-239.

    В состав предприятия на Южном Урале должны были входить:

    • уран-графитовый реактор на естественном (природном) уране (завод «А»);
    • радиохимическое производство по выделению плутония-239 из облучённого в реакторе естественного (природного) урана (завод «Б»);
    • химико-металлургическое производство по получению особо чистого металлического плутония (завод «В»).

    Участие немецких специалистов в атомном проекте

    В 1945 году из Германии в СССР были доставлены сотни немецких ученых, имевших отношение к ядерной проблеме. Большая часть (около 300 человек) их была привезена в Сухуми и тайно размещена в бывших имениях великого князя Александра Михайловича и миллионера Смецкого (санатории «Синоп» и «Агудзеры»). В СССР было вывезено оборудование из немецкого Института химии и металлургии, Физического института кайзера Вильгельма, электротехнических лабораторий Siemens, Физического института министерства почт Германии. Три из четырёх немецких циклотронов , мощные магниты, электронные микроскопы, осциллографы, трансформаторы высокого напряжения, сверхточные приборы были привезены в СССР. В ноябре 1945 г. в составе НКВД СССР было создано Управление специальных институтов (9-е управление НКВД СССР) для руководства работой по использованию немецких специалистов.

    Санаторий «Синоп» назвали «Объект „А“» - им руководил барон Манфред фон Арденне . «Агудзеры» стали «Объектом „Г“» - его возглавил Густав Герц . На объектах «А» и «Г» работали выдающиеся учёные - Николаус Риль , Макс Фольмер , который построил первую в СССР установку по производству тяжёлой воды , Петер Тиссен , конструктор никелевых фильтров для газодиффузионного разделения изотопов урана , Макс Штеенбек и Гернот Циппе , работавшие над центрифужным методом разделения и впоследствии получившие патенты на газовые центрифуги на западе. На базе объектов «А» и «Г» был позднее создан (СФТИ).

    Некоторые ведущие немецкие специалисты за эту работу были удостоены правительственных наград СССР, в том числе, Сталинской премии.

    В период 1954-1959 немецкие специалисты в разное время переезжают в ГДР (Гернот Циппе - в Австрию).

    Строительство газодиффузионного завода в Новоуральске

    В 1946 году на производственной базе завода № 261 Наркомата авиационной промышленности в Новоуральске началось сооружение газодиффузионного завода, носившего название Комбинат № 813 (завод Д-1)) и предназначенного для производства высокообогащенного урана. Завод дал первую продукцию в 1949 г.

    Строительство производства гексафторида урана в Кирово-Чепецке

    На месте выбранной строительной площадки со временем был возведён целый комплекс промышленных предприятий, зданий и сооружений, соединённых между собой сетью автомобильных и железных дорог, системой теплоэнергоснабжения, промышленного водоснабжения и канализации. В разное время секретный город назывался по-разному, но наиболее известное название - Челябинск-40 или «Сороковка». В настоящее время промышленный комплекс, который первоначально именовался комбинатом № 817, называется производственным объединением «Маяк» , а город на берегу озера Иртяш, в котором живут работники ПО «Маяк» и члены их семей, получил название Озёрск .

    В ноябре 1945 года на выбранной площадке приступили к геологическим изысканиям, а с начала декабря стали прибывать первые строители.

    Первым начальником строительства (1946-1947 гг.) был Я. Д. Раппопорт , впоследствии его сменил генерал-майор М. М. Царевский. Главным инженером строительства был В. А. Сапрыкин, первым директором будущего предприятия - П. Т. Быстров (с 17 апреля 1946 г.), которого сменил Е. П. Славский (с 10 июля 1947 г.), а затем Б. Г. Музруков (с 1 декабря 1947 г.). Научным руководителем комбината был назначен И. В. Курчатов.

    Строительство Арзамаса-16

    Продукция

    Разработка конструкции атомных бомб

    Постановлением СМ СССР № 1286-525сс «О плане развёртывания работ КБ-11 при Лаборатории № 2 АН СССР» были определены первые задачи КБ-11: создание под научным руководством Лаборатории № 2 (академика И. В. Курчатова) атомных бомб, условно названных в постановлении «реактивными двигателями С», в двух вариантах: РДС-1 - имплозивного типа с плутонием и атомной бомбы РДС-2 пушечного типа с ураном-235 .

    Тактико-технические задания на конструкции РДС-1 и РДС-2 должны были быть разработаны уже к 1 июля 1946 г., а конструкции их главных узлов - к 1 июля 1947 г. Полностью изготовленная бомба РДС-1 должна была быть предъявлена к государственным испытаниям для взрыва при установке на земле к 1 января 1948 г., в авиационном исполнении - к 1 марта 1948 г., а бомба РДС-2 - соответственно к 1 июня 1948 г. и к 1 января 1949 г. Работы по созданию конструкций должны были проводиться параллельно с организацией в КБ-11 специальных лабораторий и развёртыванием работ этих лабораторий. Такие сжатые сроки и организация параллельных работ стали возможными также благодаря поступлению в СССР некоторых разведывательных данных об американских атомных бомбах.

    Научно-исследовательские лаборатории и конструкторские подразделения КБ-11 начали разворачивать свою деятельность непосредственно в

    Тот, кто изобрёл атомную бомбу, даже не представлял себе, к каким трагическим последствиям может привести это чудо-изобретение XX столетия. Перед тем как это супероружие испытали на себе жители японских городов Хиросима и Нагасаки, был проделан очень долгий путь.

    Начало положено

    В апреле 1903 года в Парижском саду Франции Поля Ланжевена собрались его друзья. Поводом стала защита диссертации молодой и талантливой учёной Марии Кюри. Среди именитых гостей присутствовал знаменитый английский физик сэр Эрнест Резерфорд. В самый разгар веселья был потушен свет. объявила всем, что сейчас будет сюрприз. С торжественным видом Пьер Кюри внёс небольшую трубочку с солями радия, которая светила зелёным светом, вызывая необычайный восторг у присутствующих. В дальнейшем гости жарко рассуждали об будущем этого явления. Все сходились во мнении, что благодаря радию решится острая проблема нехватки энергии. Это всех вдохновляло на новые исследования и дальнейшие перспективы. Если бы тогда им сказали, что лабораторные работы с радиоактивными элементами положат начало страшному оружию XX века, неизвестно, какова бы была их реакция. Именно тогда началась история атомной бомбы, унесшей жизни сотни тысяч японских мирных жителей.

    Игра на опережение

    17 декабря 1938 года немецким учёным Отто Ганном было получено неопровержимое доказательство распада урана на более мелкие элементарные частицы. По сути, ему удалось расщепить атом. В научном мире это расценивалось как новая веха в истории человечества. Отто Ганн не разделял политические взгляды третьего Рейха. Поэтому в том же, 1938 году, учёный был вынужден переехать в Стокгольм, где совместно с Фридрихом Штрассманом продолжил свои научные изыскания. Опасаясь, что фашистская Германия первой получит страшное оружие, он пишет письмо с предупреждением об этом. Известие о возможном опережении сильно встревожило правительство США. Американцы стали действовать быстро и решительно.

    Кто создал атомную бомбу? Американский проект

    Ещё до группе многие из которых были беженцами от немецко-фашистского режима в Европе, была поручена разработка ядерного оружия. Первоначальные исследования, стоит заметить, проводились в нацистской Германии. В 1940 году правительство Соединённых Штатов Америки начало финансирование собственной программы по развитию атомного оружия. Для осуществления проекта была выделена невероятная по тем временам сумма в два с половиной миллиарда долларов. К осуществлению этого секретного проекта были приглашены выдающиеся физики XX века, среди которых было более десяти Нобелевских лауреатов. Всего же было задействовано около 130 тысяч сотрудников, среди которых были не только военные, но и гражданские лица. Коллектив разработчиков возглавил полковник Лесли Ричард Гровс, научным руководителем стал Роберт Оппенгеймер. Именно он - тот человек, кто изобрёл атомную бомбу. В районе Манхэттена был построен специальный секретный инженерный корпус, который известен нам под кодовым названием «Манхэттенский проект». В течение последующих нескольких лет учёные секретного проекта работали над проблемой ядерного расщепления урана и плутония.

    Немирный атом Игоря Курчатова

    Сегодня каждый школьник сможет ответить на вопрос о том, кто изобрёл атомную бомбу в Советском Союзе. А тогда, в начале 30-х годов прошлого столетия, этого не знал никто.

    В 1932 году академик Игорь Васильевич Курчатов одним из первых в мире начинает изучение атомного ядра. Собрав вокруг себя единомышленников, Игорь Васильевич в 1937 году создаёт первый в Европе циклотрон. В этом же году он со своими единомышленниками создаёт и первые искусственные ядра.

    В 1939 году И. В. Курчатов начинает изучение нового направления - ядерной физики. После нескольких лабораторных успехов в изучении этого явления учёный получает в своё распоряжение засекреченный исследовательский центр, который был назван "Лаборатория № 2". В наши дни этот засекреченный объект называется "Арзамас-16".

    Целевым направлением этого центра было серьёзное исследование и создание ядерного оружия. Теперь становится очевидным, кто создал атомную бомбу в Советском Союзе. В его команде тогда было всего лишь десять человек.

    Атомной бомбе быть

    Уже к концу 1945 года Игорю Васильевичу Курчатову удаётся собрать серьёзную команду учёных численностью более ста человек. Лучшие умы разных научных специализаций приехали в лабораторию со всех концов страны для создания атомного оружия. После сбрасывания американцами атомной бомбы на Хиросиму советские учёные понимали, что это можно сделать и с Советским Союзом. "Лаборатория № 2" получает от руководства страны резкое увеличение финансирования и большой приток квалифицированных кадров. Ответственным за столь важный проект назначается Лаврентий Павлович Берия. Огромные труды советских учёных дали свои плоды.

    Семипалатинский полигон

    Атомная бомба в СССР впервые была испытана на полигоне в Семипалатинске (Казахстан). 29 августа 1949 года ядерное устройство мощностью 22 килотонны сотрясло казахскую землю. Нобелевский лауреат, физик Отто Ханц, сказал: «Это хорошие вести. Если Россия будет иметь атомное оружие, тогда не будет войны». Именно эта атомная бомба в СССР, зашифрованная как изделие № 501, или РДС-1, ликвидировала монополию США на ядерное оружие.

    Атомная бомба. Год 1945-й

    Ранним утром 16 июля «Манхэттенский проект» провел свое первое успешное испытание атомного устройства - плутониевой бомбы - на полигоне Аламогордо штат Нью-Мексико США.

    Деньги, вложенные в проект, были потрачены не зря. Первый в истории человечества был произведён в 5 часов 30 минут утра.

    «Мы проделали работу дьявола»,- скажет позднее - тот, кто изобрёл атомную бомбу в США, названный впоследствии «отцом атомной бомбы».

    Япония не капитулирует

    К моменту окончательного и успешного тестирования атомной бомбы советские войска и союзники окончательно разгромили фашистскую Германию. Однако оставалось одно государство, которое пообещало бороться до конца за господство в Тихом океане. С середины апреля по середину июля 1945 года японская армия неоднократно осуществляла авиационные удары по союзническим войскам, тем самым нанося большие потери армии США. В конце июля 1945 года милитаристское правительство Японии отклонило требование союзников о капитуляции согласно Потсдамской декларации. В ней, в частности, говорилось, что в случае неповиновения японскую армию ждёт быстрое и полное уничтожение.

    Президент соглашается

    Американское правительство сдержало своё слово и начало целенаправленную бомбардировку японских военных позиций. Авиационные удары не приносили желаемого результата, и президент США Гарри Трумэн принимает решение о вторжении американских войск на территорию Японии. Однако военное командование отговаривает своего президента от такого решения, мотивируя это тем, что вторжение американцев повлечёт за собой большое количество жертв.

    По предложению Генри Льюиса Стимсона и Дуайта Дэвида Эйзенхауэра было решено применить более эффективный способ окончания войны. Большой сторонник атомной бомбы, секретарь президента США Джеймс Фрэнсис Бирнс, считал, что бомбардировка японских территорий окончательно прекратит войну и поставит США в доминирующее положение, что положительно скажется в дальнейшем ходе событий послевоенного мира. Таким образом, президента США Гарри Трумэна убедили, что это единственно правильный вариант.

    Атомная бомба. Хиросима

    В качестве первой мишени был выбран небольшой японский город Хиросима с населением чуть более 350 тысяч человек, находящийся в пятистах милях от столицы Японии Токио. После прибытия на военно-морскую базу США на острове Тиниан модифицированного бомбардировщика В-29 «Энола Гей», на борт самолёта была установлена атомная бомба. Хиросима должна была испытать на себе действие 9 тысяч фунтов урана-235.

    Это невиданное до сих пор оружие было предназначено для мирных жителей маленького японского городка. Командиром бомбардировщика был полковник Пол Уорфилд Тиббетс-младший. Атомная бомба США носила циничное название «Малыш». Утром 6 августа 1945 года, примерно в 8 часов 15 минут, американский «Малыш» был сброшен на японскую Хиросиму. Около 15 тысяч тонн тротила уничтожило всё живое в радиусе пяти квадратных миль. Сто сорок тысяч жителей города погибли в считанные секунды. Оставшиеся в живых японцы умирали мучительной смертью от лучевой болезни.

    Их уничтожил американский атомный «Малыш». Однако опустошение Хиросимы не вызвало немедленной капитуляции Японии, как этого все ожидали. Тогда было принято решение о ещё одной бомбардировке японской территории.

    Нагасаки. Небо в огне

    Американская атомная бомба «Толстяк» была установлена на борт самолёта В-29 9 августа 1945 года всё там же, на военно-морской базе США в Тиниане. На этот раз командиром воздушного судна был майор Чарльз Суини. Первоначально стратегической мишенью был город Кокура.

    Однако погодные условия не позволили осуществить задуманное, мешала большая облачность. Чарльз Суини зашёл на второй круг. В 11 часов 02 минуты американский атомный «Толстяк» поглотил Нагасаки. Это был более мощный разрушающий авиационный удар, который по своей силе, в несколько раз превышал бомбардировку в Хиросиме. Нагасаки испытал на себе атомное оружие весом около 10 тысяч фунтов и 22 килотонны тротила.

    Географическое расположение японского города уменьшило ожидаемый эффект. Всё дело в том, что город находится в узкой долине между гор. Поэтому разрушения в 2,6 квадратные мили не раскрыли весь возможный потенциал американского оружия. Испытание атомной бомбы в Нагасаки считается неудавшимся «Манхэттенским проектом».

    Япония сдалась

    В полдень 15 августа 1945 года император Хирохито объявил о капитуляции своей страны в радиообращении к жителям Японии. Эта новость быстро разлетелась по миру. В Соединённых Штатах Америки начались торжества по случаю победы над Японией. Народ ликовал.

    2 сентября 1945 года на борту американского линкора «Миссури», стоящего на якоре в Токийском заливе, было подписано официальное соглашение о прекращении войны. Таким образом закончилась самая жестокая и кровопролитная война в истории человечества.

    Долгих шесть лет мировое сообщество шло к этой знаменательной дате - с 1 сентября 1939 года, когда прозвучали первые выстрелы нацистской Германии на территории Польши.

    Мирный атом

    Всего в Советском Союзе было проведено 124 ядерных взрыва. Характерным является то, что все они были осуществлены на благо народного хозяйства. Только лишь три из них были авариями, повлекших за собой утечку радиоактивных элементов. Программы по применению мирного атома реализовывались только лишь в двух странах - США и Советском Союзе. Атомная мирная энергетика знает и пример глобальнейшей катастрофы, когда года на четвёртом энергоблоке Чернобыльской АЭС произошёл взрыв реактора.

    Мир атома настолько фантастичен, что для его понимания требуется коренная ломка привычных понятий о пространстве и времени. Атомы так малы, что если бы каплю воды можно было увеличить до размеров Земли, то каждый атом в этой капле был бы меньше апельсина. В самом деле, одна капля воды состоит из 6000 миллиардов миллиардов (6000000000000000000000) атомов водорода и кислорода. И тем не менее, несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное «солнце» - ядро атома.

    Вокруг этого атомного «солнца» вращаются крохотные «планеты» - электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной - протонов и нейтронов (они имеют объединяющее название - нуклоны). Электрон и протон - заряженные частицы, причем количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон - отрицательно. Нейтрон не несет электрического заряда и вследствие этого имеет очень большую проницаемость.

    В атомной шкале измерений масса протона и нейтрона принята за единицу. Атомный вес любого химического элемента поэтому зависит от количества протонов и нейтронов, заключенных в его ядре. Например, атом водорода, ядро которого состоит только из одного протона, имеет атомную массу равную 1. Атом гелия, с ядром из двух протонов и двух нейтронов, имеет атомную массу, равную 4.

    Ядра атомов одного и того же элемента всегда содержат одинаковое число протонов, но число нейтронов может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но отличающиеся по числу нейтронов и относящиеся к разновидностям одного и того же элемента, называются изотопами. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа.

    Может возникнуть вопрос: почему ядро атома не разваливается? Ведь входящие в него протоны - электрически заряженные частицы с одинаковым зарядом, которые должны отталкиваться друг от друга с большой силой. Объясняется это тем, что внутри ядра действуют еще и так называемые внутриядерные силы, притягивающие частицы ядра друг к другу. Эти силы компенсируют силы отталкивания протонов и не дают ядру самопроизвольно разлететься.

    Внутриядерные силы очень велики, но действуют только на очень близком расстоянии. Поэтому ядра тяжелых элементов, состоящие из сотен нуклонов, оказываются нестабильными. Частицы ядра находятся здесь в беспрерывном движении (в пределах объема ядра), и если добавить им какое-то дополнительное количество энергии, они могут преодолеть внутренние силы - ядро разделится на части. Величину этой избыточной энергии называют энергией возбуждения. Среди изотопов тяжелых элементов есть такие, которые как бы находятся на самой грани самораспада. Достаточно лишь небольшого «толчка», например, простого попадания в ядро нейтрона (причем он даже не должен разгоняться до большой скорости), чтобы пошла реакция ядерного деления. Некоторые из этих «делящихся» изотопов позже научились получать искусственно. В природе же существует только один такой изотоп - это уран-235.

    Уран был открыт в 1783 году Клапротом, который выделил его из урановой смолки и назвал в честь недавно открытой планеты Уран. Как оказалось в дальнейшем, это был, собственно, не сам уран, а его оксид. Чистый уран - металл серебристо-белого цвета - был получен
    только в 1842 году Пелиго. Новый элемент не обладал никакими замечательными свойствами и не привлекал к себе внимания вплоть до 1896 года, когда Беккерель открыл явление радиоактивности солей урана. После этого уран сделался объектом научных исследований и экспериментов, но практического применения по-прежнему не имел.

    Когда в первой трети XX века физикам более или менее стало понятно строение атомного ядра, они прежде всего попробовали осуществить давнюю мечту алхимиков - постарались превратить один химический элемент в другой. В 1934 году французские исследователи супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук о следующем опыте: при бомбардировке пластин алюминия альфа-частицами (ядрами атома гелия) атомы алюминия превращались в атомы фосфора, но не обычные, а радиоактивные, которые свою очередь переходили в устойчивый изотоп кремния. Таким образом, атом алюминия, присоединив один протон и два нейтрона, превращался в более тяжелый атом кремния.

    Этот опыт навел на мысль, что если «обстреливать» нейтронами ядра самого тяжелого из существующих в природе элементов - урана, то можно получить такой элемент, которого в естественных условиях нет. В 1938 году немецкие химики Отто Ган и Фриц Штрассман повторили в общих чертах опыт супругов Жолио-Кюри, взяв вместо алюминия уран. Результаты эксперимента оказались совсем не те, что они ожидали - вместо нового сверхтяжелого элемента с массовым числом больше, чем у урана, Ган и Штрассман получили легкие элементы из средней части периодической системы: барий, криптон, бром и некоторые другие. Сами экспериментаторы не смогли объяснить наблюдаемое явление. Только в следующем году физик Лиза Мейтнер, которой Ган сообщил о своих затруднениях, нашла правильное объяснение наблюдаемому феномену, предположив, что при обстреле урана нейтронами происходит расщепление (деление) его ядра. При этом должны были образовываться ядра более легких элементов (вот откуда брались барий, криптон и другие вещества), а также выделяться 2-3 свободных нейтрона. Дальнейшие исследования позволили детально прояснить картину происходящего.

    Природный уран состоит из смеси трех изотопов с массами 238, 234 и 235. Основное количество урана приходится на изотоп-238, в ядро которого входят 92 протона и 146 нейтронов. Уран-235 составляет всего 1/140 природного урана (0, 7% (он имеет в своем ядре 92 протона и 143 нейтрона), а уран-234 (92 протона, 142 нейтрона) лишь - 1/17500 от общей массы урана (0, 006%. Наименее стабильным из этих изотопов является уран-235.

    Время от времени ядра его атомов самопроизвольно делятся на части, вследствие чего образуются более легкие элементы периодической системы. Процесс сопровождается выделением двух или трех свободных нейтронов, которые мчатся с огромной скоростью - около 10 тыс. км/с (их называют быстрыми нейтронами). Эти нейтроны могут попадать в другие ядра урана, вызывая ядерные реакции. Каждый изотоп ведет себя в этом случае по-разному. Ядра урана-238 в большинстве случаев просто захватывают эти нейтроны без каких-либо дальнейших превращений. Но примерно в одном случае из пяти при столкновении быстрого нейтрона с ядром изотопа-238 происходит любопытная ядерная реакция: один из нейтронов урана-238 испускает электрон, превращаясь в протон, то есть изотоп урана обращается в более
    тяжелый элемент - нептуний-239 (93 протона + 146 нейтронов). Но нептуний нестабилен - через несколько минут один из его нейтронов испускает электрон, превращаясь в протон, после чего изотоп нептуния обращается в следующий по счету элемент периодической системы - плутоний-239 (94 протона + 145 нейтронов). Если же нейтрон попадает в ядро неустойчивого урана-235, то немедленно происходит деление - атомы распадаются с испусканием двух или трех нейтронов. Понятно, что в природном уране, большинство атомов которого относятся к изотопу-238, никаких видимых последствий эта реакция не имеет - все свободные нейтроны окажутся в конце концов поглощенными этим изотопом.

    Ну а если представить себе достаточно массивный кусок урана, целиком состоящий из изотопа-235?

    Здесь процесс пойдет по-другому: нейтроны, выделившиеся при делении нескольких ядер, в свою очередь, попадая в соседние ядра, вызывают их деление. В результате выделяется новая порция нейтронов, которая расщепляет следующие ядра. При благоприятных условиях эта реакция протекает лавинообразно и носит название цепной реакции. Для ее начала может быть достаточно считанного количества бомбардирующих частиц.

    Действительно, пусть уран-235 бомбардируют всего 100 нейтронов. Они разделят 100 ядер урана. При этом выделится 250 новых нейтронов второго поколения (в среднем 2, 5 за одно деление). Нейтроны второго поколения произведут уже 250 делений, при котором выделится 625 нейтронов. В следующем поколении оно станет равным 1562, затем 3906, далее 9670 и т.д. Число делений будет увеличиваться безгранично, если процесс не остановить.

    Однако реально лишь незначительная часть нейтронов попадает в ядра атомов. Остальные, стремительно промчавшись между ними, уносятся в окружающее пространство. Самоподдерживающаяся цепная реакция может возникнуть только в достаточно большом массиве урана-235, обладающим, как говорят, критической массой. (Эта масса при нормальных условиях равна 50 кг.) Важно отметить, что деление каждого ядра сопровождается выделением огромного количества энергии, которая оказывается примерно в 300 миллионов раз больше энергии, затраченной на расщепление! (Подсчитано, что при полном делении 1 кг урана-235 выделяется столько же тепла, сколько при сжигании 3 тыс. тонн угля.)

    Этот колоссальный выплеск энергии, освобождающейся в считанные мгновения, проявляет себя как взрыв чудовищной силы и лежит в основе действия ядерного оружия. Но для того чтобы это оружие стало реальностью, необходимо, чтобы заряд состоял не из природного урана, а из редкого изотопа - 235 (такой уран называют обогащенным). Позже было установлено, что чистый плутоний также является делящимся материалом и может быть использован в атомном заряде вместо урана-235.

    Все эти важные открытия были сделаны накануне Второй мировой войны. Вскоре в Германии и в других странах начались секретные работы по созданию атомной бомбы. В США этой проблемой занялись в 1941 году. Всему комплексу работ было присвоено наименование «Манхэттенского проекта».

    Административное руководство проектом осуществлял генерал Гровс, а научное - профессор Калифорнийского университета Роберт Оппенгеймер. Оба хорошо понимали огромную сложность стоящей перед ними задачи. Поэтому первой заботой Оппенгеймера стало комплектование высокоинтеллектуального научного коллектива. В США тогда было много физиков, эмигрировавших из фашистской Германии. Нелегко было привлечь их к созданию оружия, направленного против их прежней родины. Оппенгеймер лично говорил с каждым, пуская в ход всю силу своего обаяния. Вскоре ему удалось собрать небольшую группу теоретиков, которых он шутливо называл «светилами». И в самом деле, в нее входили крупнейшие специалисты того времени в области физики и химии. (Среди них 13 лауреатов Нобелевской премии, в том числе Бор, Ферми, Франк, Чедвик, Лоуренс.) Кроме них, было много других специалистов самого разного профиля.

    Правительство США не скупилось на расходы, и работы с самого начала приняли грандиозный размах. В 1942 году была основана крупнейшая в мире исследовательская лаборатория в Лос-Аламосе. Население этого научного города вскоре достигло 9 тысяч человек. По составу ученых, размаху научных экспериментов, числу привлекаемых к работе специалистов и рабочих Лос-Аламосская лаборатория не имела себе равных в мировой истории. «Манхэттенский проект» имел свою полицию, контрразведку, систему связи, склады, поселки, заводы, лаборатории, свой колоссальный бюджет.

    Главная цель проекта состояла в получении достаточного количества делящегося материала, из которого можно было бы создать несколько атомных бомб. Кроме урана-235 зарядом для бомбы, как уже говорилось, мог служить искусственный элемент плутоний-239, то есть бомба могла быть как урановой, так и плутониевой.

    Гровс и Оппенгеймер согласились, что работы должны вестись одновременно по двум направлениям, поскольку невозможно наперед решить, какое из них окажется более перспективным. Оба способа принципиально отличались друг от друга: накопление урана-235 должно было осуществляться путем его отделения от основной массы природного урана, а плутоний мог быть получен только в результате управляемой ядерной реакции при облучении нейтронами урана-238. И тот и другой путь представлялся необычайно трудным и не сулил легких решений.

    В самом деле, как можно отделить друг от друга два изотопа, которые лишь незначительно отличаются своим весом и химически ведут себя совершенно одинаково? Ни наука, ни техника никогда еще не сталкивались с такой проблемой. Производство плутония тоже поначалу казалось очень проблематичным. До этого весь опыт ядерных превращений сводился к нескольким лабораторным экспериментам. Теперь же предстояло в промышленном масштабе освоить производство килограммов плутония, разработать и создать для этого специальную установку - ядерный реактор, и научиться управлять течением ядерной реакции.

    И там и здесь предстояло разрешить целый комплекс сложных задач. Поэтому «Манхэттенский проект» состоял из нескольких подпроектов, во главе которых стояли видные ученые. Сам Оппенгеймер был главой Лос-Аламосской научной лаборатории. Лоуренс заведовал Радиационной лабораторией Калифорнийского университета. Ферми вел в Чикагском университете исследования по созданию ядерного реактора.

    Поначалу важнейшей проблемой было получение урана. До войны этот металл фактически не имел применения. Теперь, когда он потребовался сразу в огромных количествах, оказалось, что не существует промышленного способа его производства.

    Компания «Вестингауз» взялась за его разработку и быстро добилась успеха. После очистки урановой смолы (в таком виде уран встречается в природе) и получения окиси урана, ее превращали в тетрафторид (UF4), из которого путем электролиза выделялся металлический уран. Если в конце 1941 года в распоряжении американских ученых было всего несколько граммов металлического урана, то уже в ноябре 1942 года его промышленное производство на заводах фирмы «Вестингауз» достигло 6000 фунтов в месяц.

    Одновременно шла работа над созданием ядерного реактора. Процесс производства плутония фактически сводился к облучению урановых стержней нейтронами, в результате чего часть урана-238 должна была обратиться в плутоний. Источниками нейтронов при этом могли быть делящиеся атомы урана-235, рассеянные в достаточном количестве среди атомов урана-238. Но для того чтобы поддерживать постоянное воспроизводство нейтронов, должна была начаться цепная реакция деления атомов урана-235. Между тем, как уже говорилось, на каждый атом урана-235 приходилось 140 атомов урана-238. Ясно, что у разлетающихся во все стороны нейтронов было гораздо больше вероятности встретить на своем пути именно их. То есть, огромное число выделившихся нейтронов оказывалось без всякой пользы поглощенным основным изотопом. Очевидно, что при таких условиях цепная реакция идти не могла. Как же быть?

    Сначала представлялось, что без разделения двух изотопов работа реактора вообще невозможна, но вскоре было установлено одно важное обстоятельство: оказалось, что уран-235 и уран-238 восприимчивы к нейтронам разных энергий. Расщепить ядро атома урана-235 можно нейтроном сравнительно небольшой энергии, имеющим скорость около 22 м/с. Такие медленные нейтроны не захватываются ядрами урана-238 - для этого те должны иметь скорость порядка сотен тысяч метров в секунду. Другими словами уран-238 бессилен помешать началу и ходу цепной реакции в уране-235, вызванной нейтронами, замедленными до крайне малых скоростей - не более 22 м/с. Это явление было открыто итальянским физиком Ферми, который с 1938 года жил в США и руководил здесь работами по созданию первого реактора. В качестве замедлителя нейтронов Ферми решил применить графит. По его расчетам, вылетевшие из урана-235 нейтроны, пройдя через слой графита в 40 см, должны были снизить свою скорость до 22 м/с и начать самоподдерживающуюся цепную реакцию в уране-235.

    Другим замедлителем могла служить так называемая «тяжелая» вода. Поскольку атомы водорода, входящие в нее, по размерам и массе очень близки к нейтронам, они могли лучше всего замедлять их. (С быстрыми нейтронами происходит примерно то же, что с шарами: если маленький шар ударяется о большой, он откатывается назад, почти не теряя скорости, при встрече же с маленьким шаром он передает ему значительную часть своей энергии - точно так же нейтрон при упругом столкновении отскакивает от тяжелого ядра лишь незначительно замедляясь, а при столкновении с ядрами атомов водорода очень быстро теряет всю свою энергию.) Однако обычная вода не подходит для замедления, так как ее водород имеет тенденцию поглощать нейтроны. Вот почему для этой цели следует использовать дейтерий, входящий в состав «тяжелой» воды.

    В начале 1942 года под руководством Ферми в помещении теннисного корта под западными трибунами Чикагского стадиона началось строительство первого в истории ядерного реактора. Все работы ученые проводили сами. Управление реакцией можно осуществлять единственным способом - регулируя число нейтронов, участвующих в цепной реакции. Ферми предполагал добиться этого с помощью стержней, изготовленных из таких веществ, как бор и кадмий, которые сильно поглощают нейтроны. Замедлителем служили графитовые кирпичи, из которых физики возвели колоны высотой в 3 м и шириной в 1, 2 м. Между ними были установлены прямоугольные блоки с окисью урана. На всю конструкцию пошло около 46 тонн окиси урана и 385 тонн графита. Для замедления реакции служили введенные в реактор стержни из кадмия и бора.

    Если бы этого оказалось недостаточно, то для страховки на платформе, расположенной над реактором, стояли двое ученых с ведрами, наполненными раствором солей кадмия - они должны были вылить их на реактор, если бы реакция вышла из-под контроля. К счастью, этого не потребовалось. 2 декабря 1942 года Ферми приказал выдвинуть все контрольные стержни, и эксперимент начался. Через четыре минуты нейтронные счетчики стали щелкать все громче и громче. С каждой минутой интенсивность нейтронного потока становилась больше. Это говорило о том, что в реакторе идет цепная реакция. Она продолжалась в течение 28 минут. Затем Ферми дал знак, и опущенные стержни прекратили процесс. Так впервые человек освободил энергию атомного ядра и доказал, что может контролировать ее по своей воле. Теперь уже не было сомнения, что ядерное оружие - реальность.

    В 1943 году реактор Ферми демонтировали и перевезли в Арагонскую национальную лабораторию (50 км от Чикаго). Здесь был вскоре
    построен еще один ядерный реактор, в котором в качестве замедлителя использовалась тяжелая вода. Он состоял из цилиндрической алюминиевой цистерны, содержащей 6, 5 тонн тяжелой воды, в которую было вертикально погружено 120 стержней из металлического урана, заключенные в алюминиевую оболочку. Семь управляющих стержней были сделаны из кадмия. Вокруг цистерны располагался графитовый отражатель, затем экран из сплавов свинца и кадмия. Вся конструкция заключалась в бетонный панцирь с толщиной стенок около 2, 5 м.

    Эксперименты на этих опытных реакторах подтвердили возможность промышленного производства плутония.

    Главным центром «Манхэттенского проекта» вскоре стал городок Ок-Ридж в долине реки Теннеси, население которого за несколько месяцев выросло до 79 тысяч человек. Здесь в короткий срок был построен первый в истории завод по производству обогащенного урана. Тут же в 1943 году был пущен промышленный реактор, вырабатывавший плутоний. В феврале 1944 года из него ежедневно извлекали около 300 кг урана, с поверхности которого путем химического разделения получали плутоний. (Для этого плутоний сначала растворяли, а потом осаждали.) Очищенный уран после этого вновь возвращался в реактор. В том же году в бесплодной унылой пустыне на южном берегу реки Колумбия началось строительство огромного Хэнфордского завода. Здесь размещалось три мощных атомных реактора, ежедневно дававших несколько сот граммов плутония.

    Параллельно полным ходом шли исследования по разработке промышленного процесса обогащения урана.

    Рассмотрев разные варианты, Гровс и Оппенгеймер решили сосредоточить усилия на двух методах: газодиффузионном и электромагнитном.

    Газодиффузионный метод основывался на принципе, известном под названием закона Грэхэма (он был впервые сформулирован в 1829 году шотландским химиком Томасом Грэхэмом и разработан в 1896 году английским физиком Рейли). В соответствии с этим законом, если два газа, один из которых легче другого, пропускать через фильтр с ничтожно малыми отверстиями, то через него пройдет несколько больше легкого газа, чем тяжелого. В ноябре 1942 года Юри и Даннинг из Колумбийского университета создали на основе метода Рейли газодиффузионный метод разделения изотопов урана.

    Так как природный уран - твердое вещество, то его сначала превращали во фтористый уран (UF6). Затем этот газ пропускали через микроскопические - порядка тысячных долей миллиметра - отверстия в перегородке фильтра.

    Так как разница в молярных весах газов была очень мала, то за перегородкой содержание урана-235 увеличивалось всего в 1, 0002 раза.

    Для того чтобы увеличить количество урана-235 еще больше, полученную смесь снова пропускают через перегородку, и количество урана опять увеличивается в 1, 0002 раза. Таким образом, чтобы повысить содержание урана-235 до 99%, нужно было пропускать газ через 4000 фильтров. Это происходило на огромном газодиффузионном заводе в Ок-Ридж.

    В 1940 году под руководством Эрнста Лоуренса в Калифорнийском университете начались исследования по разделению изотопов урана электромагнитным методом. Необходимо было найти такие физические процессы, которые позволили бы разделять изотопы, пользуясь разностью их масс. Лоуренс предпринял попытку разделить изотопы, используя принцип масс-спектрографа - прибора, с помощью которого определяют массы атомов.

    Принцип его действия сводился к следующему: предварительно ионизированные атомы ускорялись электрическим полем, а затем пропускались через магнитное поле, в котором они описывали окружности, расположенные в плоскости, перпендикулярной направлению поля. Так как радиусы этих траекторий были пропорциональны массе, легкие ионы оказывались на окружностях меньшего радиуса, чем тяжелые. Если на пути атомов размещали ловушки, то можно было таким образом раздельно собирать различные изотопы.

    Таков был метод. В лабораторных условиях он дал неплохие результаты. Но строительство установки, на которой разделение изотопов могло бы производиться в промышленных масштабах, оказалось чрезвычайно сложным. Однако Лоуренсу в конце концов удалось преодолеть все трудности. Результатом его усилий стало появление калутрона, который был установлен на гигантском заводе в Ок-Ридже.

    Этот электромагнитный завод был построен в 1943 году и оказался едва ли не самым дорогостоящим детищем «Манхэттенского проекта». Метод Лоуренса требовал большого количества сложных, еще не разработанных устройств, связанных с высоким напряжением, высоким вакуумом и сильными магнитными полями. Масштабы затрат оказались огромны. Калутрон имел гигантский электромагнит, длина которого достигала 75 м при весе около 4000 тонн.

    На обмотки для этого электромагнита пошло несколько тысяч тонн серебряной проволоки.

    Все работы (не считая стоимости серебра на сумму 300 миллионов долларов, которое государственное казначейство предоставило только на время) обошлись в 400 миллионов долларов. Только за электроэнергию, затраченную калутроном, министерство обороны заплатило 10 миллионов. Большая часть оборудования ок-риджского завода превосходила по масштабам и точности изготовления все, что когда-либо разрабатывалось в этой области техники.

    Но все эти затраты оказались не напрасными. Издержав в общей сложности около 2 миллиардов долларов, ученые США к 1944 году создали уникальную технологию обогащения урана и производства плутония. Тем временем в Лос-Аламосской лаборатории работали над проектом самой бомбы. Принцип ее действия был в общих чертах ясен уже давно: делящееся вещество (плутоний или уран-235) следовало в момент взрыва перевести в критическое состояние (для осуществления цепной реакции масса заряда должна быть даже заметно больше критической) и облучить пучком нейтронов, что влекло за собой начало цепной реакции.

    По расчетам, критическая масса заряда превосходила 50 килограмм, но ее смогли значительно уменьшить. Вообще на величину критической массы сильно влияют несколько факторов. Чем больше поверхностная площадь заряда - тем больше нейтронов бесполезно излучается в окружающее пространство. Наименьшей площадью поверхности обладает сфера. Следовательно, сферические заряды при прочих равных условиях имеют наименьшую критическую массу. Кроме того, величина критической массы зависит от чистоты и вида делящихся материалов. Она обратно пропорциональна квадрату плотности этого материала, что позволяет, например, при увеличении плотности вдвое, уменьшить критическую массу в четыре раза. Нужную степень подкритичности можно получить, к примеру, уплотнением делящегося материала за счет взрыва заряда обычного взрывчатого вещества, выполненного в виде сферической оболочки, окружающей ядерный заряд. Критическую массу, кроме того, можно уменьшить, окружив заряд экраном, хорошо отражающим нейтроны. В качестве такого экрана могут быть использованы свинец, бериллий, вольфрам, природный уран, железо и многие другие.

    Одна из возможных конструкций атомной бомбы состоит из двух кусков урана, которые, соединяясь, образуют массу больше критической. Для того чтобы вызвать взрыв бомбы, надо как можно быстрее сблизить их. Второй метод основан на использовании сходящегося внутрь взрыва. В этом случае поток газов от обычного взрывчатого вещества направлялся на расположенный внутри делящийся материал и сжимал его до тех пор, пока он не достигал критической массы. Соединение заряда и интенсивное облучение его нейтронами, как уже говорилось, вызывает цепную реакцию, в результате которой в первую же секунду температура возрастает до 1 миллиона градусов. За это время успевало разделиться всего около 5% критической массы. Остальная часть заряда в бомбах ранней конструкции испарялась без
    всякой пользы.

    Первая в истории атомная бомба (ей было дано имя «Тринити») была собрана летом 1945 года. А 16 июня 1945 года на атомном полигоне в пустыне Аламогордо (штат Нью-Мексико) был произведен первый на Земле атомный взрыв. Бомбу поместили в центре полигона на вершине стальной 30-метровой башни. Вокруг нее на большом расстоянии размещалась регистрирующая аппаратура. В 9 км находился наблюдательный пункт, а в 16 км - командный. На всех свидетелей этого события атомный взрыв произвел потрясающее впечатление. По описанию очевидцев, было такое ощущение, будто множество солнц соединилось в одно и разом осветило полигон. Затем над равниной возник огромный огненный шар и к нему медленно и зловеще стало подниматься круглое облако пыли и света.

    Оторвавшись от земли, этот огненный шар за несколько секунд взлетел на высоту более трех километров. С каждым мгновением он разрастался в размерах, вскоре его диаметр достиг 1, 5 км, и он медленно поднялся в стратосферу. Затем огненный шар уступил место столбу клубящегося дыма, который вытянулся на высоту 12 км, приняв форму гигантского гриба. Все это сопровождалось ужасным грохотом, от которого дрожала земля. Мощность взорвавшейся бомбы превзошла все ожидания.

    Как только позволила радиационная обстановка, несколько танков «Шерман», выложенные изнутри свинцовыми плитами, ринулись в район взрыва. На одном из них находился Ферми, которому не терпелось увидеть результаты своего труда. Его глазам предстала мертвая выжженная земля, на которой в радиусе 1, 5 км было уничтожено все живое. Песок спекся в стекловидную зеленоватую корку, покрывавшую землю. В огромной воронке лежали изуродованные остатки стальной опорной башни. Сила взрыва была оценена в 20000 тонн тротила.

    Следующим шагом должно было стать боевое применение бомбы против Японии, которая после капитуляции фашистской Германии одна продолжала войну с США и их союзниками. Ракет-носителей тогда еще не было, поэтому бомбардировку предстояло осуществить с самолета. Компоненты двух бомб были с большой осторожностью доставлены крейсером «Индианаполис» на остров Тиниан, где базировалась 509-я сводная группа ВВС США. По типу заряда и конструкции эти бомбы несколько отличались друг от друга.

    Первая бомба - «Малыш» - представляла собой крупногабаритную авиационную бомбу с атомным зарядом из сильно обогащенного урана-235. Длина ее была около 3 м, диаметр - 62 см, вес - 4, 1 т.

    Вторая бомба - «Толстяк» - с зарядом плутония-239 имела яйцеобразную форму с крупногабаритным стабилизатором. Длина ее
    составляла 3, 2 м, диаметр 1, 5 м, вес - 4, 5 т.

    6 августа бомбардировщик Б-29 «Энола Гэй» полковника Тиббетса сбросил «Малыша» на крупный японский город Хиросиму. Бомба опускалась на парашюте и взорвалась, как это и было предусмотрено, на высоте 600 м от земли.

    Последствия взрыва были ужасны. Даже на самих пилотов вид уничтоженного ими в одно мгновение мирного города произвел гнетущее впечатление. Позже один из них признался, что они видели в эту секунду самое плохое, что только может увидеть человек.

    Для тех же, кто находился на земле, происходящее напоминало подлинный ад. Прежде всего, над Хиросимой прошла тепловая волна. Ее действие длилось всего несколько мгновений, но было настолько мощным, что расплавило даже черепицу и кристаллы кварца в гранитных плитах, превратило в уголь телефонные столбы на расстоянии 4 км и, наконец, настолько испепелило человеческие тела, что от них остались только тени на асфальте мостовых или на стенах домов. Затем из-под огненного шара вырвался чудовищный порыв ветра и промчался над городом со скоростью 800 км/ч, сметая все на своем пути. Не выдержавшие его яростного натиска дома рушились как подкошенные. В гигантском круге диаметром 4 км не осталось ни одного целого здания. Через несколько минут после взрыва над городом прошел черный радиоактивный дождь - это превращенная в пар влага сконденсировалась в высоких слоях атмосферы и выпала на землю в виде крупных капель, смешанных с радиоактивной пылью.

    После дождя на город обрушился новый порыв ветра, на этот раз дувший в направлении эпицентра. Он был слабее первого, но все же достаточно силен, чтобы вырывать с корнем деревья. Ветер раздул гигантский пожар, в котором горело все, что только могло гореть. Из 76 тысяч зданий полностью разрушилось и сгорело 55 тысяч. Свидетели этой ужасной катастрофы вспоминали о людях-факелах, с которых сгоревшая одежда спадала на землю вместе с лохмотьями кожи, и о толпах обезумевших людей, покрытых ужасными ожогами, которые с криком метались по улицам. В воздухе стоял удушающий смрад от горелого человеческого мяса. Всюду валялись люди, мертвые и умирающие. Было много таких, которые ослепли и оглохли и, тычась во все стороны, не могли ничего разобрать в царившем вокруг хаосе.

    Несчастные, находившиеся от эпицентра на расстоянии до 800 м, за доли секунды сгорели в буквальном смысле слова - их внутренности испарились, а тела превратились в комки дымящихся углей. Находившиеся от эпицентра на расстоянии 1 км, были поражены лучевой болезнью в крайне тяжелой форме. Уже через несколько часов у них началась сильнейшая рвота, температура подскочила до 39-40 градусов, появились одышка и кровотечения. Затем на коже высыпали незаживающие язвы, состав крови резко изменился, волосы выпали. После ужасных страданий, обычно на второй или третий день, наступала смерть.

    Всего от взрыва и лучевой болезни погибло около 240 тысяч человек. Около 160 тысяч получили лучевую болезнь в более легкой форме - их мучительная смерть оказалась отсроченной на несколько месяцев или лет. Когда известие о катастрофе распространилось по стране, вся Япония была парализована страхом. Он еще увеличился, после того как 9 августа самолет «Бокс Кар» майора Суини сбросил вторую бомбу на Нагасаки. Здесь также погибло и было ранено несколько сот тысяч жителей. Не в силах противостоять новому оружию, японское правительство капитулировало - атомная бомба положила конец Второй мировой войне.

    Война закончилась. Она продолжалась всего шесть лет, но успела изменить мир и людей почти до неузнаваемости.

    Человеческая цивилизация до 1939 года и человеческая цивилизация после 1945 года разительно не похожи друг на друга. Тому есть много причин, но одна из важнейших - появление ядерного оружия. Можно без преувеличений сказать, что тень Хиросимы лежит на всей второй половине XX века. Она стала глубоким нравственным ожогом для многих миллионов людей, как бывших современниками этой катастрофы, так и родившихся через десятилетия после нее. Современный человек уже не может думать о мире так, как думали о нем до 6 августа 1945 года - он слишком ясно понимает, что этот мир может за несколько мгновений превратиться в ничто.

    Современный человек не может смотреть на войну, так как смотрели его деды и прадеды - он достоверно знает, что эта война будет последней, и в ней не окажется ни победителей, ни побежденных. Ядерное оружие наложило свой отпечаток на все сферы общественной жизни, и современная цивилизация не может жить по тем же законам, что шестьдесят или восемьдесят лет назад. Никто не понимал этого лучше самих создателей атомной бомбы.

    «Люди нашей планеты , - писал Роберт Оппенгеймер, - должны объединиться. Ужас и разрушение, посеянные последней войной, диктуют нам эту мысль. Взрывы атомных бомб доказали ее со всей жестокостью. Другие люди в другое время уже говорили подобные слова - только о другом оружии и о других войнах. Они не добились успеха. Но тот, кто и сегодня скажет, что эти слова бесполезны, введен в заблуждение превратностями истории. Нас нельзя убедить в этом. Результаты нашего труда не оставляют человечеству другого выбора, кроме как создать объединенный мир. Мир, основанный на законности и гуманизме».

      В 30-ые годы прошлого столетия многие физики работали над созданием атомной бомбы. Официально считается, что первыми создали, испытали и использовали атомную бомбу США. Однако недавно я читала книги Ганса-Ульриха фон Кранца, исследователя тайн Третьего рейха, где он утверждает - бомбу изобрели нацисты, и первая в мире атомная бомбв была испытана ними в марте 1944 года в Беларуссии. Американцже захватили все документы об атомной бомбе, ученых и сами образцы (из было, якобы, 13). Так американцам были доступны 3 образца, а 10 - немцы перевезли на тайную базу в Антарктиде. Свое заключений Кранц подтверждает тем, что после Хиросимы и Нагасаки в США не было никаких известий об испытании бомб более 1,5 ,а после того испытания были неудачными. Такое, по его мнению, было бы невозможно, если бы бомбы создавались самими США.

      Истину мы же вряд ли узнаем.

      В одна тысяча девятьсот сороковом году Энрико Ферми закончил работать по теории под названием Цепная ядерная реакция. После этого американцы создали своего первого ядерного реактора. В одна тысяча девятьсот сорок пятом году американцы создали три атомные бомбы. Первую взорвали у себя в штате Нью-Мексико, а две последующие были сброшены на Японию.

      Вряд ли можно конкретно назвать какого-либо человека, что он является создателем атомного (ядерного) оружия. Без открытий предшественников не было бы и окончательного результата. Но, многие называют именно Отто Гана, немца по происхождения, химика-ядерщика, отцом атомной бомбы. Судя по всему именно его открытия в области расщепления ядра, совместно с Фрицем Штрассманном, можно считать основопологающими в создании ядерного оружия.

      Отцом советского оружия массового поражения принято считать Игоря Курчатова и советскую разведку и лично Клауса Фукса. Однако не стоит забывать об открытиях наших ученых в конце 30-х годдов. Работы по делению урана вели А. К. Петержак и Г. Н. Флеров.

      Атомная бомба - это продукт, который изобрели не сразу. Для того, чтобы прийти к результату, понадобились десятки лет различных исследований. До того как в 1945 году были изобретен впервые экземпляры, было проведено множество опытов и открытий. Всех ученых, которые имеют отношение к этим работам, можно причислить к создателям атомной бомбы. Бесом говорит непосредственно о команде изобретателей самой бомбы, то из была целая команда, об этом лучше почитать в Википедии.

      В создании атомная бомбы принимало участие большое количество ученых и инженеров разных отраслей. Назвать кого-то одного будет несправедливо. В материале из Википедии не упомянуты французский физик Анри Беккереля, российские ученые Пьер Кюри и его жена Мария Склодовская-Кюри, которые открыли радиоактивность урана, немецкий физик-теоретик Альберт Энштейн.

      Довольно - таки интересный вопрос.

      Почитав информацию в Интернете, я сделал выводы, что СССР и США начали работать над созданием этих бомб в один момент.

      Более подробно, думаю, вы прочитаете в статье. Там вс очень подробно написано.

      Многие открытия имеют своих родителей, а вот изобретения часто являются коллективным результатом общего дела, когда каждый вносил свой вклад. К тому же многие изобретения являются как бы продуктом своей эпохи, поэтому работа над ними ведется одновременно в разных лабораториях. так и с атомной бомбой, у не нет одно-единственного родителя.

      Довольно таки непростое задание, сложно сказать, кто именно изобрел атомную бомбу, ведь к ее появлению причастно множество ученых, которые последовательно работали над изучение радиоактивности, обогащением урана, цепной реакцией деления тяжелых ядер и т.п.. Вот основные моменты ее создания:

      К 1945 году американские ученые изобрели две атомные бомбы Малыш весила 2722 кг и была снаряжена обогащенным Ураном-235 и Толстяк с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

      На данное время абсолютно различные по величине и формам

      Работа над атомными проектами в США и СССР начались одновременно. В июле 1945 американская атомная бомба (Роберт Оппенгеймер руководитель лаборатории) была взорвана на полигоне, а затем соответственно в августе на печально известные Нагасаки и Хиросиму также были сброшены бомбы. Первое испытание советской бомбы произошло в 1949 году (руководитель проекта Игорь Курчатов), однако как говорят ее создание стало возможным благодаря отличной разведке.

      Также есть информация, что вообще создателями атомной бомбы были немцы.. Об этом можно например почитать здесь..

      Однозначного ответа на этот вопрос просто нет - над созданием смертоносного оружия, способного уничтожить планету, трудились многие талантливейшие физики и химики, имена которых перечислены вот в этой статье - как видим, изобретатель был далеко не один.