Біографії Характеристики Аналіз

Площа піфагору формули. Історія теореми Піфагора

Початковий рівень

Арифметична прогресія. Детальна теоріяз прикладами (2019)

Числова послідовність

Отже, сядемо і почнемо писати якісь числа. Наприклад:
Писати можна будь-які числа, і може бути скільки завгодно (у разі їх). Скільки б чисел ми не написали, ми завжди можемо сказати, яке з них перше, яке друге і так далі до останнього, тобто можемо їх пронумерувати. Це і є приклад числової послідовності:

Числова послідовність
Наприклад, для нашої послідовності:

Присвоєний номер характерний лише однієї числа послідовності. Іншими словами, у послідовності немає трьох других чисел. Друге число (як і число) завжди одне.
Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

У нашому випадку:

Припустимо, у нас є числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.
Наприклад:

і т.д.
Така числова послідовність називається арифметичною прогресією.
Термін «прогресія» був введений римським автором Боецієм ще в 6 столітті і розумівся на більш широкому значенніяк нескінченна числова послідовність. Назва «арифметична» було перенесено з теорії безперервних пропорцій, якими займалися давні греки.

Це числова послідовність, кожен член якої дорівнює попередньому, складеному з тим самим числом. Це число називається різницею арифметичної прогресії та позначається.

Спробуй визначити, які числові послідовності є арифметичною прогресією, а які:

a)
b)
c)
d)

Розібрався? Порівняємо наші відповіді:
Єарифметичною прогресією – b, c.
Не єарифметичною прогресією – a, d.

Повернемося до заданої прогресії() і спробуємо знайти значення її члена. Існує дваспособу його знаходження.

1. Спосіб

Ми можемо додавати до попереднього значення числа прогресії, поки не дійдемо до члена прогресії. Добре, що підсумувати нам залишилося небагато – лише три значення:

Отже, -ой член описаної арифметичної прогресії дорівнює.

2. Спосіб

А якщо нам потрібно було б знайти значення -го члена прогресії? Підсумовування зайняло б у нас не одну годину, і не факт, що ми не помилилися б при складанні чисел.
Зрозуміло, математики вигадали спосіб, у якому не потрібно додавати різницю арифметичної прогресії до попереднього значення. Придивись уважно до намальованого малюнка… Напевно, ти вже помітив якусь закономірність, а саме:

Наприклад, подивимося, з чого складається значення члена даної арифметичної прогресії:


Іншими словами:

Спробуй самостійно знайти у такий спосіб значення члена даної арифметичної прогресії.

Розрахував? Порівняй свої записи з відповіддю:

Зверніть увагу, що в тебе вийшло таке ж число, як і в попередньому способі, коли ми послідовно додавали до попереднього значення членів арифметичної прогресії.
Спробуємо «знеособити» цю формулу- Наведемо її в загальний виглядта отримаємо:

Рівняння арифметичної прогресії.

Арифметичні прогресії бувають зростаючі, а бувають спадні.

Зростаючі- прогресії, у яких кожне наступне значення членів більше попереднього.
Наприклад:

Знижені- прогресії, у яких кожне наступне значення членів менше попереднього.
Наприклад:

Виведена формула застосовується для членів як у зростаючих, і у спадних членах арифметичної прогресії.
Перевіримо це практично.
Нам дана арифметична прогресія, що складається з наступних чисел: Перевіримо, яке вийде число даної арифметичної прогресії, якщо при його розрахунку використовувати нашу формулу:


Тому що:

Таким чином, ми переконалися, що формула діє як у спадній, так і в зростаючій арифметичній прогресії.
Спробуй самостійно знайти члени цієї арифметичної прогресії.

Порівняємо отримані результати:

Властивість арифметичної прогресії

Ускладнимо завдання - виведемо властивість арифметичної прогресії.
Припустимо, нам дано таку умову:
- арифметична прогресія, знайти значення.
Легко, скажеш ти і почнеш вважати за вже відомою тобі формулою:

Нехай, а тоді:

Абсолютно вірно. Виходить ми спочатку знаходимо, потім додаємо його до першого числа і отримуємо шукане. Якщо прогресія представлена ​​невеликими значеннями, то нічого складного в цьому немає, а якщо нам за умови дані числа? Погодься, є ймовірність помилитися у обчисленнях.
А тепер подумай, чи можна вирішити це завдання в одну дію з використанням будь-якої формули? Звичайно, так, і саме її ми спробуємо зараз вивести.

Позначимо шуканий член арифметичної прогресії як формула його знаходження нам відома - це та сама формула, виведена нами на початку:
тоді:

  • попередній член прогресії це:
  • наступний член прогресії це:

Підсумуємо попередній та наступний члени прогресії:

Виходить, що сума попереднього та наступного членів прогресії – це подвоєне значення члена прогресії, що перебуває між ними. Іншими словами, знайти значення члена прогресії при відомих попередніх і послідовних значенняхнеобхідно скласти їх і розділити на.

Все вірно, ми отримали це число. Закріпимо матеріал. Вважай значення для прогресії самостійно, адже це зовсім нескладно.

Молодець! Ти знаєш про прогрес майже всі! Залишилося дізнатися тільки одну формулу, яку за легендами легко вивів для себе один з найбільших математиків усіх часів, «король математиків» - Карл Гаус...

Коли Карлу Гауссу було 9 років, вчитель, зайнятий перевіркою робіт учнів інших класів, поставив на уроці таке завдання: «Порахувати суму всіх натуральних чиселвід до (за іншими джерелами до) включно». Яке ж було здивування вчителя, коли один із його учнів (це і був Карл Гаусс) через хвилину дав правильну відповідь на поставлене завдання, при цьому більшість однокласників сміливця після довгих підрахунків отримали неправильний результат.

Юний Карл Гаусс помітив деяку закономірність, яку легко помітиш і ти.
Припустимо, у нас є арифметична прогресія, що складається з членів: Нам необхідно знайти суму даних членів арифметичної прогресії. Звичайно, ми можемо вручну підсумувати всі значення, але що робити, якщо в завданні потрібно буде знайти суму її членів, як це шукав Гаус?

Зобразимо задану нам прогресію. Придивись уважно до виділених чисел та спробуй зробити з ними різні математичні дії.


Спробував? Що ти помітив? Правильно! Їхні суми рівні


А тепер дай відповідь, скільки всього набереться таких пар у заданій нам прогресії? Звичайно, рівно половина всіх чисел, тобто.
Виходячи з того, що сума двох членів арифметичної прогресії дорівнює, а подібних рівних пар ми отримуємо, що Загальна сумадорівнює:
.
Таким чином, формула для суми перших членів будь-якої арифметичної прогресії буде такою:

У деяких завданнях нам невідомий член, але відома різниця прогресії. Спробуй підставити формулу суми, формулу -го члена.
Що в тебе вийшло?

Молодець! Тепер повернемося до завдання, яке задали Карлу Гаусс: порахуй самостійно, чому дорівнює сума чисел, починаючи від -го, і сума чисел починаючи від -го.

Скільки у тебе вийшло?
Гаус вийшло, що сума членів дорівнює, а сума членів. Чи ти так вирішував?

Насправді формула суми членів арифметичної прогресії була доведена давньогрецьким вченим Діофантом ще у 3 столітті, та й упродовж усього цього часу дотепні людищосили користувалися властивостями арифметичної прогресії.
Наприклад, уяви Стародавній Єгипеті наймасштабніше будівництво на той час - будівництво піраміди… На малюнку представлена ​​одна її сторона.

Де тут прогресія скажеш ти? Подивися уважно та знайди закономірність у кількості піщаних блоків у кожному ряді стіни піраміди.


Чим не арифметична прогресія? Порахуй, скільки всього блоків необхідно для будівництва однієї стіни, якщо в основу кладеться цегла. Сподіваюся, ти не вважатимеш, водячи пальцем по монітору, ти ж пам'ятаєш останню формулу і все, що ми говорили про арифметичну прогресію?

У даному випадкупрогресія виглядає так: .
Різниця арифметичної прогресії.
Кількість членів арифметичної прогресії.
Підставимо останні формули наші дані (порахуємо кількість блоків 2 способами).

Спосіб 1.

Спосіб 2.

А тепер можна і на моніторі порахувати: порівняй отримані значення з тією кількістю блоків, яка є в нашій піраміді. Зійшлося? Молодець, ти освоїв суму членів арифметичної прогресії.
Звичайно, з блоків у підставі піраміду не побудуєш, а от із? Спробуй розрахувати, скільки необхідно піщаної цегли, щоб побудувати стіну з такою умовою.
Впорався?
Вірна відповідь - блоків:

Тренування

Завдання:

  1. Маша приходить у форму до літа. Щодня вона збільшує кількість присідань. Скільки разів присідатиме Маша через тижні, якщо на першому тренуванні вона зробила присідань.
  2. Якою є сума всіх непарних чисел, що містяться в.
  3. Лісоруби при зберіганні колод укладають їх таким чином, що кожен верхній шар містить одну колоду менше, ніж попередній. Скільки колод знаходиться в одній кладці, якщо основою кладки є колод.

Відповіді:

  1. Визначимо параметри арифметичної прогресії. В даному випадку
    (Тижня = днів).

    Відповідь:Через два тижні Маша повинна присідати щодня.

  2. Перше непарне число, останнє число.
    Різниця арифметичної прогресії.
    Кількість непарних чисел в - половина, проте, перевіримо цей факт, використовуючи формулу знаходження члена арифметичної прогресії:

    У числах справді міститься непарних чисел.
    Наявні дані підставимо у формулу:

    Відповідь:Сума всіх непарних чисел, що містяться, дорівнює.

  3. Згадаймо завдання для піраміди. Для нашого випадку a , так як кожен верхній шар зменшується на одну колоду, то всього в купі шарів, тобто.
    Підставимо дані у формулу:

    Відповідь:У кладці знаходиться колод.

Підведемо підсумки

  1. - Чисельна послідовність, в якій різниця між сусідніми числами однакова і дорівнює. Вона буває зростаючою та спадною.
  2. Формула знаходження-го члена арифметичної прогресії записується формулою - , де - Число чисел в прогресії.
  3. Властивість членів арифметичної прогресії- де - кількість чисел у прогресії.
  4. Суму членів арифметичної прогресіїможна знайти двома способами:

    де - кількість значень.

АРИФМЕТИЧНА ПРОГРЕСІЯ. СЕРЕДНІЙ РІВЕНЬ

Числова послідовність

Давай сядемо і почнемо писати якісь числа. Наприклад:

Писати можна будь-які числа, і їх може бути скільки завгодно. Але завжди можна сказати, яке з них перше, яке друге і так далі, тобто, можемо їх пронумерувати. Це і є приклад числової послідовності.

Числова послідовність- це безліч чисел, кожному з яких можна надати унікальний номер.

Іншими словами, кожному числу можна поставити у відповідність якесь натуральне число, причому єдине. І цей номер ми не надамо більше жодному іншому числу з даної множини.

Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

Дуже зручно, якщо член послідовності можна задати який-небудь формулою. Наприклад, формула

задає послідовність:

А формула – таку послідовність:

Наприклад, арифметичною прогресією є послідовність (перший член тут дорівнює, а різниця). Або (, різниця).

Формула n-го члена

Рекурентною ми називаємо таку формулу, в якій щоб дізнатися член, потрібно знати попередній або кілька попередніх:

Щоб знайти за такою формулою, наприклад, член прогресії, нам доведеться обчислити попередні дев'ять. Наприклад, хай. Тоді:

Ну що, зрозуміло тепер якась формула?

У кожному рядку ми додаємо, помножене на якесь число. На яке? Дуже просто: це номер поточного члена мінус:

Тепер набагато зручніше, правда? Перевіряємо:

Виріши сам:

В арифметичній прогресії знайти формулу n-го члена та знайти сотий член.

Рішення:

Перший член дорівнює. А чому дорівнює різниця? А ось чому:

(Вона тому і називається різницею, що дорівнює різниці послідовних членів прогресії).

Отже, формула:

Тоді сотий член дорівнює:

Чому дорівнює сума всіх натуральних чисел від до?

За легендою, великий математикКарл Гаус, будучи 9-річним хлопчиком, порахував цю суму за кілька хвилин. Він зауважив, що сума першого та останнього числа дорівнює, сума другого та передостаннього – теж, сума третього та 3-го з кінця – теж, і так далі. Скільки всього набереться таких пар? Правильно, рівно половина кількості всіх чисел, тобто. Отже,

Загальна формула для суми перших членів будь-якої арифметичної прогресії буде такою:

Приклад:
Знайдіть суму всіх двоцифрових чиселкратних.

Рішення:

Перше таке число – це. Кожне наступне виходить додаванням до попереднього числа. Таким чином, цікаві для нас числа утворюють арифметичну прогресіюз першим членом та різницею.

Формула члена для цієї прогресії:

Скільки членів у прогресії, якщо всі вони мають бути двозначними?

Дуже легко: .

Останній член прогресії дорівнюватиме. Тоді сума:

Відповідь: .

Тепер виріши сам:

  1. Щодня спортсмен пробігає на м більше, ніж у попередній день. Скільки всього кілометрів він пробіжить за тижні, якщо першого дня він пробіг км?
  2. Велосипедист проїжджає щодня на км більше, ніж попереднього. Першого дня він проїхав км. Скільки днів йому треба їхати, щоб подолати кілометри? Скільки кілометрів він проїде за останній день шляху?
  3. Ціна холодильника в магазині щорічно зменшується на ту саму суму. Визначте, на скільки щороку зменшувалася ціна холодильника, якщо виставлений на продаж за рублів через шість років був проданий за рублів.

Відповіді:

  1. Тут найголовніше - розпізнати арифметичну прогресію та визначити її параметри. У цьому випадку (тижня = днів). Визначити потрібно суму перших членів цієї прогресії:
    .
    Відповідь:
  2. Тут дано: треба знайти.
    Очевидно, потрібно використовувати ту саму формулу суми, що й у попередньому завданні:
    .
    Підставляємо значення:

    Корінь, очевидно, не підходить, отже, відповідь.
    Порахуємо шлях, пройдений за останній день за допомогою формули члена:
    (Км).
    Відповідь:

  3. Дано: . Знайти: .
    Простіше не буває:
    (Руб).
    Відповідь:

АРИФМЕТИЧНА ПРОГРЕСІЯ. КОРОТКО ПРО ГОЛОВНЕ

Це числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.

Арифметична прогресія буває зростаючою () та спадною ().

Наприклад:

Формула знаходження n-ого члена арифметичної прогресії

записується формулою, де - кількість чисел у прогресії.

Властивість членів арифметичної прогресії

Воно дозволяє легко знайти член прогресії, якщо відомі його сусідні члени – де – кількість чисел у прогресії.

Сума членів арифметичної прогресії

Існує два способи знаходження суми:

Де – кількість значень.

Де – кількість значень.

Початковий рівень

Арифметична прогресія. Детальна теорія з прикладами (2019)

Числова послідовність

Отже, сядемо і почнемо писати якісь числа. Наприклад:
Писати можна будь-які числа, і може бути скільки завгодно (у разі їх). Скільки б чисел ми не написали, ми завжди можемо сказати, яке з них перше, яке друге і так далі до останнього, тобто можемо їх пронумерувати. Це і є приклад числової послідовності:

Числова послідовність
Наприклад, для нашої послідовності:

Присвоєний номер характерний лише однієї числа послідовності. Іншими словами, у послідовності немає трьох других чисел. Друге число (як і число) завжди одне.
Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

У нашому випадку:

Припустимо, у нас є числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.
Наприклад:

і т.д.
Така числова послідовність називається арифметичною прогресією.
Термін «прогресія» було запроваджено римським автором Боецієм ще шостому столітті і розумівся у ширшому значенні, як нескінченна числова послідовність. Назва «арифметична» було перенесено з теорії безперервних пропорцій, якими займалися давні греки.

Це числова послідовність, кожен член якої дорівнює попередньому, складеному з тим самим числом. Це число називається різницею арифметичної прогресії та позначається.

Спробуй визначити, які числові послідовності є арифметичною прогресією, а які:

a)
b)
c)
d)

Розібрався? Порівняємо наші відповіді:
Єарифметичною прогресією – b, c.
Не єарифметичною прогресією – a, d.

Повернемося до заданої прогресії () і спробуємо знайти значення її члена. Існує дваспособу його знаходження.

1. Спосіб

Ми можемо додавати до попереднього значення числа прогресії, поки не дійдемо до члена прогресії. Добре, що підсумувати нам залишилося небагато – лише три значення:

Отже, -ой член описаної арифметичної прогресії дорівнює.

2. Спосіб

А якщо нам потрібно було б знайти значення -го члена прогресії? Підсумовування зайняло б у нас не одну годину, і не факт, що ми не помилилися б при складанні чисел.
Зрозуміло, математики вигадали спосіб, у якому не потрібно додавати різницю арифметичної прогресії до попереднього значення. Придивись уважно до намальованого малюнка… Напевно, ти вже помітив якусь закономірність, а саме:

Наприклад, подивимося, з чого складається значення члена даної арифметичної прогресії:


Іншими словами:

Спробуй самостійно знайти у такий спосіб значення члена даної арифметичної прогресії.

Розрахував? Порівняй свої записи з відповіддю:

Зверніть увагу, що в тебе вийшло таке ж число, як і в попередньому способі, коли ми послідовно додавали до попереднього значення членів арифметичної прогресії.
Спробуємо «знеособити» цю формулу – наведемо її у загальний вигляд і отримаємо:

Рівняння арифметичної прогресії.

Арифметичні прогресії бувають зростаючі, а бувають спадні.

Зростаючі- прогресії, у яких кожне наступне значення членів більше попереднього.
Наприклад:

Знижені- прогресії, у яких кожне наступне значення членів менше попереднього.
Наприклад:

Виведена формула застосовується для членів як у зростаючих, і у спадних членах арифметичної прогресії.
Перевіримо це практично.
Нам дана арифметична прогресія, що складається з наступних чисел: Перевіримо, яке вийде число даної арифметичної прогресії, якщо при його розрахунку використовувати нашу формулу:


Тому що:

Таким чином, ми переконалися, що формула діє як у спадній, так і в зростаючій арифметичній прогресії.
Спробуй самостійно знайти члени цієї арифметичної прогресії.

Порівняємо отримані результати:

Властивість арифметичної прогресії

Ускладнимо завдання - виведемо властивість арифметичної прогресії.
Припустимо, нам дано таку умову:
- арифметична прогресія, знайти значення.
Легко, скажеш ти і почнеш вважати за вже відомою тобі формулою:

Нехай, а тоді:

Абсолютно вірно. Виходить ми спочатку знаходимо, потім додаємо його до першого числа і отримуємо шукане. Якщо прогресія представлена ​​невеликими значеннями, то нічого складного в цьому немає, а якщо нам за умови дані числа? Погодься, є ймовірність помилитися у обчисленнях.
А тепер подумай, чи можна вирішити це завдання в одну дію з використанням будь-якої формули? Звичайно, так, і саме її ми спробуємо зараз вивести.

Позначимо шуканий член арифметичної прогресії як формула його знаходження нам відома - це та сама формула, виведена нами на початку:
тоді:

  • попередній член прогресії це:
  • наступний член прогресії це:

Підсумуємо попередній та наступний члени прогресії:

Виходить, що сума попереднього та наступного членів прогресії – це подвоєне значення члена прогресії, що перебуває між ними. Іншими словами, щоб знайти значення члена прогресії при відомих попередніх та послідовних значеннях, необхідно скласти їх та розділити на.

Все вірно, ми отримали це число. Закріпимо матеріал. Вважай значення для прогресії самостійно, адже це зовсім нескладно.

Молодець! Ти знаєш про прогрес майже всі! Залишилося дізнатися тільки одну формулу, яку за легендами легко вивів для себе один з найбільших математиків усіх часів, «король математиків» - Карл Гаус...

Коли Карлу Гауссу було 9 років, учитель, зайнятий перевіркою робіт учнів інших класів, поставив на уроці таке завдання: «Порахувати суму всіх натуральних чисел від до (за іншими джерелами до) включно». Яке ж було здивування вчителя, коли один із його учнів (це і був Карл Гаусс) через хвилину дав правильну відповідь на поставлене завдання, при цьому більшість однокласників сміливця після довгих підрахунків отримали неправильний результат.

Юний Карл Гаусс помітив деяку закономірність, яку легко помітиш і ти.
Припустимо, у нас є арифметична прогресія, що складається з членів: Нам необхідно знайти суму даних членів арифметичної прогресії. Звичайно, ми можемо вручну підсумувати всі значення, але що робити, якщо в завданні потрібно буде знайти суму її членів, як це шукав Гаус?

Зобразимо задану нам прогресію. Придивись уважно до виділених чисел та спробуй зробити з ними різні математичні дії.


Спробував? Що ти помітив? Правильно! Їхні суми рівні


А тепер дай відповідь, скільки всього набереться таких пар у заданій нам прогресії? Звичайно, рівно половина всіх чисел, тобто.
Виходячи з того, що сума двох членів арифметичної прогресії дорівнює, а подібних рівних пар ми отримуємо, що загальна сума дорівнює:
.
Таким чином, формула для суми перших членів будь-якої арифметичної прогресії буде такою:

У деяких завданнях нам невідомий член, але відома різниця прогресії. Спробуй підставити формулу суми, формулу -го члена.
Що в тебе вийшло?

Молодець! Тепер повернемося до завдання, яке задали Карлу Гаусс: порахуй самостійно, чому дорівнює сума чисел, починаючи від -го, і сума чисел починаючи від -го.

Скільки у тебе вийшло?
Гаус вийшло, що сума членів дорівнює, а сума членів. Чи ти так вирішував?

Насправді формула суми членів арифметичної прогресії була доведена давньогрецьким вченим Діофантом ще в 3 столітті, та й протягом усього цього часу дотепні люди користувалися властивостями арифметичної прогресії.
Наприклад, уяви Стародавній Єгипет і наймасштабніше будівництво того часу - будівництво піраміди ... На малюнку представлена ​​одна її сторона.

Де тут прогресія скажеш ти? Подивися уважно та знайди закономірність у кількості піщаних блоків у кожному ряді стіни піраміди.


Чим не арифметична прогресія? Порахуй, скільки всього блоків необхідно для будівництва однієї стіни, якщо в основу кладеться цегла. Сподіваюся, ти не вважатимеш, водячи пальцем по монітору, ти ж пам'ятаєш останню формулу і все, що ми говорили про арифметичну прогресію?

У разі прогресія виглядає так: .
Різниця арифметичної прогресії.
Кількість членів арифметичної прогресії.
Підставимо останні формули наші дані (порахуємо кількість блоків 2 способами).

Спосіб 1.

Спосіб 2.

А тепер можна і на моніторі порахувати: порівняй отримані значення з тією кількістю блоків, яка є в нашій піраміді. Зійшлося? Молодець, ти освоїв суму членів арифметичної прогресії.
Звичайно, з блоків у підставі піраміду не побудуєш, а от із? Спробуй розрахувати, скільки необхідно піщаної цегли, щоб побудувати стіну з такою умовою.
Впорався?
Вірна відповідь - блоків:

Тренування

Завдання:

  1. Маша приходить у форму до літа. Щодня вона збільшує кількість присідань. Скільки разів присідатиме Маша через тижні, якщо на першому тренуванні вона зробила присідань.
  2. Якою є сума всіх непарних чисел, що містяться в.
  3. Лісоруби при зберіганні колод укладають їх таким чином, що кожен верхній шар містить одну колоду менше, ніж попередній. Скільки колод знаходиться в одній кладці, якщо основою кладки є колод.

Відповіді:

  1. Визначимо параметри арифметичної прогресії. В даному випадку
    (Тижня = днів).

    Відповідь:Через два тижні Маша повинна присідати щодня.

  2. Перше непарне число, останнє число.
    Різниця арифметичної прогресії.
    Кількість непарних чисел в - половина, проте, перевіримо цей факт, використовуючи формулу знаходження члена арифметичної прогресії:

    У числах справді міститься непарних чисел.
    Наявні дані підставимо у формулу:

    Відповідь:Сума всіх непарних чисел, що містяться, дорівнює.

  3. Згадаймо завдання для піраміди. Для нашого випадку a , так як кожен верхній шар зменшується на одну колоду, то всього в купі шарів, тобто.
    Підставимо дані у формулу:

    Відповідь:У кладці знаходиться колод.

Підведемо підсумки

  1. - Чисельна послідовність, в якій різниця між сусідніми числами однакова і дорівнює. Вона буває зростаючою та спадною.
  2. Формула знаходження-го члена арифметичної прогресії записується формулою - , де - Число чисел в прогресії.
  3. Властивість членів арифметичної прогресії- де - кількість чисел у прогресії.
  4. Суму членів арифметичної прогресіїможна знайти двома способами:

    де - кількість значень.

АРИФМЕТИЧНА ПРОГРЕСІЯ. СЕРЕДНІЙ РІВЕНЬ

Числова послідовність

Давай сядемо і почнемо писати якісь числа. Наприклад:

Писати можна будь-які числа, і їх може бути скільки завгодно. Але завжди можна сказати, яке з них перше, яке друге і так далі, тобто, можемо їх пронумерувати. Це і є приклад числової послідовності.

Числова послідовність- це безліч чисел, кожному з яких можна надати унікальний номер.

Іншими словами, кожному числу можна поставити у відповідність якесь натуральне число, причому єдине. І цей номер ми не надамо більше жодному іншому числу з даної множини.

Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

Дуже зручно, якщо член послідовності можна задати який-небудь формулою. Наприклад, формула

задає послідовність:

А формула – таку послідовність:

Наприклад, арифметичною прогресією є послідовність (перший член тут дорівнює, а різниця). Або (, різниця).

Формула n-го члена

Рекурентною ми називаємо таку формулу, в якій щоб дізнатися член, потрібно знати попередній або кілька попередніх:

Щоб знайти за такою формулою, наприклад, член прогресії, нам доведеться обчислити попередні дев'ять. Наприклад, хай. Тоді:

Ну що, зрозуміло тепер якась формула?

У кожному рядку ми додаємо, помножене на якесь число. На яке? Дуже просто: це номер поточного члена мінус:

Тепер набагато зручніше, правда? Перевіряємо:

Виріши сам:

В арифметичній прогресії знайти формулу n-го члена та знайти сотий член.

Рішення:

Перший член дорівнює. А чому дорівнює різниця? А ось чому:

(Вона тому і називається різницею, що дорівнює різниці послідовних членів прогресії).

Отже, формула:

Тоді сотий член дорівнює:

Чому дорівнює сума всіх натуральних чисел від до?

За легендою великий математик Карл Гаусс, будучи 9-річним хлопчиком, порахував цю суму за кілька хвилин. Він зауважив, що сума першого та останнього числа дорівнює, сума другого та передостаннього – теж, сума третього та 3-го з кінця – теж, і так далі. Скільки всього набереться таких пар? Правильно, рівно половина кількості всіх чисел, тобто. Отже,

Загальна формула для суми перших членів будь-якої арифметичної прогресії буде такою:

Приклад:
Знайдіть суму всіх двоцифрових чисел, кратних.

Рішення:

Перше таке число – це. Кожне наступне виходить додаванням до попереднього числа. Таким чином, цікаві для нас числа утворюють арифметичну прогресію з першим членом і різницею.

Формула члена для цієї прогресії:

Скільки членів у прогресії, якщо всі вони мають бути двозначними?

Дуже легко: .

Останній член прогресії дорівнюватиме. Тоді сума:

Відповідь: .

Тепер виріши сам:

  1. Щодня спортсмен пробігає на м більше, ніж у попередній день. Скільки всього кілометрів він пробіжить за тижні, якщо першого дня він пробіг км?
  2. Велосипедист проїжджає щодня на км більше, ніж попереднього. Першого дня він проїхав км. Скільки днів йому треба їхати, щоб подолати кілометри? Скільки кілометрів він проїде за останній день шляху?
  3. Ціна холодильника в магазині щорічно зменшується на ту саму суму. Визначте, на скільки щороку зменшувалася ціна холодильника, якщо виставлений на продаж за рублів через шість років був проданий за рублів.

Відповіді:

  1. Тут найголовніше - розпізнати арифметичну прогресію та визначити її параметри. У цьому випадку (тижня = днів). Визначити потрібно суму перших членів цієї прогресії:
    .
    Відповідь:
  2. Тут дано: треба знайти.
    Очевидно, потрібно використовувати ту саму формулу суми, що й у попередньому завданні:
    .
    Підставляємо значення:

    Корінь, очевидно, не підходить, отже, відповідь.
    Порахуємо шлях, пройдений за останній день за допомогою формули члена:
    (Км).
    Відповідь:

  3. Дано: . Знайти: .
    Простіше не буває:
    (Руб).
    Відповідь:

АРИФМЕТИЧНА ПРОГРЕСІЯ. КОРОТКО ПРО ГОЛОВНЕ

Це числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.

Арифметична прогресія буває зростаючою () та спадною ().

Наприклад:

Формула знаходження n-ого члена арифметичної прогресії

записується формулою, де - кількість чисел у прогресії.

Властивість членів арифметичної прогресії

Воно дозволяє легко знайти член прогресії, якщо відомі його сусідні члени – де – кількість чисел у прогресії.

Сума членів арифметичної прогресії

Існує два способи знаходження суми:

Де – кількість значень.

Де – кількість значень.

Тип уроку:Вивчення нового матеріалу.

Цілі уроку:

  • розширення та поглиблення уявлень учнів про завдання, які вирішуються з використанням арифметичної прогресії; організація пошукової діяльності учнів під час виведення формули суми перших n членів арифметичної прогресії;
  • розвиток умінь самостійно здобувати нові знання, використовувати для досягнення поставленого завдання вже отримані знання;
  • вироблення бажання та потреби узагальнювати отримані факти, розвиток самостійності.

Завдання:

  • узагальнити та систематизувати наявні знання на тему “Арифметична прогресія”;
  • вивести формули для обчислення суми n перших членів арифметичної прогресії;
  • навчити застосовувати отримані формули під час вирішення різних завдань;
  • звернути увагу учнів на порядок дій при знаходженні значення числового виразу.

Обладнання:

  • картки із завданнями для роботи в групах та парах;
  • оціночний лист;
  • презентація"Арифметична прогресія".

I. Актуалізація опорних знань.

1. Самостійна роботау парах.

1-й варіант:

Дайте визначення арифметичної прогресії. Запишіть рекурентну формулу, за допомогою якої задається арифметична прогресія Привіт приклад арифметичної прогресії та вкажіть її різницю.

2-й варіант:

Запишіть формулу n члена арифметичної прогресії. Знайдіть 100-й член арифметичної прогресії ( a n}: 2, 5, 8 …
У цей час два учні на зворотній сторонідошки готують відповіді на ці питання.
Учні оцінюють роботу партнера, звіряючи з дошкою. (Листочки з відповідями здають).

2. Ігровий момент.

Завдання 1.

Вчитель.Я задумала деяку арифметичну прогресію. Поставте мені лише два питання, щоб після відповідей ви швидко змогли б назвати 7-й член цієї прогресії. (1, 3, 5, 7, 9, 11, 13, 15…)

Запитання учнів.

  1. Чому дорівнює шостий член прогресії і чому дорівнює різниця?
  2. Чому дорівнює восьмий член прогресії і чому дорівнює різниця?

Якщо питань більше не піде, то вчитель може стимулювати їх - "заборона" на d (різницю), тобто не дозволяється запитувати чому дорівнює різниця. Можна поставити запитання: чому дорівнює 6-й член прогресії та чому дорівнює 8-й член прогресії?

Завдання 2.

На дошці записано 20 чисел: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Вчитель стоїть спиною до дошки. Учні називають номер числа, а вчитель миттєво називає саме число. Поясніть, як це мені вдається?

Вчитель пам'ятає формулу n-го члена a n = 3n - 2і, підставляючи значення n, знаходить відповідні значення a n.

ІІ. Постановка навчальної задачі.

Пропоную вирішити старовинне завдання, що відноситься до II тисячоліття до нашої ери, знайдену в єгипетських папірусах.

Завдання:“Нехай тобі сказано: розділи 10 заходів ячменю між 10 людьми, різниця між кожною людиною та її сусідом дорівнює 1/8 міри”.

  • Як це завдання пов'язані з темою арифметична прогресія? (Кожен наступний отримує на 1/8 міри більше, значить різницю d=1/8, 10 чоловік, отже n=10.)
  • А що, на вашу думку, означає число 10 заходів? (Сума всіх членів прогресії.)
  • Що ще необхідно знати, щоб було легко та просто розділити ячмінь згідно з умовою завдання? (Перший член прогресії.)

Завдання уроку- Отримання залежності суми членів прогресії від їх числа, першого члена і різниці, і перевірка того, чи правильно в давнину вирішували поставлене завдання.

Перш ніж зробити висновок формули, подивимося, як вирішували завдання давні єгиптяни.

А вирішували її так:

1) 10 мір: 10 = 1 міра – середня частка;
2) 1 міра ∙ = 2 заходи – подвоєна середнячастка.
Подвоєна середнячастка – це сума часток 5-го та 6-го чоловік.
3) 2 заходи – 1/8 міри = 1 7/8 міри – подвоєна частка п'ятої людини.
4) 1 7/8: 2 = 5/16 - частка п'ятого; і так далі можна знайти частку кожної попередньої та наступної людини.

Отримаємо послідовність:

ІІІ. Розв'язання поставленого завдання.

1. Робота у групах

Перша група:Знайти суму 20 послідовних натуральних чисел: S 20 =(20+1)∙10 =210.

Загалом

Друга група:Знайти суму натуральних чисел від 1 до 100 (Легенда про маленького Гаусса).

S 100 = (1+100) ∙ 50 = 5050

Висновок:

ІІІ-я група:Знайти суму натуральних чисел від 1 до 21.

Рішення: 1+21=2+20=3+19=4+18…

Висновок:

IV-я група:Знайти суму натуральних чисел від 1 до 101.

Висновок:

Цей спосіб вирішення розглянутих завдань називається “Метод Гаусса”.

2. Кожна група представляє розв'язання задачі на дошці.

3. Узагальнення запропонованих рішень для довільної арифметичної прогресії:

a 1 , a 2 , a 3 , ..., a n-2, a n-1, a n.
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + an-2 + an-1 + an .

Знайдемо цю суму розмірковуючи аналогічно:

4. Вирішили ми поставлене завдання?(Так.)

IV. Первинне осмислення та застосування отриманих формул під час вирішення завдань.

1. Перевірка розв'язання старовинної задачі за формулою.

2. Застосування формули під час вирішення різних задач.

3. Вправи формування вміння застосування формули під час вирішення задач.

А) №613

Дано: ( а n) -арифметична прогресія;

(а n): 1, 2, 3, …, 1500

Знайти: S 1500

Рішення: , а 1 = 1, а 1500 = 1500,

Б) Дано: ( а n) -арифметична прогресія;
(а n): 1, 2, 3, …
S n = 210

Знайти: n
Рішення:

V. Самостійна робота із взаємоперевіркою.

Денис вступив на роботу кур'єром. У перший місяць його зарплата становила 200 рублів, кожен наступний вона підвищувалася на 30 рублів. Скільки всього він заробив за рік?

Дано: ( а n) -арифметична прогресія;
а 1 = 200, d = 30, n = 12
Знайти: S 12
Рішення:

Відповідь: 4380 рублів отримав Денис протягом року.

VI. Інструктаж за домашнім завданням.

  1. п. 4.3 - вивчити висновок формули.
  2. №№ 585, 623 .
  3. Скласти завдання, яке вирішувалося б з використанням формули суми n перших членів арифметичної прогресії.

VII. Підбиття підсумків уроку.

1. Оціночний лист

2. Продовжи пропозиції

  • Сьогодні на уроці я дізнався…
  • Вивчені формули …
  • Я вважаю що …

3. Чи зможеш знайти суму чисел від 1 до 500? Яким методом вирішуватимеш це завдання?

Список літератури.

1. Алгебра, 9-й клас. Підручник для загальноосвітніх установ. За ред. Г.В. Дорофєєва.М.: "Освіта", 2009.

Початковий рівень

Арифметична прогресія. Детальна теорія з прикладами (2019)

Числова послідовність

Отже, сядемо і почнемо писати якісь числа. Наприклад:
Писати можна будь-які числа, і може бути скільки завгодно (у разі їх). Скільки б чисел ми не написали, ми завжди можемо сказати, яке з них перше, яке друге і так далі до останнього, тобто можемо їх пронумерувати. Це і є приклад числової послідовності:

Числова послідовність
Наприклад, для нашої послідовності:

Присвоєний номер характерний лише однієї числа послідовності. Іншими словами, у послідовності немає трьох других чисел. Друге число (як і число) завжди одне.
Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

У нашому випадку:

Припустимо, у нас є числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.
Наприклад:

і т.д.
Така числова послідовність називається арифметичною прогресією.
Термін «прогресія» було запроваджено римським автором Боецієм ще шостому столітті і розумівся у ширшому значенні, як нескінченна числова послідовність. Назва «арифметична» було перенесено з теорії безперервних пропорцій, якими займалися давні греки.

Це числова послідовність, кожен член якої дорівнює попередньому, складеному з тим самим числом. Це число називається різницею арифметичної прогресії та позначається.

Спробуй визначити, які числові послідовності є арифметичною прогресією, а які:

a)
b)
c)
d)

Розібрався? Порівняємо наші відповіді:
Єарифметичною прогресією – b, c.
Не єарифметичною прогресією – a, d.

Повернемося до заданої прогресії () і спробуємо знайти значення її члена. Існує дваспособу його знаходження.

1. Спосіб

Ми можемо додавати до попереднього значення числа прогресії, поки не дійдемо до члена прогресії. Добре, що підсумувати нам залишилося небагато – лише три значення:

Отже, -ой член описаної арифметичної прогресії дорівнює.

2. Спосіб

А якщо нам потрібно було б знайти значення -го члена прогресії? Підсумовування зайняло б у нас не одну годину, і не факт, що ми не помилилися б при складанні чисел.
Зрозуміло, математики вигадали спосіб, у якому не потрібно додавати різницю арифметичної прогресії до попереднього значення. Придивись уважно до намальованого малюнка… Напевно, ти вже помітив якусь закономірність, а саме:

Наприклад, подивимося, з чого складається значення члена даної арифметичної прогресії:


Іншими словами:

Спробуй самостійно знайти у такий спосіб значення члена даної арифметичної прогресії.

Розрахував? Порівняй свої записи з відповіддю:

Зверніть увагу, що в тебе вийшло таке ж число, як і в попередньому способі, коли ми послідовно додавали до попереднього значення членів арифметичної прогресії.
Спробуємо «знеособити» цю формулу – наведемо її у загальний вигляд і отримаємо:

Рівняння арифметичної прогресії.

Арифметичні прогресії бувають зростаючі, а бувають спадні.

Зростаючі- прогресії, у яких кожне наступне значення членів більше попереднього.
Наприклад:

Знижені- прогресії, у яких кожне наступне значення членів менше попереднього.
Наприклад:

Виведена формула застосовується для членів як у зростаючих, і у спадних членах арифметичної прогресії.
Перевіримо це практично.
Нам дана арифметична прогресія, що складається з наступних чисел: Перевіримо, яке вийде число даної арифметичної прогресії, якщо при його розрахунку використовувати нашу формулу:


Тому що:

Таким чином, ми переконалися, що формула діє як у спадній, так і в зростаючій арифметичній прогресії.
Спробуй самостійно знайти члени цієї арифметичної прогресії.

Порівняємо отримані результати:

Властивість арифметичної прогресії

Ускладнимо завдання - виведемо властивість арифметичної прогресії.
Припустимо, нам дано таку умову:
- арифметична прогресія, знайти значення.
Легко, скажеш ти і почнеш вважати за вже відомою тобі формулою:

Нехай, а тоді:

Абсолютно вірно. Виходить ми спочатку знаходимо, потім додаємо його до першого числа і отримуємо шукане. Якщо прогресія представлена ​​невеликими значеннями, то нічого складного в цьому немає, а якщо нам за умови дані числа? Погодься, є ймовірність помилитися у обчисленнях.
А тепер подумай, чи можна вирішити це завдання в одну дію з використанням будь-якої формули? Звичайно, так, і саме її ми спробуємо зараз вивести.

Позначимо шуканий член арифметичної прогресії як формула його знаходження нам відома - це та сама формула, виведена нами на початку:
тоді:

  • попередній член прогресії це:
  • наступний член прогресії це:

Підсумуємо попередній та наступний члени прогресії:

Виходить, що сума попереднього та наступного членів прогресії – це подвоєне значення члена прогресії, що перебуває між ними. Іншими словами, щоб знайти значення члена прогресії при відомих попередніх та послідовних значеннях, необхідно скласти їх та розділити на.

Все вірно, ми отримали це число. Закріпимо матеріал. Вважай значення для прогресії самостійно, адже це зовсім нескладно.

Молодець! Ти знаєш про прогрес майже всі! Залишилося дізнатися тільки одну формулу, яку за легендами легко вивів для себе один з найбільших математиків усіх часів, «король математиків» - Карл Гаус...

Коли Карлу Гауссу було 9 років, учитель, зайнятий перевіркою робіт учнів інших класів, поставив на уроці таке завдання: «Порахувати суму всіх натуральних чисел від до (за іншими джерелами до) включно». Яке ж було здивування вчителя, коли один із його учнів (це і був Карл Гаусс) через хвилину дав правильну відповідь на поставлене завдання, при цьому більшість однокласників сміливця після довгих підрахунків отримали неправильний результат.

Юний Карл Гаусс помітив деяку закономірність, яку легко помітиш і ти.
Припустимо, у нас є арифметична прогресія, що складається з членів: Нам необхідно знайти суму даних членів арифметичної прогресії. Звичайно, ми можемо вручну підсумувати всі значення, але що робити, якщо в завданні потрібно буде знайти суму її членів, як це шукав Гаус?

Зобразимо задану нам прогресію. Придивись уважно до виділених чисел та спробуй зробити з ними різні математичні дії.


Спробував? Що ти помітив? Правильно! Їхні суми рівні


А тепер дай відповідь, скільки всього набереться таких пар у заданій нам прогресії? Звичайно, рівно половина всіх чисел, тобто.
Виходячи з того, що сума двох членів арифметичної прогресії дорівнює, а подібних рівних пар ми отримуємо, що загальна сума дорівнює:
.
Таким чином, формула для суми перших членів будь-якої арифметичної прогресії буде такою:

У деяких завданнях нам невідомий член, але відома різниця прогресії. Спробуй підставити формулу суми, формулу -го члена.
Що в тебе вийшло?

Молодець! Тепер повернемося до завдання, яке задали Карлу Гаусс: порахуй самостійно, чому дорівнює сума чисел, починаючи від -го, і сума чисел починаючи від -го.

Скільки у тебе вийшло?
Гаус вийшло, що сума членів дорівнює, а сума членів. Чи ти так вирішував?

Насправді формула суми членів арифметичної прогресії була доведена давньогрецьким вченим Діофантом ще в 3 столітті, та й протягом усього цього часу дотепні люди користувалися властивостями арифметичної прогресії.
Наприклад, уяви Стародавній Єгипет і наймасштабніше будівництво того часу - будівництво піраміди ... На малюнку представлена ​​одна її сторона.

Де тут прогресія скажеш ти? Подивися уважно та знайди закономірність у кількості піщаних блоків у кожному ряді стіни піраміди.


Чим не арифметична прогресія? Порахуй, скільки всього блоків необхідно для будівництва однієї стіни, якщо в основу кладеться цегла. Сподіваюся, ти не вважатимеш, водячи пальцем по монітору, ти ж пам'ятаєш останню формулу і все, що ми говорили про арифметичну прогресію?

У разі прогресія виглядає так: .
Різниця арифметичної прогресії.
Кількість членів арифметичної прогресії.
Підставимо останні формули наші дані (порахуємо кількість блоків 2 способами).

Спосіб 1.

Спосіб 2.

А тепер можна і на моніторі порахувати: порівняй отримані значення з тією кількістю блоків, яка є в нашій піраміді. Зійшлося? Молодець, ти освоїв суму членів арифметичної прогресії.
Звичайно, з блоків у підставі піраміду не побудуєш, а от із? Спробуй розрахувати, скільки необхідно піщаної цегли, щоб побудувати стіну з такою умовою.
Впорався?
Вірна відповідь - блоків:

Тренування

Завдання:

  1. Маша приходить у форму до літа. Щодня вона збільшує кількість присідань. Скільки разів присідатиме Маша через тижні, якщо на першому тренуванні вона зробила присідань.
  2. Якою є сума всіх непарних чисел, що містяться в.
  3. Лісоруби при зберіганні колод укладають їх таким чином, що кожен верхній шар містить одну колоду менше, ніж попередній. Скільки колод знаходиться в одній кладці, якщо основою кладки є колод.

Відповіді:

  1. Визначимо параметри арифметичної прогресії. В даному випадку
    (Тижня = днів).

    Відповідь:Через два тижні Маша повинна присідати щодня.

  2. Перше непарне число, останнє число.
    Різниця арифметичної прогресії.
    Кількість непарних чисел в - половина, проте, перевіримо цей факт, використовуючи формулу знаходження члена арифметичної прогресії:

    У числах справді міститься непарних чисел.
    Наявні дані підставимо у формулу:

    Відповідь:Сума всіх непарних чисел, що містяться, дорівнює.

  3. Згадаймо завдання для піраміди. Для нашого випадку a , так як кожен верхній шар зменшується на одну колоду, то всього в купі шарів, тобто.
    Підставимо дані у формулу:

    Відповідь:У кладці знаходиться колод.

Підведемо підсумки

  1. - Чисельна послідовність, в якій різниця між сусідніми числами однакова і дорівнює. Вона буває зростаючою та спадною.
  2. Формула знаходження-го члена арифметичної прогресії записується формулою - , де - Число чисел в прогресії.
  3. Властивість членів арифметичної прогресії- де - кількість чисел у прогресії.
  4. Суму членів арифметичної прогресіїможна знайти двома способами:

    де - кількість значень.

АРИФМЕТИЧНА ПРОГРЕСІЯ. СЕРЕДНІЙ РІВЕНЬ

Числова послідовність

Давай сядемо і почнемо писати якісь числа. Наприклад:

Писати можна будь-які числа, і їх може бути скільки завгодно. Але завжди можна сказати, яке з них перше, яке друге і так далі, тобто, можемо їх пронумерувати. Це і є приклад числової послідовності.

Числова послідовність- це безліч чисел, кожному з яких можна надати унікальний номер.

Іншими словами, кожному числу можна поставити у відповідність якесь натуральне число, причому єдине. І цей номер ми не надамо більше жодному іншому числу з даної множини.

Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

Дуже зручно, якщо член послідовності можна задати який-небудь формулою. Наприклад, формула

задає послідовність:

А формула – таку послідовність:

Наприклад, арифметичною прогресією є послідовність (перший член тут дорівнює, а різниця). Або (, різниця).

Формула n-го члена

Рекурентною ми називаємо таку формулу, в якій щоб дізнатися член, потрібно знати попередній або кілька попередніх:

Щоб знайти за такою формулою, наприклад, член прогресії, нам доведеться обчислити попередні дев'ять. Наприклад, хай. Тоді:

Ну що, зрозуміло тепер якась формула?

У кожному рядку ми додаємо, помножене на якесь число. На яке? Дуже просто: це номер поточного члена мінус:

Тепер набагато зручніше, правда? Перевіряємо:

Виріши сам:

В арифметичній прогресії знайти формулу n-го члена та знайти сотий член.

Рішення:

Перший член дорівнює. А чому дорівнює різниця? А ось чому:

(Вона тому і називається різницею, що дорівнює різниці послідовних членів прогресії).

Отже, формула:

Тоді сотий член дорівнює:

Чому дорівнює сума всіх натуральних чисел від до?

За легендою великий математик Карл Гаусс, будучи 9-річним хлопчиком, порахував цю суму за кілька хвилин. Він зауважив, що сума першого та останнього числа дорівнює, сума другого та передостаннього – теж, сума третього та 3-го з кінця – теж, і так далі. Скільки всього набереться таких пар? Правильно, рівно половина кількості всіх чисел, тобто. Отже,

Загальна формула для суми перших членів будь-якої арифметичної прогресії буде такою:

Приклад:
Знайдіть суму всіх двоцифрових чисел, кратних.

Рішення:

Перше таке число – це. Кожне наступне виходить додаванням до попереднього числа. Таким чином, цікаві для нас числа утворюють арифметичну прогресію з першим членом і різницею.

Формула члена для цієї прогресії:

Скільки членів у прогресії, якщо всі вони мають бути двозначними?

Дуже легко: .

Останній член прогресії дорівнюватиме. Тоді сума:

Відповідь: .

Тепер виріши сам:

  1. Щодня спортсмен пробігає на м більше, ніж у попередній день. Скільки всього кілометрів він пробіжить за тижні, якщо першого дня він пробіг км?
  2. Велосипедист проїжджає щодня на км більше, ніж попереднього. Першого дня він проїхав км. Скільки днів йому треба їхати, щоб подолати кілометри? Скільки кілометрів він проїде за останній день шляху?
  3. Ціна холодильника в магазині щорічно зменшується на ту саму суму. Визначте, на скільки щороку зменшувалася ціна холодильника, якщо виставлений на продаж за рублів через шість років був проданий за рублів.

Відповіді:

  1. Тут найголовніше - розпізнати арифметичну прогресію та визначити її параметри. У цьому випадку (тижня = днів). Визначити потрібно суму перших членів цієї прогресії:
    .
    Відповідь:
  2. Тут дано: треба знайти.
    Очевидно, потрібно використовувати ту саму формулу суми, що й у попередньому завданні:
    .
    Підставляємо значення:

    Корінь, очевидно, не підходить, отже, відповідь.
    Порахуємо шлях, пройдений за останній день за допомогою формули члена:
    (Км).
    Відповідь:

  3. Дано: . Знайти: .
    Простіше не буває:
    (Руб).
    Відповідь:

АРИФМЕТИЧНА ПРОГРЕСІЯ. КОРОТКО ПРО ГОЛОВНЕ

Це числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.

Арифметична прогресія буває зростаючою () та спадною ().

Наприклад:

Формула знаходження n-ого члена арифметичної прогресії

записується формулою, де - кількість чисел у прогресії.

Властивість членів арифметичної прогресії

Воно дозволяє легко знайти член прогресії, якщо відомі його сусідні члени – де – кількість чисел у прогресії.

Сума членів арифметичної прогресії

Існує два способи знаходження суми:

Де – кількість значень.

Де – кількість значень.