Биографии Характеристики Анализ

Возникновение науки и основные этапы её развития. Основные этапы развития науки


Начнем с того, что история науки отличается неравномерностью развития в пространстве и во времени: огромные вспышки активности сменяются длительными периодами затишья, продолжающимися до новой вспышки, часто уже в другом регионе. Но место и время усиления научной активности никогда не были случайными: периоды расцвета науки обычно совпадают с периодами усиления экономической активности и технического прогресса. С течением времени центры научной активности перемещались в другие регионы Земли и, скорее, следовали за перемещениями центров торговой и промышленной деятельности, нежели направляли ее.

Современной науке предшествует преднаука в виде отдельных элементов знаний, возникших в древних обществах (шумерская культура, Египет, Китай, Индия). Древнейшие цивилизации выработали и накопили большие запасы астрономического, математического, биологического, медицинского знания. Но это знание не выходило за рамки преднауки, оно носило рецептурный характер, излагалось главным образом как предписания для практики - для ведения календарей, измерения земли, предсказания разливов рек, приручения и селекции животных. Такое знание, как правило, имело сакральный характер. Слив с религиозными представлениями его хранили и передавали из поколения в поколение жрецы, оно не приобрело статуса объективного знания о естественных процессах.

Около двух с половиной тысячелетий назад центр научной активности с Востока переместился в Грецию, где на основе критики религиозно-мифологических систем был выработан рациональный базис науки. В отличие от разрозненных наблюдений и рецептов Востока греки перешли к построению теорий - логически связанных и согласованных систем знания, предполагающих не просто констатацию и описание фактов, но и их объяснение и осмысление во всей системе понятий данной теории. Становление собственно научных, обособленных и от религии, и от философии форм знания, обычно связывают с именем Аристотеля, заложившего первоначальные основы классификации различных знаний. В качестве самостоятельной формы общественного сознания наука стала функционировать в эпоху эллинизма, когда целостная культура античности начала дифференцироваться на отдельные формы духовной деятельности.

В античной науке господствует идея незыблемости, опирающаяся на чувственное наблюдение и здравый смысл . Вспомним физику Аристотеля, в которой чувственное наблюдение и здравый смысл – и только они – определяют характер методологии объяснения мира и совершающихся в нем событий. Его учение делит мир на две области, по своим физическим свойствам качественно отличные друг от друга: на область Земли («подлунный мир») – область постоянных изменений и превращений - и область эфира («надлунный мир») – область всего вечного и совершенного. Отсюда вытекает положение о невозможности общей количественной физики неба и Земли, а в конечном итоге – положение, возводящее в ранг мировоззренческой доминанты геоцентрические идеи. Именно такой философский подход и вел к тому, что физика «подлунного мира» не нуждается в математике – науке, как ее понимали в античности, об идеальных объектах. Зато в ней нуждается астрономия, которая изучает совершенный «надлунный мир». Представления Аристотеля о движении и силе выражали лишь данные непосредственного наблюдения и опирались не на математику, а на здравый смысл. В физике древних ничего не говорилось об идеализированных объектах, таких как абсолютно твердое тело, материальная точка, идеальный газ, и не говорилось именно потому, что эта физика была чужда контролируемому экспериментированию. Повседневный опыт или непосредственное наблюдение служили краеугольным камнем познания, что не давало возможности ставить вопросы, относящиеся к сущности наблюдаемых явлений, а, следовательно, к установлению законов природы. Аристотель, вероятно, крайне удивился бы тому, как современный ученый изучает природу - в отгороженной от мира научной лаборатории, при искусственно созданных и контролируемых условиях, активно вмешиваясь в естественное протекание природных процессов.

Религиозное средневековье не изменило существенно это положение вещей. Только в позднее средневековье со времени крестовых походов развитие промышленности вызвало к жизни массу новых механических, химических и физических фактов, доставивших не только материал для наблюдений, но также и средства для экспериментирования. Развитие производства и связанный с этим рост техники в эпоху Возрождения и Новое время способствовали развитию и распространению экспериментальных и математических методов исследования. Революционные открытия в естествознании, сделанные в эпоху Возрождения, получили дальнейшее развитие в Новое время, когда наука стремительно начала входить в жизнь как особый социальный институт и необходимое условие функционирования всей системы общественного производства. Это относится прежде всего к естествознанию в современном понимании, переживавшему в это время период своего становления.

Что нового внесла наука Нового времени в представления о мире?

Идея незыблемости философских и научных ценностей, опирающаяся на здравый смысл, была отвергнута философской мыслью и естествознанием Нового времени. Физика становится экспериментальной наукой , чувственное наблюдение соединяется с теоретическим мышлением, на научную сцену выходят методы абстрагирования и связанная с ними математизация знания. Данные экспериментов описываются уже не понятиями здравого смысла, а осмысливаются теорией, в которой соотносятся понятия, далекие по содержанию от чувственной непосредственности. Пространство, время и материя стали интересовать исследователей с количественной стороны, и даже если не отрицалась идея творения природы, то предполагалось, что Творец – математик и сотворил природу по законам математики. Галилей утверждал, что природа должна изучаться с помощью опыта и математики, а не с помощью Библии или чего-то еще. Экспериментальный диалог с природой подразумевает активное вмешательство, а не пассивное наблюдение. Исследуемое явление должно быть предварительно препарировано и изолировано с тем, чтобы оно могло служить приближением к некоторой идеальной ситуации, возможно физически недостижимой, но согласующейся с принятой концептуальной схемой. Природа, как бы на судебном заседании, подвергается с помощью экспериментирования перекрестному допросу именем априорных принципов. Ответы природы записываются с величайшей точностью, но их правильность оценивается в терминах той идеализации, которой исследователь руководствуется при постановке эксперимента. Все остальное считается не информацией, а вторичными эффектами, которыми можно пренебречь. Недаром в эпоху становления науки Нового времени в европейской культуре бытовало широко распространенное сравнение эксперимента с пыткой природы, посредством которой исследователь должен выведать у природы ее сокровенные тайны. В представлениях о науке как предприятии, все глубже и глубже проникающем в тайны бытия, сказывается рационалистическая установка, согласно которой деятельность науки представляет собой процесс, направленный на окончательное разоблачение тайн бытия.

Основатели современной науки прозорливо усматривали в диалоге между человеком и природой важный шаг к рациональному постижению природы. Но претендовали они на гораздо большее. Галилей и те, кто пришел после него, разделяли убеждение в том, что наука способна открывать глобальные истины о природе. По их мнению, природа не только написана на математическом языке, поддающемся расшифровке с помощью надлежаще поставленных экспериментов, но и сам язык природы единственен. Отсюда уже недалеко до вывода об однородности мира и, следовательно, доступности постижения глобальных истин с помощью локального экспериментирования. Сложность природы была провозглашена кажущейся, а разнообразие природы – укладывающемся в универсальные истины, воплощенные в математических законах движения. Природа проста и не роскошествует излишними причинами вещей, учил Ньютон. Эта была наука, познавшая успех, уверенная, что ей удалось доказать бессилие природы перед проницательностью человеческого разума.

Эти и другие подобные представления подготовили переворот в науке Нового времени, завершившийся созданием механики Галилея-Ньютона - первой естественнонаучной теории. Теоретическое естествознание, возникшее в эту историческую эпоху, получило название «классическая наука » и завершило долгий процесс становления науки в собственном смысле слова.

Методологию классической науки очень четко выразил французский математик и астроном П.Лаплас. Он считал, что природа сама по себе подчинена жестким, абсолютно однозначным причинным связям, а если мы не всегда наблюдаем эту однозначность, то только в силу ограниченности наших возможностей. «Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если вдобавок, он оказался бы достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями мельчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором». С точки зрения Лапласа, идеальным примером научной теории является небесная механика, в которой на основании законов механики и закона всемирного тяготения удалось дать объяснение «всех небесных явлений в их малейших подробностях». Она не только привела к пониманию огромного количества явлений, но и дала образец «истинной методы исследования законов природы».

Классическая научная картина мира базируется на представлении качественной однородности явлений природы. Все многообразие процессов ограничивается макромеханическим движением, все природные связи и отношения исчерпываются замкнутой системой вечных и неизменных законов классической механики. В отличие от античных и тем более средневековых представлений природа рассматривается с точки зрения естественного порядка, в котором имеют место только механические объекты.

Все крупнейшие физики конца Х1Х и начала ХХ столетий полагали, что все великие и вообще все мыслимые открытия в физике уже совершились, что установленные законы и принципы незыблемы, возможны только их новые приложения и что, следовательно, дальнейшее развитие физической науки будет заключаться только лишь в уточнении второстепенных деталей. Теоретическая физика представлялась многим в основном завершенной наукой, исчерпавшей свой предмет. Знаменательно, что один из крупнейших физиков того времени В.Томсон, выступая с речью по поводу начала нового века, сказал, что физика превратилась в развитую, завершенную систему знаний, а дальнейшее развитие будет состоять лишь в некоторых доделках и повышении уровня физических теорий. Правда, он заметил, что красота и ясность динамических теорий тускнеет из-за двух маленьких «туч» на ясном небосводе: одна – отсутствие эфирного ветра, другая – так называемая «ультрафиолетовая катастрофа». Несмотря на то, что во второй половине Х1Х в. механистические представления о мире были существенно поколеблены новыми революционными идеями в области электромагнетизма (М.Фарадей, Дж.Максвелл), а также каскадом научных открытий, необъяснимых на основе законов классической науки, механистическая картина мира оставалась господствующей до конца Х1Х в.

И вот на фоне этой веками складывавшейся уверенности многих ученых в абсолютной несокрушимости установленных ими и их предшественниками законов, принципов и теорий началась революция, которая сокрушила эти лишь казавшиеся вечными представления. Человеческое познание проникло в необычные слои бытия и столкнулось там с непривычными видами материи и формами ее движения. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние преставления о пространстве и времени, о неделимости атома, о постоянстве массы, о неизменности химических элементов, об однозначной причинности и т.д. Вместе с этим закончился классический этап в развитии естествознания, наступил новый этап неклассического естествознания, характеризующийся квантово-релятивистскими представлениями о физической реальности. Из упомянутых Томсоном двух «туч» на ясном небосводе физической науки и родились те две теории, которые определили суть неклассической физики, - теория относительности и квантовая физика. И они легли в основу современной научной картины мира.

Чем же отличается неклассическая наука от классической?

В классической науке всякое теоретическое построение не только рассматривалось, но и сознательно создавалось как обобщение данных опыта, как подсобное средство описания и истолкования результатов наблюдения и эксперимента, результатов, полученных независимо от теоретического построения. Новые воззрения заменяют прежние лишь потому, что они основываются на большем числе фактов, на уточненном значении ранее грубо измеренных величин, на результатах опыта с прежде неизвестными явлениями или с ранее не выявленными параметрами уже до того изученных процессов. Научное знание, исходящее из того, что вся динамика знания состоит в непрерывном увеличении общей суммы эмпирических обобщений, не знает и не может знать иной модели роста, чем та, которая однозначным образом связано с кумулятивностью. Согласно этому взгляду, развитие науки представляется последовательным ростом однажды познанного, подобно тому, как кирпичик к кирпичику наращивается прямая стена. По существу, такой подход признает лишь рост науки, но отвергает ее подлинное развитие: научная картина мира не изменяется, а только расширяется.

Задача классического естествознания усматривалась в нахождении неизменных законов природы, и его выдающиеся представители полагали, что эти законы ими уже найдены. Таковыми считались принципы классической механики, что отражено в очень выразительном афоризме Лагранжа: «Ньютон – счастливейший из смертных, ибо истину удается открыть лишь раз, и Ньютон открыл эту истину». Развитие физики после Ньютона трактовалось как некое редуцирование того, что было известно и того, что будет известно, к положениям классической механики. В таком учении микромир, макромир и мегамир должны подчиняться одним и тем же законам, представляя собой лишь увеличенные или уменьшенные копии друг друга. При таком подходе трудно принять, например, идею об атомах, размеры и свойства которых никак не могут быть поняты внутри классических построений. Неудивительно, что противник атомистической теории В.Оствальд считал атомную гипотезу подобной лошади, которую надо искать внутри паровоза, чтобы объяснить его движение. Атом в форме классического объекта и на самом деле очень похож на такую лошадь. Понять, что за «лошадь» спрятана внутри паровоза и есть задача неклассической науки – сначала создать модель, а потом вложить в нее принципиально новый смысл.

В неклассической науке сложилась другая установка: ведущим, обладающим эвристической ценностью и прогностической мощью элементом познавательного процесса становится теория, а факты получают свою интерпретацию лишь в контексте определенной теории. Из этого следует историческая изменчивость форм познания мира: для неклассической науки существенно не просто найти теорию, описывающую определенный круг явлений, но крайне важно найти пути перехода от этой теории к более глубокой и общей. Именно этим путем возникли и утвердились теория относительности, квантовая механика, квантовая электродинамика, именно этим путем развивается современная теория элементарных частиц и астрофизика. «Лучший удел физической теории состоит в том, чтобы указывать путь создания новой, более общей теории, в рамках которой она остается предельным случаем».

Особенность неклассической физики выявляется, быть может, наиболее рельефно в подходе к решению вопроса о соотношении субъекта и объекта. В отличие от классической науки, которая считает, что особенности субъекта никак не сказываются на результатах познания, неклассическая наука в своих методологических установках признает присутствие субъекта в процессе познания неизбежным и неустранимым, а потому результаты познания не могут не содержать «примесь субъективности». Всем известно высказывание выдающегося ученого ХХ в. Н.Бора о том, что «в драме бытия мы являемся одновременно и актерами, и зрителями». По мнению другого выдающегося физика В.Гейзенберга, квантовая теория утвердила точку зрения, согласно которой человек описывает и объясняет природу не в его, так сказать, «голой самости», а исключительно преломленную через призму человеческой субъективности. Высоко оценивая формулу К.Вейцзеккера: «Природа была до человека, но человек был до естествознания», он раскрывает ее смысл: «Первая половина высказывания оправдывает классическую физику с ее идеалами полной объективности. Вторая половина объясняет, почему мы не можем освободиться от парадоксов квантовой теории и от необходимости применения классических понятий».

Таким образом, возникнув в Новое время, наука проходит в своем развитии классический, неклассический и постнеклассический этапы, на каждом из которых разрабатываются соответствующие идеалы, нормы и методы исследования, возникает своеобразный понятийный аппарат. Но возникновение нового типа рациональности и нового образа науки не следует понимать упрощенно в том смысле, будто каждый новый этап приводит к полному исчезновению представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность. Неклассическая наука вовсе не уничтожила классическую рациональность, а только ограничила сферу его действия. При решении ряда задач неклассические представления о мире и познании оказываются избыточными, и исследователь может ориентироваться на классические образцы (например, при решении ряда задач небесной механики вовсе не требуется привлекать норы квантово-релятивистского описания).

Предполагается, что развитие науки детерминистично в отличие от непредсказуемого хода событий, присущего истории искусств. Оглядываясь назад на причудливую и подчас загадочную историю естествознания, нельзя не усомниться в правильности подобных утверждений. Имеются поистине удивительные примеры фактов, которые не принимались во внимание только потому, что культурный климат не был подготовлен к включению их в самосогласованную схему. Например, адекватная действительности гелиоцентрическая идея (от воззрений поздних пифагорейцев до ее более сильного варианта в учении Аристарха Самосского, жившего в 111 в. до н.э.) не нашла должного отклика и была отвергнута античной наукой, а геоцентрическая космология Аристотеля, получив математическое оформление в работах К.Птолемея, задала эталон научных построений и оказала громадное влияние на научную картину мира поздней античности и средневековья вплоть до ХУ1 в. В чем причины случившегося? Может их следует искать в авторитете Аристотеля? Или в большей научной разработанности геоцентрических воззрений по сравнению с гелиоцентрическими?

Лучшая разработанность геоцентрической системы мира, как и авторитете ее авторов, безусловно, сыграли немаловажную роль в утверждении геоцентрических воззрений. Однако нетрудно заметить, что, ограничившись таким объяснением, мы оставляем не снятым вопрос: почему геоцентрическая система оказалась лучше разработанной и в силу каких причин исследовательские усилия наиболее выдающихся мыслителей оказались направленными на разработку неадекватной действительности системы?

Ответ, по-видимому, следует искать в том, что любая научная теории (равно как и само научное познание, взятое во всем своем многообразии) не является самодовлеющим и самодостаточным результатом деятельности абстрактного гносеологического субъекта. Вплетенность теории в социально-историческую практику общества и через нее в общую культуру эпохи – важнейший момент ее жизнеспособности и развития. Хотя наука – относительно саморазвивающаяся система знаний, тем не менее тенденция развития научного знания в конечном счете детерминирована социальной практикой субъектов познавательной деятельности, общей динамикой их социо-культурных традиций. Поскольку в мировой науке нет абсолютно случайных и совершенно изолированных от всей человеческой культуры теорий, то возникновение или, точнее, выдвижение той или иной научной идеи и ее восприятие научным сообществом - далеко не одно и то же. Для принятия новой теории степень подготовленности исторической эпохи к ее восприятию гораздо важнее, нежели соображения, связанные с талантом ее автора или степенью ее разработанности. Считать вслед за Ф.Дайсоном, что если бы Аристарх Самосский имел больший авторитет, чем Аристотель, то гелиоцентрическая астрономия и физика избавили бы человечество от «1800-летнего мрака невежества» - значит полностью игнорировать реальный исторический контекст. Прав Э. Шредингер, который, к возмущению многих философов науки, писал: «Существует тенденция забывать, что все естественные науки связаны с общечеловеческой культурой и что научные открытия, даже кажущиеся в настоящий момент наиболее передовыми и доступными пониманию немногих избранных все же бессмысленны вне своего культурного контекста. Та теоретическая наука, которая не признает, что ее построения служат в итоге для надежного усвоения образованной прослойкой общества и превращения в органическую часть общей картины мира; теоретическая наука, повторяю, представители которой внушают друг другу идеи на языке, в лучшем случае понятном лишь малой группе близких попутчиков, - такая наука непременно оторвется от остальной человеческой культуры; в перспективе она обречена на бессилие и паралич, сколько бы ни продолжался и как бы упрямо ни поддерживался этот стиль для избранных».

Философия науки показала, что в качестве критерия научности знания должен рассматриваться целый комплекс признаков: доказательность, интерсубъективность, обезличенность, незавершенность, систематичность, критичность, внеморальность, рациональность.

1. Наука доказательна в том смысле, что ее положения не просто декларируются, не просто принимаются на веру, а выводятся, доказываются в соответствующей систематизированной и логически упорядоченной форме. Наука претендует на теоретическую обоснованность как содержания, так и способов достижения знаний, она не может твориться по заказу или указу. Реальные наблюдения, логический анализ, обобщения, выводы, установление причинно-следственной связи на основе рациональных процедур – вот доказательные средства научного знания.

2. Наука интерсубъективна в том смысле, что получаемые ею знания общезначимы, общеобязательны в отличие, например, от мнения, характеризующегося необщезначимостью, индивидуальностью. Признак интерсубъективности научного знания конкретизируется благодаря признаку его воспроизводимости, который указывает на свойство инвариантности знания, получаемого в ходе познания всяким субъектом.

3. Наука обезличенна в том смысле что ни индивидуальные особенности ученого, ни его национальность или место проживания никак не представлены в конечных результатах научного познания. Научный работник отвлекается от любых проявлений, характеризующих отношение человека к миру, он смотрит на мир как на объект исследования и не более того. Научное знание представляет тем большую ценность, чем меньше оно выражает индивидуальность исследователя.

4. Наука незавершенна в том смысле, что научное знание не может достичь абсолютной истины, после которой уже нечего будет исследовать. Абсолютная истина в качестве полного и законченного знания о мире в целом выступает как предел стремлений разума, который никогда не будет достигнут. Диалектическая закономерность познавательного движения по объекту состоит в том, что объект в процессе познания включается во все новые связи и в силу этого выступает во всех новых качествах, из объекта как бы вычерпывается все новое содержание, он как бы поворачивается каждый раз другой своей стороной, в нем выявляются все новые свойства. Задача познания – постигнуть реальное содержание объекта познания, а это означает необходимость отразить все многообразие свойств, связей, опосредований данного объекта, которые по существу бесконечны. В силу этого и процесс научного познания бесконечен.

5. Наука систематична в том смысле, что она имеет определенную структуру, а не является бессвязным набором частей. Собрание разрозненных знаний, не объединенных в связную систему, еще не образует науку. В основе научных знаний лежат определенные исходные положения, закономерности позволяющие объединять соответствующие знания в единую систему. Знания превращаются в научные, когда целенаправленное собирание фактов, их описание и объяснение доводится до уровня их включения в систему понятий, в состав теории.

6. Наука критична в том смысле, что ее фундаментом является свободомыслие и поэтому она всегда готова поставить под сомнение и пересмотреть свои даже самые основополагающие результаты.

7. Наука ценностно нейтральна в том смысле, что научные истины нейтральны в морально-этическом плане, а нравственные оценки могут относиться либо к деятельности по получению знания, либо к деятельности по его применению. «Принципы науки могут быть высказаны только в изъявительном наклонении, в этом же наклонении выражаются и экспериментальные данные. Исследователь может сколько угодно жонглировать с этими принципами, соединять их, нагромождать их друг на друга; все, что он из них получит, будет в изъявительном наклонении. Он никогда не получит предложения, которое говорило: делай это или не делай того, т.е. предложения, которое бы соответствовало или противоречило морали».

Только одновременное наличие всех указанных признаков в известном результате познания в полной мере определяет его научность. Отсутствие хотя бы одного из этих признаков делает невозможным квалифицировать этот результат как научный. Например, интерсубъективным может быть и «всеобщее заблуждение», систематичной может быть и религия, истинность могут включать и преднаука, обыденные знания, мнения.

Первые формы продуцирования знаний имели, как известно, синкретичный характер. Они представляли собой недифференцированную совместную деятельность чувств и мышления, воображения и первых обобщений. Подобная исходная практика мышления была названа мифологическим мышлением, в котором человек не вычленял свое «я» и не противопоставлял его объективному (от него не зависящему). Вернее, все остальное понималось именно через «я», по своей душевной матрице.

Все последующее развитие человеческого мышления есть процесс постепенной дифференциации опыта, расчленение его на субъективное и объективное, их обособление и все более точное расчленение и определение. Большую роль в этом сыграло появление первых зачатков позитивных знаний, связанных с обслуживанием повседневной практики людей: астрономических, математических, географических, биологических и медицинских знаний.

В истории формирования и развития науки можно выделить две стадии: преднауку и собственно науку. Они отличаются друг от друга различными методами построения знаний и прогнозирования результатов деятельности.

Мышление, которое можно назвать зарождающейся наукой, обслуживало преимущественно практические ситуации. Оно порождало образы или идеальные объекты, замещающие реальные объекты, училось оперировать ими в воображении для того, чтобы предвидеть будущее развитие. Можно сказать, что первые знания имели вид рецептов или схем деятельности: что, в какой последовательности, в каких условиях надо что-то делать, чтобы достичь известных целей. К примеру, известны древнеегипетские таблицы, где объяснялось, как осуществлялись операции сложения и вычитания целых чисел в то время. Каждый из реальных объектов замещался идеальным объектом единица, который фиксировался вертикальной чертой I (для десятков, сотен, тысяч были свои знаки). Прибавление, допустим, к пяти единицам трех единиц осуществлялось следующим образом: изображался знак III (число «три»), затем под ним писалось еще пять вертикальных черточек IIIII (число «пять»), затем все эти черточки переносились в одну строку, расположенную под двумя первыми. В итоге получалось восемь черточек, обозначающих соответствующее число. Эти процедуры воспроизводили процедуры образования совокупностей предметов в реальной жизни.

Такую же связь с практикой можно обнаружить в первых знаниях, относящихся к геометрии, появившейся в связи потребностями измерения земельных участков у древних египтян и вавилонян. Это были потребности поддержания межевания земель, когда межи время от времени заносились речным илом, и вычисления их площадей. Данные потребности породили новый класс задач, решение которых потребовало оперирования с чертежами. В этом процессе были выделены такие основные геометрические фигуры, как треугольник, прямоугольник, трапеция, круг, через комбинации которых можно было изображать площади земельных участков сложной конфигурации. В древнеегипетской математике безымянными гениями были найдены способы вычисления основных геометрических фигур, которые стали использоваться и для измерения, и для строительства великих пирамид. Операции с геометрическими фигурами на чертежах, связанные с построением и преобразованиями этих фигур, осуществлялись с помощью двух основных инструментов — циркуля и линейки. Этот способ до сих пор является основополагающим в геометрии. Показательно, что сам этот способ выступает в качестве схемы реальных практических операций. Измерение земельных участков, а также сторон и плоскостей, создаваемых сооружений в строительстве, осуществлялись с помощью туго натянутой мерной веревки с узлами, обозначающими единицу длины (линейка), и мерной веревки, один конец которой прикреплялся колышком, а колышек на другом конце прочерчивал дуги (циркуль). Перенесенные на действия с чертежами, эти операции предстали как построения геометрических фигур с помощью линейки и циркуля.

Итак, в преднаучном способе построения знания главное — это вывод первичных обобщений (абстрагирование) непосредственно из практики и затем подобные обобщения закреплялись как знаки и как смыслы уже внутри имевшихся систем языка.

Новый способ построения знаний, означавший появление науки в нашем современном понимании, формируется при достижении человеческим знанием определенной полноты и устойчивости. Тогда появляется метод построения новых идеальных объектов не из практики, а из уже имеющихся в знании — путем их комбинирования и воображаемом помещении в разные мыслимые и немыслимые контексты. Затем это новое знание соотносится с реальностью и тем самым определяется его достоверность.

Насколько нам известно, первой формой знания, ставшей собственно теоретической наукой, была математика. Так, в ней, параллельно с аналогичными операциями в философии, числа начали рассматривать не только как отражение реальных количественных отношений, но и как относительно самостоятельные объекты, свойства которых можно изучать сами по себе, вне связи с практическими потребностями. Это дает старт собственно математическому исследованию, которое из полученного ранее из практики натурального ряда чисел начинает строить новые идеальные объекты. Так, применяя операцию вычитания из меньших чисел больших, получают отрицательные числа. На этот вновь открытый новый класс чисел распространяются все те операции, которые ранее были получены при анализе положительных, что создает новое знание, которое характеризует ранее неизвестные стороны действительности. Применив операцию извлечения корня к отрицательным числам, математика получает новый класс абстракций — мнимые числа, к которым опять применяют все операции, обслужившие натуральные числа.

Разумеется, данный способ построения характерен не только для математики, а утверждается и в естественных науках и известен там как метод выдвижения гипотетических моделей с последующей практической апробацией. Благодаря новому методу построения знаний наука получает возможность изучать не только те предметные связи, которые могут встретиться в уже сложившихся стереотипах практик, но и предвосхитить те изменения, которые в принципе может освоить развивающаяся цивилизация. Так начинается собственно наука, т. к. наряду с эмпирическими правилами и зависимостями формируется особый тип знания — теория. Сама теория, как известно, позволяет получать эмпирические зависимости как следствие из теоретических постулатов.

Научные знания в отличие от преднаучных строятся не только в категориях существующей практики, но и могут соотноситься с качественно иной, будущей, а потому здесь уже применяются категории возможного и необходимого. Они уже не формулируются только как предписания для существующей практики, а претендуют на выражение сущностных структур, причин действительности «самой по себе». Такие притязания на обнаружение знания об объективной действительности в целом порождают потребность в особой практике, выходящей за пределы повседневного опыта. Так возникает впоследствии научный эксперимент.

Научный способ исследования появился как итог длительного предшествующего цивилизационного развития, складывания определенных установок мышления. Культуры традиционных обществ Востока не создавали подобных условий. Несомненно, они дали миру много конкретных знаний и рецептов решения конкретных проблемных ситуаций, однако все оставались в рамках простого, отражательного знания. Здесь доминировали канонизированные стили мышления и традиции, ориентированные на воспроизведение существующих форм и способов деятельности.

Переход к науке в нашем смысле слова связан с двумя переломными состояниями развития культуры и цивилизации: становлением классической философии, которая способствовала появлению первой формы теоретического исследования — математики, радикальными мировоззренческими сдвигами в эпоху Возрождения и переходе к Новому времени, породившими становление научного эксперимента в его соединении с математическим методом.

Первая фаза становления научного способа порождения знаний связана с феноменом древнегреческой цивилизации. Его необычность часто называется мутацией, что подчеркивает неожиданность его появления и беспрецедентность. Существует много объяснений причин древнегреческого чуда. Наиболее интересные из них следующие.

— Греческая цивилизация могла возникнуть только как плодотворный синтез великих восточных культур. Сама Греция лежала на «перекрестке» информационных потоков (Древний Египет, Древняя Индия, Междуречье, Передняя Азия, «варварский» мир). На духовное влияние Востока указывает и Гегель в «Лекциях по истории философии», говоря об исторической предпосылке древнегреческой мысли — восточной субстанциальности — понятии органичного единства духовного и природного как основы мироздания.

— Все же, однако, многие исследователи склонны отдавать предпочтение, скорее, социально-политическим причинам — децентрализации Древней Греции, полисной системе политической организации. Это препятствовало развитию деспотических централизованных форм государственного устройства (производное на Востоке от крупномасштабного ирригационного земледелия) и привело к появлению первых демократических форм общественной жизни. Последние породили свободную индивидуальность, — и не как прецедент, а как достаточно широкий слой свободных граждан полиса. Организация их жизни была основана на равенстве и регулировании жизни посредством состязательного судопроизводства. Конкуренция же между полисами приводила к тому, что каждый из них стремился иметь в своем городе лучшее искусство, лучших ораторов, философов и т. п. Это породило невиданную доселе плюрализацию творческой деятельности. Нечто подобное мы можем наблюдать спустя более двух тысячелетий в децентрализованной, мелкокняжеской Германии второй пол. XVIII — первой пол. XIX вв.

Так появилась первая индивидуалистская цивилизация (Греция после Сократа), давшая миру нормативы индивидуалистской организации социальной жизни и одновременно заплатившая за это весьма большую историческую цену — пассионарное перенапряжение саморазрушило Древнюю Грецию и надолго удалило греческий этнос со сцены глобальной истории. Греческий феномен также можно интерпретировать как яркий пример явления ретроспективной переоценки начала. Действительное начало потому и велико, что в нем содержатся в потенции все дальнейшие развитые формы, которые затем с удивлением, восхищением и с явной переоценкой обнаруживают себя в этом начале.

Социальная жизнь Древней Греции была наполнена динамизмом и отличалась высокой степенью конкуренции, которого не знали цивилизации Востока с их застойно-патриархальным круговоротом жизни. Нормы жизни и соответствующие им представления вырабатывались через борьбу мнений в народном собрании, состязаниях на спортивных аренах и в судах. На этой основе складывались представления о вариативности мира и человеческой жизни, возможностях их оптимизации. Такая социальная практика порождала различные концепции мироздания и социального устройства, которые развивались античной философией. Возникали теоретические предпосылки становления науки, заключавшиеся в том, что мышление стало способным рассуждать о невидимых аспектах мира, о связях и отношениях, которые не даны в повседневности.

Это специфическая характеристика именно античной философии. В традиционных обществах Востока такая теоретизирующая роль философии была ограничена. Конечно, и здесь возникали метафизические системы, однако они выполняли в основном охранительные, религиозно-идеологические функции. Только в античной философии впервые наиболее полно реализовались новые формы организации знания как поиск единого основания (первоначал и причин) и выведение из него следствий. Сама доказательность и обоснованность суждения, которые стали основным условием приемлемости знаний, могли утвердиться лишь в социальной практике равных граждан, решающих свои проблемы путем состязания в политике или судах. Это, в отличие от ссылок на авторитет, основное условие приемлемости знаний на Древнем Востоке.

Соединение новых форм организации знания или теоретических рассуждений, полученных философами с накопленными на этапе преднауки математическими знаниями, породили первую научную форму знания в истории людей — математику. Основные вехи этого пути можно представить следующим образом.

Уже раннегреческая философия в лице Фалеса и Анаксимандра начала систематизировать математические знания, полученные в древних цивилизациях, и применять к ним процедуру доказательства. Но все же решающим образом на развитие математики повлияло мировоззрение пифагорейцев, в основе которого лежала экстраполяция на интерпретацию вселенной практического математического знания. Началом всего является число, а числовые отношения и есть фундаментальные пропорции мироздания. Такая онтологизация практики исчисления сыграла особую положительную роль в возникновении теоретического уровня математики: числа стали изучаться не как модели конкретно-практических ситуаций, а сами по себе, безотносительно к практическому применению. Познание свойств и отношений чисел стало восприниматься как познание начал и гармонии космоса.

Другая теоретическая новация пифагорейцев — попытки соединения теоретического исследования свойств геометрических фигур со свойствами чисел или установление связи между геометрией и арифметикой. Пифагорейцы не ограничивались только применением чисел для характеристики геометрических фигур, но и, напротив, пытались применять к исследованию совокупности чисел геометрические образы. Число 10 — совершенное число, завершающее десятки натурального ряда, соотносилось с треугольником, основной фигурой, к которой при доказательстве теорем стремились свести другие геометрические фигуры (фигурные числа).

После пифагорейцев математика разрабатывалась всеми крупными философами античности. Так, Платон и Аристотель придали идеям пифагорейцев более строгую рациональную форму. Они полагали, что мир построен на математических принципах и что в основе мироздания лежит математический план: «Демиург постоянно геометризует», — утверждал Платон. Из этого понимания следовало, что язык математики наиболее уместен для описания мира.

Развитие теоретических знаний в античности было завершено созданием первого образца научной теории — Евклидовой геометрии, что означало выделение из философии особой, самостоятельной науки математики. В дальнейшем в античности были получены многочисленные приложения математических знаний к описанию природных объектов: в астрономии (вычисление размеров и особенностей движения планет и Солнца, гелиоцентрическая концепция Аристарха Самосского и геоцентрическая концепция Гиппарха и Птолемея) и механике (разработки Архимедом начал статики и гидростатики, первые теоретические модели и законы механики Герона, Паппа).

Вместе с тем главное, чего не могла сделать античная наука — это открыть и использовать экспериментальный метод. Большинство исследователей истории науки считают, что причиной этого были своеобразные представления древних ученых о соотношении теории и практики (техники, технологии). Высоко ценилось абстрактное, умозрительное знание, а практически-утилитарное, инженерное знание и деятельность рассматривались, равно как и физический труд, в качестве «дела низкого и неблагородного», удела несвободных и рабов.

Относительно возникновения науки существуют пять точек зрения:

Наука была всегда, начиная с момента зарождения человеческого общества, так как научная любознательность органично присуща человеку;

Наука возникла в Древней Греции, так как именно здесь знания впервые получили свое теоретическое обоснование (общепринятое);

hНаука возникла в Западной Европе в XII-XIV вв., поскольку проявился интерес к опытному знанию и математике;

Наука начинается в XVI-XVIIвв., и благодаря работам Г. Галилея, И. Кеплера, X. Гюйгенса и И. Ньютона, создается первая теоретическая модель физики на языке математики;

Наука начинается с первой трети XIXв., когда исследовательская деятельность была объединена с высшим образованием.

Возникновение науки. Наука в доисторическом обществе и древнем мире.

В доисторическом обществе и древней цивилизации знание существовало в рецептурном виде, т.е. знания были неотделимы от умения и неструктурированны. Эти знания являлись дотеоретическими, несистематичными, отсутствовали абстракции. К вспомогательным средством дотеоретического знания мы относим: миф, магию, ранние формы религии. Миф (повествование) – рациональное отношение человека к миру. Магия – сами действия. Магия мыслит взаимосвязанными процессами физической, ментальной, символической и иной природы.

Основные идеи абстрактно-теоретического мышления в древнегреческой философии. В античной культуре древней Греции появляется теоретическое, систематическое и абстрактное мышление. В основе лежит идея особого знания (общее знание, первое знание). У древних греков появляется архе-первый (начало); физис-природа (то из чего происходит вещь). Начало у вещей одно, а природа различна. Это были два концентрата теоретического мышления. Там же возникли: закон идентичности, закон исключения третьего, закон непротиворечия, закон достаточного основания. Это систематический подход. Первые теории создавались в философии для нужд философии. Теория начинает соединяться с научными знаниями во 2-м веке до н.э. Версии возникновения теории: уникальная экономика, греческая религия.

Этапы развития науки:

1 этап – древняя Греция – возникновение науки в социуме с провозглашением геометрии, как науки об измерении земли. Объект исследования – мегамир (вкл. вселенную во всём многообразии).

А)работали не с реальными предметами, не с эмпирическим объектом, а с математическими моделями – абстракциями.

Б) Из всех понятий выводились аксиома и опираясь на них с помощью логического обоснования выводили новые понятия.

Идеалы и нормы науки: знание раде знаний. Метод познания – наблюдение.

Науч. картина мира: носит интегративный хар-р, основана на взаимосвязи микро- и макрокосмоса.

Филос. основания науки: Ф. – наука наук. Стиль мышления – интуитивно диалектический. Антропокосмизм – человек есть органическая часть мирового космического процесса. Ч. – мера всех вещей.

2 этап – Средневековая европейская наука – наука превратилась в служанку богословия. Противоборство между номиналистами (единичные вещи) и реалистами (универсальные вещи). Объект исследования – макромир (Земля и ближ. космос).

Идеалы и нормы науки: Знание – сила. Индуктивно эмпирический подход. Механицизм. Противопоставление объекта и субъекта.

Науч. картина мира: Ньютоновская классич. механика; гелиоцентризм; божественное происхождение окр. мира и его объектов; мир – сложно действующий механизм.

Филос. основания науки: Механистический детерминизм. Стиль мышления – механистично метафизический (отрицание внутреннего противоречия)

научное знание ориентируется на теологизм

ориентировано на специфическое обслуживание интересов ограниченного числа

возникают научные школы, провозглашается приоритет эмпирического познания в исследовании окружающей действительности (идёт разделение наук).

3 этап: Новоевропейская классическая наука (15-16 вв). Объект исследования – микромир. Совокупность элементарных частиц. Взаимосвязь эмпирического и рационального уровня познаний.

Идеалы и нормы науки: принцип зависимости объекта от субъекта. Сочетание теоретического и практического направлений.

Науч. картина мира: формирование частно научных картин мира (химическая, физическая …)

Филос. основания науки: диалектика – стиль естественнонаучного мышления.

Культура постепенно освобождается от господства церкви.

первые попытки убрать схоластику догматизм

интенсивное развитие экономики

лавиноообразный интерес к научному знанию.

Особенности периода:

научная мысль начинает фокусироваться на получение объективно истинного знания с уклоном в практическую полезность

попытка анализа и синтеза рациональных зерен преднауки

начинают преобладать экспериментальные знания

наука формируется как социальный институт (ВУЗы, научные книги)

начинают выделяться технические и социально-гуманитарные науки Огюст Конт

4 этап: 20 век – набирает силу неклассическая наука. Объект исследования – микро-, макро- и мегамир. Взаимосвязь эмпирического, рационального и интуитивного познания.

Идеалы и нормы науки: аксиологизация науки. Повышение степени "фундаментализации" прикладных наук.

Науч. картина мира: формирование общенаучной картины мира. Преобладание представления о глобальном эволюционизме (развитие – атрибут, присущий всем формам объективной реальности). Переход от антропоцентризму к биосфероцентризму (человек, биосфера, космос – во взаимосвязи и единстве).

Филос. основания науки: синергетический стиль мышления (интегративность, нелинейность, бифуркационность)

5 этап: постнеклассическая наука – современный этап развития научного познания.

4. Формы бытия науки: наука как познавательная деятельность, как социальный институт, как особая форма культуры.

В рамках философии науки принято выделять несколько форм бытия науки:

как познавательная деятельность,

как особый вид мировоззрения,

как специфический тип познания,

как социальный институт.

Наука как познавательная деятельность

Научная деятельность – это когнитивная (познавательная) деятельность, имеющая своей целью получение нового знания. Коренное отличие научной деятельности от других видов деятельности в том, что она устремлена к получению нового знания. Научная деятельность имеет строго определенную структуру: субъект исследования, объект и предмет исследования, средства и методы исследования, результаты исследования.

Субъект исследования – это тот, кто исследует. Под субъектом исследования принято понимать не только отдельно взятого ученого, но и научные коллективы, научное сообщество (Т. Кун).

Объект исследования – та часть реальности, которая исследуется научным сообществом. Предмет познания – это свойства и закономерности, которые изучаются в объекте познания. Поэтому объект познания по своему объему и содержанию шире, чем предмет познания. Сразу познать объект в его целостности и определенности невозможно, и поэтому его разбивают (конечно, мысленно) на части, которые исследуют..

Средства и методы познания – это «инструменты», «орудия» научной деятельности. . Для современной научной деятельности традиционные методы исследования, такие, как наблюдение и измерение, дополняются методами моделирования, позволяющими существенно расширить горизонты познания, включив временную составляющую.

Результатом научной деятельности являются научные факты, эмпирические обобщения, научные гипотезы и теории. Это, образно говоря, – продукция научной деятельности.

Научные факты – это выявленные и соответствующим образом выраженные (на основе специализированного языка) объективные процессы.

Возможны три основные модели научной деятельности – эмпиризм, теоретизм, проблематизм, которые выделяют те или иные ее стороны.

Эмпиризм: научная деятельность начинается с получения эмпирических данных о предмете исследования, а далее следует их логико-математическая обработка, которая приводит к индуктивным обобщениям.

Теоретизм, являясь прямой противоположностью эмпиризму, считает исходным пунктом научной деятельности некую общую идею, рожденную в недрах научного мышления.

Проблематизм. Исходным пунктом такого рода деятельности является научная проблема – существенный эмпирический или теоретический вопрос, ответ на который требует получения новой, как правило, неочевидной эмпирической или теоретической информации.

Итак, наука наряду с философией, религией, нравственностью и искусством относится к «корням» культуры. Особенно это касается научного мировоззрения.

Наука как особый вид мировоззрения

Мировоззрение является сложнейшей системой представлений, учений, убеждений, эстетических и духовно-нравственных оценок. Достойное место в формировании мировоззрения занимает наука.

В чем заключаются особенности научного мировоззрения? Если она включалась в натурфилософию, то отличие научного мировоззрения понималось лишь в степени умозрительности и всеобщности. Если наука противопоставлялась другим мировоззренческим формам, то научное мировоззрение трактовалось как выражение зрелости человеческого духа, сознания.

Обратим внимание на два аспекта научного мировоззрения. Во-первых, из многообразия отношений человека к миру наука выбирает гносеологическое, субъект-объектное отношение. Во-вторых, само гносеологическое отношение должно подчиняться основным принципам научного исследования.

У современных ученых получает поддержку точка зрения, согласно которой наука не должна отгораживаться глухой стеной от других форм исканий истины.

Современная наука продолжает выражать ментальную структуру, сформировавшуюся в Новое время. В ее основе – субъект-объектное отношение человека к миру. В научном мировозрении по сути, с самого начала были представлены две формы научного миропонимания (В.И. Вернадский) - физическое, обращенное к механическим и физическим свойствам, и натуралистическое (биосферное), рассматривающее сложные системы, организованность которых является функцией живого вещества как совокупности живых организмов. Рождающееся в последнее время новое научное мировоззрение делает шаг в сторону соединения физического и биосферного мировоззрений.

Итак, наука может быть понята как определенный тип мировоззрения, находящийся в процессе своего становления и развития.

Наука как специфический тип знания

Науку как специфический тип знания исследуют логика и методология науки. В современной науке принято различать по меньшей мере три класса наук – естественные, технические и социально-гуманитарные.

К основным признакам научного знания, характеризующим науку как целостный специфический феномен человеческой культуры относятся: предметность и объективность, системность, логическую доказательность, теоретическую и эмпирическую обоснованность.

Предметность и объективность. Предметность – это свойство объекта полагать себя в качестве исследуемых сущностных связей и законов. Основная задача науки – выявить законы и связи, согласно которым изменяются и развиваются объекты. Объективность, как и предметность, отличает науку от других форм духовной жизни человека. Главное в науке – сконструировать предмет, который подчинялся бы объективным связям и законам.

Системность. Обыденное познание так же, как и наука, стремится постигнуть реальный объективный мир, но в отличие от научного познания оно складывается стихийно в процессе жизнедеятельности человека. Научное познание всегда и во всем систематизировано.

Логическая доказательность. Теоретическая и эмпирическая обоснованность. Эти специфические черты научного познания имеет смысл рассмотреть вместе, поскольку логическая доказательность может быть представлена как один из видов теоретической обоснованности научного знания. Научное познание обязательно включает в себя теоретическую и эмпирическую обоснованность, логику и другие формы доказательства достоверности научной истины.

Современная логика не является однородным целым, напротив, в ней можно выделить относительно самостоятельные разделы или виды логик, которые возникали и разрабатывались в различные исторические периоды с разными целями.

Доказательство является наиболее распространенной процедурой теоретической обоснованности научного. В доказательстве можно выделить три элемента:

тезис – суждение, нуждающееся в обосновании;

аргументы, или основания, – достоверные суждения, из которых логически выводится и обосновывается тезис;

демонстрация – рассуждение, включающее одно или несколько умозаключений.

Эмпирическая обоснованность включает в себя процедуры подтверждаемости и повторяемости установленной зависимости или закона. К средствам подтверждаемости научного тезиса можно отнести научный факт, выявленную эмпирическую закономерность, эксперимент.

Критерий логической доказательности научной теории не всегда и не в полной мере реализуемы. В таких случаях в арсенал научных средств вводятся дополнительные логико-методологические принципы, такие, как принцип дополнительности, принцип неопределенности, неклассические логики и т.д.

Критерии научности могут быть не реализуемы. Тогда научное познание дополняется герменевтическими процедурами. Его суть заключается в следующем: необходимо сначала понять целое, чтобы затем стали ясны части и элементы.

Итак, наука как объективное и предметное познание действительности опирается на контролируемые (подтверждаемые и повторяющиеся) факты, рациональным образом сформулированные и систематизированные идеи и положения; утверждает необходимость в доказательстве. Критерии научности определяют специфику науки и раскрывают направленность человеческого мышления к объективному и универсальному познанию.

Все элементы научного комплекса находятся во взаимных отношениях, объединяются в определенные подсистемы и системы.

Наука как социальный институт

Социальный институт науки начал формироваться в Западной Европе в XVI-XVII вв.

Наука, включенная в решение проблем инновационной деятельности, стоящих перед обществом, выступает как особый социальный институт, функционирующий на основе специфической системы внутренних ценностей, присущих научному сообществу, «научному этосу».

Наука как социальная структура опирается в своем функционировании на шесть ценностных императива.

Императив универсализма утверждает внеличностный, объективный характер научного знания. С общеобязательностью научных истин приходится считаться всем другим формам познавательной деятельности человека.

Императив коллективизма говорит о том, что плоды научного познания принадлежат всему научному сообществу и обществу в целом. Они всегда являются результатом коллективного научного сотворчества, так как любой ученый опирается на какие-то идеи (знания) своих предшественников и современников.

Императив бескорыстности означает, что главной целью деятельности ученых должно быть служение истине. В науке истина не должна быть средством для достижения личных выгод, а только общественно значимой целью.

Императив организованного скептицизма предполагает не просто запрет на догматическое утверждение истины в науке, но, напротив, вменяет в профессиональную обязанность ученому критиковать взгляды своих коллег, если на то имеются хотя бы малейшие основания. Императив рационализма утверждает, что наука стремится к доказанному, логически организованному дискурсу, высшим арбитром истинности которого выступает рациональность.

Императив эмоциональной нейтральности запрещает людям науки использовать при решении научных проблем ресурсы эмоционально-психологической сферы – эмоции, личные симпатии или антипатии.

Важнейшей проблемой организации науки является воспроизводство кадров. Готовить таких людей к научной работе должна сама наука.

Итак, наука тесно связана с конкретным этапом процесса институционализации. В этом процессе она приобретает конкретные формы: с одной стороны, наука как социальный институт определяется ее интеграцией в структуры общества (экономические, социально-политические, духовные), с другой – она вырабатывает знания, нормы и нормативы, способствует обеспечению устойчивости общества.

История развития науки говорит о том, что самые ранние свидетельства науки можно найти в доисторические времена, такие как открытие огня, и развитие письменности. Ранние подобия записей содержат цифры и информацию о Солнечной системе.

Однако история развития науки со временем стала более важной для жизни человека.

Значимые этапы развития науки

Роберт Гроссетесте

1200-е годы:

Роберт Гроссетесте (1175 – 1253) основатель оксфордской философской и естественнонаучной школы, теоретик и практик экспериментального естествознания разработал основу для правильных методов современных научных экспериментов. Его работы включали принцип, согласно которому запрос должен основываться на поддающихся измерению доказательствах, подтвержденных путем тестирования. Ввел понятие о свете как телесной субстанции в первичной форме и энергии.

Леонардо да Винчи

1400-е годы:

Леонардо да Винчи (1452 – 1519) итальянский художник, ученый, писатель, музыкант. Начал свои изучения в поисках знаний о человеческом теле. Его изобретения в виде чертежей парашюта, летательной машины, арбалета, скорострельного оружия, робота, подобия танка. Художник, ученый и математик также собрал информацию об оптике в виде прожектора и вопросах гидродинамики.

1500-е годы:

Николаус Коперник (1473 -1543) продвинулся в понимании солнечной системы с открытием гелиоцентризма. Он предложил реальную модель, в которой Земля и другие планеты вращаются вокруг Солнца, которое является центром Солнечной системы. Основные идеи ученого были изложены в труде «О вращениях небесных сфер» который беспрепятственно распространялся по Европе и всему миру.

Йоханнес Кеплер

1600-е годы:

Йоханнес Кеплер (1571 -1630) немецкий математик и астроном. Основал на наблюдениях законы планетарного движения. Заложил основы эмпирического исследования движения планет и математических законов этого движения.

Галилео Галилей усовершенствовал новое изобретение, телескоп, и использовал его для изучения солнца и планет. В 1600-х годах также были достигнуты успехи в изучении физики, поскольку Исаак Ньютон разработал свои законы движения.

1700-е годы:

Бенджамин Франклин (1706 -1790) открыл, что молния — это электрический ток. Он также внес вклад в изучение океанографии и метеорологии. Понимание химии также развивалось в течение этого столетия, так как Антуан Лавуазье, названный отцом современной химии, разработал закон сохранения массы.

1800-е годы:

Вехи включали открытия Алессандро Вольты относительно электрохимических серий, которые привели к изобретению батареи.

Джон Дальтон также внес атомную теорию, которая гласит, что вся материя состоит из атомов, которые образуют молекулы.

Основу современного исследования выдвинул Грегор Мендель и раскрыл свои законы наследования.

В конце века Вильгельм Конрад Рентген обнаружил рентгеновские снимки, а закон Джорджа Ома послужил основой для понимания того как использовать электрические заряды.

1900-е годы:

Открытия Альберта Эйнштейна, наиболее известного своей теорией относительности доминировали в начале 20 века. Теория относительности Эйнштейна на самом деле две отдельные теории. Его особая теория относительности, которую он изложил в статье 1905 года «Электродинамика движущихся тел», пришла к выводу, что время должно изменяться в зависимости от скорости движущегося объекта относительно рамки отсчета наблюдателя. Его вторая теория общей относительности, которую он опубликовал как «Основу общей теории относительности», выдвинула идею, что материя вызывает искривление пространства вокруг себя.

История развития науки в области медицины навсегда изменилась Александром Флемингом с из плесневых грибов как исторически первого антибиотика.

Медицина, как наука, обязана также вакцине против полиомиелита в 1952 году которую открыл американский вирусолог Джонас Солк.

В следующем году Джеймс Д. Уотсон и Фрэнсис Крик открыли , которая представляет собой двойную спираль образованную с парой оснований, прикрепленных к сахарофосфатному остову.

2000-е годы:

В 21 веке был завершен первый проект , что привело к более глубокому пониманию ДНК. Это продвинуло изучение генетики, ее роли в биологии человека и ее использования в качестве предиктора заболеваний и других расстройств.

Таким образом, история развития науки всегда была направлена на рациональное объяснение, предсказание и контроле эмпирических явлений великими мыслителями, учеными и изобретателями.

Наука – явление историческое, проходящее в своем развитии ряд качественно-своеобразных этапов:

-классический (XVII–XIX вв.) – наука перестает быть частным, «любительским» занятием, становится профессией. Идет процесс десакрализации познавательной деятельности, возникает опытное естествознание, в которомгосподствует объективный стиль мышления, стремление познать предмет сам по себе, безотносительно к условиям его изучения. Создаются фундаментальные и специальные теории.

- неклассический (первая половина XX в. ), который связан с возникновением «Большой науки», создаются основные теории современного истолкования мира (теория относительности, новая космология, ядерная физика, квантовая механика, генетика и др.). Отвергается представлениеоб изучаемой реальности как не зависящей от средств ее познания. Неклассическаянаука осмысливает связи между знаниями объекта и характером средств и операций деятельности. Раскрытие сущности этих связей рассматривается в качестве условий объективно-истинного описанияи объяснения мира. Идет фронтальное внедрение научных идей в технически инновации, в производство и быт.

- постнеклассический (вторая половина XX в.), когда наука становится предметом всесторонней опеки государства, элементом его системы. Она реализует масштабные проекты типа атомной или космической программы, экологический мониторинг и т.д. В гносеологическом отношении этот период связан с формированием идей постнеклассической науки, учитывающей соотнесенность характера получаемых знаний об объекте не только с особенностью средств и операций деятельности субъекта, но и ценностно-целевыми структурами.

ОСНОВНЫЕ ВЕРСИИ ВОЗНИКНОВЕНИЯ НАУКИ.

Относительно возникновения науки существуют пять точек зрения:

· Наука была всегда, начиная с момента зарождения человеческого общества, так как научная любознательность органично присуща человеку;

· Наука возникла в Древней Греции, так как именно здесь знания впервые получили свое теоретическое обоснование (общепринятое);

· hНаука возникла в Западной Европе в XII-XIV вв., поскольку проявился интерес к опытному знанию и математике;

· Наука начинается в XVI-XVIIвв., и благодаря работам Г. Галилея, И. Кеплера, X. Гюйгенса и И. Ньютона, создается первая теоретическая модель физики на языке математики;

· Наука начинается с первой трети XIXв., когда исследовательская деятельность была объединена с высшим образованием.

КЛАССИФИКАЦИЯ НАУК.

Сложную, но очень важную проблему представляет собойклассификация наук. Разветвленная система многочисленных и многообразных исследований, различаемых по объекту, предмету, методу, степени фундаментальности, сфере применения и т. п., практически исключает единую классификацию всех наук по одному основанию. В самом общем виде науки делятся на естественные, технические, общественные (социальные) и гуманитарные.

Кестественным наукам относятся науки:

§ о космосе, его строении, развитии (астрономия, космология, космогония, астрофизика, космохимия и проч.);

§ Земле (геология, геофизика, геохимия и др.);

§ физических, химических, биологических системах и процессах, формах движения материи (физика и т. п.);

§ человеке как биологическом виде, его происхождении и эволюции (анатомия и т. д.).

Технические науки содержательно основываются на естественных науках. Они изучают разлииные формы и направления развития техники (теплотехника, радиотехника, электротехника и проч.).

Общественные (социальные ) науки также имеют ряд направлений и изучают общество (экономика, социология, политология, юриспруденция и т. п.).

Гуманитарные науки - науки о духовном мире человека, об отношении к окружающему миру, обществу, себе подобным (педагогика, психология, эвристика, конфликтология и др.).

Между блоками наук имеются связующие звенья; одни и те же науки могут частично входить в разные группы (эргономика, медицина, экология, инженерная психология и др.), особенно подвижна грань между общественными и гуманитарными науками (история, этика, эстетика и проч.).

Особое место в системе наук занимаютфилософия, математика, кибернетика, информатика и т. п., которые в силу своего общего характера применяются в любых исследованиях.

В ходе исторического развития наука из занятия одиночек (Архимед) постепенно превращается в особую, относительно самостоятельную форму общественного сознания и сферу человеческой активности. Она выступает как продукт длительного развития человеческой культуры, цивилизации, особый общественный организм со своими типами общения, разделения и кооперирования отдельных видов научной деятельности.

Роль науки в условиях научно-технической революции постоянно растет. Среди ее основных функций необходимо назвать следующие:

§ мировоззренческая (наука объясняет мир);

§ гносеологическая (наука способствует познанию мира);

§ преобразующая (наука выступает фактором общественного развития: она лежит в основе процессов современного производства, создания передовых технологий, существенно увеличивая производительные силы общества).

КЛАССИФИКАЦИЯ ЮРИДИЧЕСКИХ НАУК.

Классификацией юридических наук называется способ группировки (деления) по какому – либо критерию, называемому основанием классификации (деления). Юридические науки можно классифицировать по различным основаниям, но в теории государства и права получило признание классификации юридических наук только по такому основанию как предмет.

Поэтому юридические науки в литературе классифицируются следующим образом:

а) общетеоретические (общая теория государства и права, общая теория правовой системы общества);

б) исторические (история государства и права России, всеобщая история государства и права и др.);

в) отраслевые (гражданское, семейное, уголовное право и т.п.);

г) прикладные (судебная статистика, криминалистика и др.);

д) юридические науки, изучающие иностранное право (государственное права зарубежных стран и т.п.);

е) международно-правовые науки (частное, публичное, морское, космическое право и др.).

23. СТЫКОВЫЕ НАУКИ: ПОНЯТИЕ И ВИДЫ.

"Стыковые" науки выражают наиболее общие, существенные свойства и отношения, присущие совокупности форм движения. В связи с тем, что резких границ между отдельными науками и научными дисциплинами нет, особенно в последнее время, в современной науке значительное развитие получили междисциплинарные и комплексные исследования, объединяющие представителей весьма далеких друг от друга научных дисциплин и использующие методы разных наук. Все это делает проблему классификации наук весьма сложной.

Примеры: Биохимия и Биофизика