Биографии Характеристики Анализ

Вязкость или внутреннее трение. Вязкость

1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона.

2. Ньютоновские и неньютоновские жидкости. Кровь.

3. Ламинарное и турбулентное течения, число Рейнольдса.

4. Формула Пуазейля, гидравлическое сопротивление.

5. Распределение давления при течении реальной жидкости по трубам различного сечения.

6. Методы определения вязкости жидкостей.

7. Влияние вязкости на некоторые медицинские процедуры. Ламинарность и турбулентность газового потока при наркозе. Введение жидкостей через капельницу и шприц. Риноманометрия. Фотогемотерапия.

8. Основные понятия и формулы.

9. Задачи.

Гидродинамика - раздел физики, в котором изучают вопросы движения несжимаемых жидкостей и их взаимодействие с окружающими телами.

8.1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона

В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Рассмотрим это явление на следующем опыте (рис. 8.1).

Рис. 8.1. Течение вязкой жидкости между пластинами

Поместим слой жидкости между двумя параллельными твердыми пластинами. «Нижняя» пластина закреплена. Если двигать «верхнюю» пластину с постоянной скоростью v 1 , то c такой же скоростью будет двигаться самый «верхний» 1-й слой жидкости, который считаем «прилипшим» к верхней пластине. Этот слой влияет на нижележащий непосредственно под ним 2-й слой, заставляя его двигаться со скоростью v 2 , причем v 2 < v 1 . Каждый слой (выделим n слоев) передает движение нижележащему слою с меньшей скоростью. Слой, непосредственно «прилипший» к «нижней» пластине, остается неподвижным.

Слои взаимодействуют друг с другом: n-й слой ускоряет (п+1)-й слой, но замедляет (п-1)-й слой. Таким образом, наблюдается изменение скорости течения жидкости в направлении, перпендикулярном поверхности слоя (ось х). Такое изменение характеризуют производной dv/dx, которую называют градиентом скорости.

Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Эти силы пропорциональны площади взаимодействующих слоев S и градиенту скорости. Для многих жидкостей силы внутреннего трения подчиняются уравнению Ньютона:

Коэффициент пропорциональности η называют коэффициентом внутреннего трения или динамической вязкостью (размерность η в СИ: Пас).

8.2. Ньютоновские и неньютоновские жидкости.

Кровь

Ньютоновская жидкость

Жидкость, которая подчиняется уравнению Ньютона (8.1), называют ньютоновской. Коэффициент внутреннего трения ньютоновской жидкости зависит от ее строения, температуры и давления, но не зависит от градиента скорости.

Ньютоновская жидкость - жидкость, вязкость которой не зависит от градиента скорости.

Свойствами ньютоновской жидкости обладают большинство жидкостей (вода, растворы, низкомолекулярные органические жидкости) и все газы.

Вязкость определяется с помощью специальных приборов - вискозиметров. Значения коэффициента вязкости η для некоторых жидкостей представлены в таблице.

Значение вязкости крови, представленное в таблице, относится к здоровому человеку в спокойном состоянии. При тяжелой физической работе вязкость крови увеличивается. На величину вязкости крови влияют и некоторые заболевания. Так, при сахарном диабете вязкость крови увеличивается до 23?10 -3 Пас, а при туберкулезе уменьшается до 1*10 -3 Пас. Вязкость сказывается на таком клиническом параметре, как скорость оседания эритроцитов (СОЭ).

Неньютоновская жидкость

Неньютоновская жидкость - жидкость, вязкость которой зависит от градиента скорости.

Свойствами неньютоновской жидкости обладают структурированные дисперсные системы (суспензии, эмульсии), растворы и расплавы некоторых полимеров, многие органические жидкости и др.

При прочих равных условиях вязкость таких жидкостей значительно больше, чем у ньютоновских жидкостей. Это связано с тем, что благодаря сцеплению молекул или частиц в неньютоновской жидкости образуются пространственные структуры, на разрушение которых затрачивается дополнительная энергия.

Кровь

Цельная кровь (суспензия эритроцитов в белковом растворе - плазме) является неньютоновской жидкостью вследствие агрегации эритроцитов.

Эритроцит в норме имеет форму двояковогнутого диска диаметром около 8 мкм. Он может существенно менять свою форму, например при различной осмолярности среды (рис. 8.2).

В неподвижной крови эритроциты агрегируют, образуя так называемые «монетные столбики», состоящие из 6-8 эритроцитов. Электронно-микроскопическое исследование тончайших срезов монетных столбиков выявило параллельность поверхностей прилежащих эритроцитов и постоянное межэритроцитарное расстояние при агрегации (рис. 8.3).

На рисунке 8.4 показана (зарисовка) агрегация цельной крови во влажных мазках, которая представляет собой большие конгломераты, состоящие из многих монетных столбиков. При перемешивании крови агрегаты разрушаются, а после прекращения перемешивания вновь восстанавливаются.

При протекании крови по капиллярам агрегаты эритроцитов распадаются и вязкость падает.

Вживление специальных прозрачных окошек в кожные складки позволило сфотографировать течение крови в капиллярах. На рисунке 8.5, выполненном по такой фотографии, отчетливо видна деформация кровяных клеток.

Рис. 8.2. Усредненное поперечное сечение эритроцита при различной осмолярности среды

Рис. 8.3. Схема электроннограммы агрегата из нормальных эритроцитов

Рис. 8.4. Агрегация цельной крови

Рис. 8.5. Деформация эритроцитов в капиллярах

Деформируясь, эритроциты могут продвигаться один за другим в капиллярах диаметром всего 3 мкм. Именно в таких тонких капиллярных сосудах и происходит газообмен между кровью и тканями.

Вблизи стенки капилляра образуется очень тонкий слой плазмы, который играет роль смазки. Благодаря этому сопротивление движению эритроцитов уменьшается.

8.3. Ламинарное и турбулентное течения, число Рейнольдса

В жидкости течение может быть ламинарным или турбулентным. На рисунке 8.6 это показано для одной окрашенной струи жидкости, текущей в другой.

В случае (а) струя окрашенной жидкости сохраняет неизменную форму и не смешивается с остальной жидкостью. В случае (б) окрашенная струя разрывается случайными завихрениями, картина которых меняется с течением времени. К турбулентному течению понятие «трубка тока» неприменимо.

Рис. 8.6. Ламинарное (а) и турбулентное (б) течения струи жидкости

Ламинарное (слоистое) течение - такое течение, при котором слои жидкости текут, не перемешиваясь, скользя друг относительно друга. Ламинарное течение является стационарным - скорость течения в каждой точке пространства остается постоянной.

Рассмотрим ламинарное течение ньютоновской жидкости в трубе радиуса R и длины L, давления на концах которой постоянны (Р 1 и Р 2). Выделим цилиндрическую трубку тока радиуса r (рис. 8.7).

На жидкость внутри этой трубки действуют сила давления F д = πг 2 (Р 1 - Р 2) и сила вязкого трения F тр = 2πrLηdv/dr (2πrL - пло-

Рис. 8.7. Трубка тока и действующая на нее сила трения

щадь боковой поверхности). Так как течение стационарное, сумма этих сил равна нулю:

В соответствии с приведенным выражением имеет место параболическая зависимость скорости v слоев жидкости от расстояния от них до оси трубы r (огибающая всех векторов скорости есть парабола) (рис. 8.8).

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r = 0), слой, «прилипший» к стенке (r = R), неподвижен.

Рис. 8.8. Скорости слоев текущей через трубку жидкости распределены по параболе

Турбулентное (вихревое) течение - такое течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Такое движение сопровождается появлением звука. Турбулентное течение - это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости. Элементы жидкости совершают движение по сложным неупорядоченным траекториям, что приводит к перемешиванию слоев и образованию местных завихрений.

Структура турбулентного течения представляет собой нестационарную совокупность очень большого числа малых вихрей, наложенных на основное «среднее течение».

При этом говорить о течении в ту или иную сторону можно только в среднем за какой-то промежуток времени.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости: часть энергии расходуется на беспорядочное движение, направление которого отличается от основного направления потока, что в случае крови приводит к дополнительной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболевания. Этот шум прослушивается, например, на плечевой артерии при измерении давления крови.

Турбулентное движение крови может возникнуть вследствие неравномерного сужения просвета сосуда (или локального выпирания). Турбулентное течение создает условия для оседания тромбоцитов и образования агрегатов. Этот процесс часто является пусковым

в формировании тромба. Кроме того, если тромб слабо связан со стенкой сосуда, то под действием резкого перепада давления вдоль него вследствие турбулентности он может начать двигаться.

Число Рейнольдса

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

Английский физик и инженер Осборн Рейнольдс (1842-1912) составил безразмерную комбинацию, величина которой и определяет характер течения. Впоследствии эта комбинация была названа числом Рейнольдса (Re):

Число Рейнольдса используют при моделировании гидро- и аэродинамических систем, в частности кровеносной системы. Модель должна иметь такое же число Рейнольдса, как и сам объект, в противном случае соответствия между ними не будет.

Важным свойством турбулентного течения (по сравнению с ламинарным) является высокое сопротивление потоку. Если бы удалось «погасить» турбулентность, то удалось бы достичь огромной экономии мощности двигателей кораблей, подводных лодок, самолетов.

8.4. Формула Пуазейля, гидравлическое сопротивление

Рассмотрим, от каких факторов зависит объем жидкости, протекающей по горизонтальной трубе.

Формула Пуазейля

При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9. Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р 1 - Р 2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

Причины движения крови по сосудам

Главная движущая сила кровотока - разность давлений в начале и в конце сосудистой системы: в большом круге кровообращения - разность давлений в аорте и правом предсердии, в малом круге - в легочной артерии и левом предсердии.

Дополнителные факторы, способствующие движению крови по венам в сторону сердца:

1) полулунные клапаны вен конечностей, которые открываются под напором крови только в сторону сердца;

2) присасывающее действие грудной клетки, связанное с отрицательным давлением в ней при вдохе;

3) сокращение мышц конечностей, например, при хотьбе. При этом происходит надавливание на стенки вен, и кровь, благодаря клапанам и присасывающему действию грудной клетки при вдохе, выжимается в участки, расположенные ближе к сердцу.

Гидравлическое сопротивление

Проведем аналогию между формулой Пуазейля и формулой закона Ома для участка цепи тока: I = ΔU /R. Для этого перепишем формулу (8.8) в следующем виде: Q = (P 1 - Р 2)/. Если сравнить эту формулу с законом Ома для электрического тока, то объем жидкости, протекающей через сечение трубы за одну секунду, соответствует силе тока; разность давлений на концах трубы соответствует разности потенциалов; а величина 8ηL/(πR 4) соответствует электрическому сопротивлению. Ее называют гидравлическим сопротивлением:

Гидравлическое сопротивление трубы прямо пропорционально ее длине и обратно пропорционально четвертой степени радиуса.

Если изменением кинетической энергии жидкости на некотором участке можно пренебречь, то рассмотренная аналогия применима и к потоку переменного сечения:

гидравлическим сопротивлением участка называется отношение перепада давлений к объему жидкости, протекающему за 1 секунду:

Наличие гидравлического сопротивления связано с преодолением сил внутреннего трения.

Законы гидродинамики значительно сложнее законов постоянного тока, поэтому и законы соединения труб (кровеносных сосудов) сложнее законов соединения проводников. Так, например, места резкого сужения потока (даже при небольшой длине) обладают большим собственным гидравлическим сопротивлением. Этим и объясняется значительное увеличение гидравлического сопротивления кровеносного сосуда при образовании небольшой бляшки.

Наличие собственного сопротивления у мест резкого сужения потока необходимо учитывать при расчете сопротивления участка, состоящего

Рис. 8.10. Трубы, соединенные последовательно (а) и параллельно (б)

из труб различного диаметра. На рис. 8.10,а показано последовательное сопротивление трех труб. Места сужения обладают собственным сопротивлением Х 12 и Х 23 . Поэтому сопротивление участка равно

Электрический аналог (8.13) формулы для расчета гидродинамического сопротивления параллельного соединения (рис 8.10, б) также требует учета сопротивлений мест соединения труб.

8.5. Распределение давления при течении реальной жидкости по трубам различного сечения

При течении по горизонтальной трубе реальной жидкости работа внешних сил расходуется на преодоление внутреннего трения. Поэтому статическое давление вдоль трубы постепенно падает. Этот эффект может быть продемонстрирован на простом опыте. Установим в разных местах горизонтальной трубы, по которой течет вязкая жидкость, манометрические трубки (рис. 8.11).

Рис. 8.11. Падение давления вязкой жидкости в трубах различного сечения

Из рисунка видно, что при постоянном сечении трубы давление падает пропорционально длине. При этом скорость падения давления (dP/dl ) увеличивается при уменьшении сечения трубы. Это объясняется ростом гидравлического сопротивления при уменьшении радиуса.

В кровеносной системе человека на капилляры приходится до 70 % падения давления.

8.6. Методы определения вязкости жидкостей

Совокупность методов измерения вязкости жидкости называется вискозиметрией. Прибор для измерения вязкости называется вискозиметром. В зависимости от метода измерения вязкости используют следующие типы вискозиметров.

1. Капиллярный вискозиметр Оствальда основан на использовании формулы Пуазейля. Вязкость определяется по результату измерения времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

2. Медицинский вискозиметр Гесса с двумя капиллярами, в которых движутся две жидкости (например, дистиллированная вода и кровь). Вязкость одной жидкости должна быть известна. Учитывая, что перемещение жидкостей за одно и то же время обратно пропорционально их вязкости, вычисляют вязкость второй жидкости.

3. Вискозиметр, основанный на методе Стокса, согласно которому при движении шарика радиуса R в жидкости с вязкостью η при небольшой скорости v сила сопротивления пропорциональна вязкости этой жидкости: F = 6πηRv (формула Стокса). Эритроциты перемещаются в вязкой жидкости - плазме крови. Так как эритроциты имеют дискообразную форму и оседают в вязкой жидкости, то скорость их оседания (СОЭ) можно определить приближенно по формуле Стокса. О скорости оседания судят по количеству плазмы над осевшими эритроцитами. В норме скорость оседания эритроцитов равна: 7-12 мм/ч для женщин и 3-9 мм/ч для мужчин.

4. Вискозиметр ротационный (рис. 8.12) состоит из двух коаксиальных (соосных) цилиндров. Радиус внутреннего цилиндра - R, радиус внешнего цилиндра - R+ΔR (ΔR << R). Пространство между цилин-

Рис. 8.12. Ротационный вискозиметр (сечения вдоль и перпендикулярно оси)

драми заполняют исследуемой жидкостью до некоторой высоты h. Затем внутренний цилиндр приводят во вращение, прикладывая определенный момент сил М, и измеряют установившуюся частоту вращения ν.

Вязкость жидкости вычисляют по формуле

Применяя ротационный вискозиметр, можно измерять вязкость при разных угловых скоростях вращения ротора. Данный метод позволяет установить зависимость между вязкостью и градиентом скорости, что важно для неньютоновских жидкостей.

8.7. Влияние вязкости на некоторые медицинские

процедуры

Наркоз

В некоторых медицинских мероприятиях используется наркоз. При этом необходимо по возможности уменьшить усилия, затрачиваемые больным на дыхание через эндотрахеальные и другие дыхательные трубки, посредством которых подается дыхательная смесь из аппаратов для наркоза (рис. 8.13).

Для обеспечения плавного газового потока используются плавно изогнутые соединительные трубки. Неровности внутренних стенок трубки, резкие изгибы и изменения внутреннего диаметра трубок

Рис. 8.13. Дыхание больного через эндотрахеальную трубку

Рис. 8.14. Возникновение турбулентности газового потока в трубке с резкими неоднородностями по сечению

и соединений часто являются причинами перехода ламинарного потока в турбулентный (рис. 8.14), что затрудняет процесс дыхания у больного.

На рисунке 8.15 приведен рентгеновский снимок головы больного, показывающий, что эндотрахеальная трубка перегнулась в глотке. В данном случае у больного обязательно возникнут затруднения дыхания.

Введение жидкостей через шприц и капельницу

Шприц - очень простой прибор (рис. 8.16), который используют для инъекций. И тем не менее при описании его работы часто допускается ошибка, связанная с нахождением перепада давлений (ΔР) на игле, которая приводит к неверному результату. Считают, что

Рис. 8.15. Рентгеновский снимок, на котором виден перегиб дыхательной трубки

Рис. 8.16. Работа шприца

ΔP = F/S, где F - сила, действующая на поршень, а S - его площадь. При этом исходят из следующих соображений: поршень движется медленно и динамическим давлением жидкости в цилиндре можно

пренебречь. Это неверно - на входе в иглу линии тока сгущаются и скорость движения жидкости резко возрастает.

Строгий расчет (см. задачу 8.12) приводит к следующему результату. Перепад давления на игле (ΔР) является решением квадратного уравнения

Значения всех величин подставляются в СИ.

Ниже приводятся результаты расчетов для двух игл длины 4 см, диаметры которых отличаются в 1,5 раза.

Из результатов, представленных в нижней таблице, видно, что АР вовсе не равно F/S! При этом увеличение диаметра иглы в 1,5 раза приводит к увеличению объемной скорости всего в 3,5 раза, а не в 5 раз (1,5 4 = 5,06), как этого можно было ожидать. Ламинарный характер течения имеет место в обоих случаях.

Другим прибором для внутривенного вливания является капельница (рис. 8.17), которая позволяет вводить жидкость самотеком за счет разности давлений, создаваемой при подъеме камеры с препаратом на определенную высоту (~60 см).

Формулы 8.14, 8.15 применимы и здесь, если заменить величину F/S на гидростатическое давление столба жидкости pgh. При этом S - площадь сечения трубки, а u - скорость движения жидкости в ней. Ниже приведены результаты расчетов для h = 60 см.

Полученные значения являются правильными, но не соответствуют тому, что происходит на самом деле. В данном случае получается завышенное значение для объемной скорости ввода препарата - 0,827 см 3 /с. Реальная скорость Q = 0,278 см 3 /с (из расчета 500 мл за 30 минут). Расхождение получается из-за того, что не учтено гидравлическое сопротивление, создаваемое устройством, пережимающим трубку.

Риноманометрия

Полноценное носовое дыхание является необходимой предпосылкой для нормальной функции слуховой трубы, которая во многом зависит от степени аэрации носоглотки и правильного прохождения воздушных потоков в полости носа. Причиной нарушения носового дыхания часто являются некоторые врожденные патологии, например расщелина верхней губы и неба. Часто при лечении этой патологии

Рис. 8.17. Введение препарата через капельницу

используются хирургические методы, например реконструктивная ринохейлопластика (ринопластика - операции восстановления носа). Для объективной характеристики результатов оперативного вмешательства используется риноманометрия - метод определения объема носового дыхания и сопротивления. Скорость воздушного потока характеризуется формулой Пуазейля, при этом учитывается градиент давления, обусловленный изменением давления в носоглоточном пространстве; диаметр и длина носовой полости; характеристики воздушного потока в носоглотке (ламинарность или турбулентность). Данный метод реализуется с помощью прибора - риноманометра, который позволяет регистрировать давление в одной половине носа, пока пациент дышит через другую. Это осуществляется с помощью катетера, который специально крепится в носу. Компьютерная схема риноманометра позволяет автоматически измерить общий объем и сопротивление воздуха на вдохе и выдохе, раздельно проанализировать поток и сопротивление воздуха в каждой половине носа и рассчитать их соотношение. Это позволяет определить носовое дыхание до и после операции и оценить степень восстановления носового дыхания.

Фотогемотерапия

При заболеваниях, сопровождающихся повышением вязкости крови, для уменьшения вязкости крови применяется метод фотогемотерапии. Он заключается в том, что у больного берут небольшое количество крови (примерно 2 мл/кг веса), подвергают ее УФ-облучению и вводят обратно в кровеносное русло. Примерно через 5 мин после введения больным 100-200 мл облученной крови наблюдается значительное снижение вязкости во всем объеме (около 5 л) циркулирующей крови. Исследования зависимости вязкости от скорости движения крови показали, что при фотогемотерапии вязкость сильнее всего снижается (примерно на 30 %) в медленно движущейся крови и совсем не меняется в быстро движущейся крови. УФ-облучение вызывает снижение способности эритроцитов к агрегации и увеличивает деформируемость эритроцитов. Помимо этого происходит снижение образования тромбов. Все эти явления приводят к значительному улучшению как макро-, так и микроциркуляции крови.

8.8. Основные понятия и формулы

Окончание таблицы

8.9. Задачи

1. Вывести формулу для определения вязкости ротационным вискозиметром. Дано: R, ΔR, h, ν, M.

2. Определить время протекания крови через капилляр вискозиметра, если вода протекает через него за 10 с. Объемы воды и крови одинаковы. Плотность воды и крови равны p 1 = 1 г/см 3 , ρ 2 = 1,06 г/см 3 . Вязкость крови относительно воды равна 5 (η 2 /η 1 = 5).

3. Допустим, что в двух кровеносных сосудах градиент давления одинаков, а поток крови (объемный расход) во втором сосуде на 80% меньше, чем в первом. Найти отношение их диаметров.

4. Какова должна быть разность давлений АР на концах капилляра радиуса r = 1 мм и длины L = 10 см, чтобы за время t = 5 с через него можно было пропустить объем V = 1 см 3 воды (коэффициент вязкости η 1 = 10 -3 Пас) или глицерина (η 2 = 0,85 Пас)?

5. Падение давления в кровеносном сосуде длины L = 55 мм и радиуса r = 1,5 мм равно 365 Па. Определить, сколько миллилитров крови протекает через сосуд за 1 минуту. Коэффициент вязкости крови η = 4,5 мПа-с.

6. При атеросклерозе, вследствие образования бляшек на стенках сосуда, критическое значение числа Рейнольдса может снизиться до 1160. Определить для этого случая скорость, при которой возможен переход ламинарного течения крови в турбулентное в сосуде диаметром 2,5 мм. Плотность крови равна ρ = 1050 кг/м 3 , вязкость крови равна η = 5х10 -3 Пас.

7. Средняя скорость крови в аорте радиусом 1 см равна 30 см/с. Выяснить, является ли данное течение ламинарным? Плотность крови ρ = 1,05х10 3 кг/м 3 .

η = 4х10 -3 Па-с; Rе кр = 2300.

8. При большой физической нагрузке скорость кровотока иногда увеличивается вдвое. Пользуясь данными примера задачи (7), определить характер течения в этом случае.

Решение

Re = 2x1575 = 3150. Течение турбулентное.

Ответ: число Рейнольдса больше критического значения, поэтому течение может стать турбулентным.


10. Определить максимальную массу крови, которая может пройти за 1 с через аорту при сохранении ламинарного характера течения. Диаметр аорты D = 2 см, вязкость крови η = 4x10 -3 Па-с.

11. Определить максимальную объемную скорость протекания жидкости по игле шприца с внутренним диаметром D = 0,3 мм, при которой сохраняется ламинарный характер течения.

12. Найти объемную скорость жидкости в игле шприца. Плотность жидкости - ρ; ее вязкость - η; диаметр и длина иглы D и L соответственно; сила, действующая на поршень, - F; площадь поршня - S.

Интегрируя по r, получим:

Пусть поршень шприца движется под действием силы F со скоростью u. Тогда мощность внешней силы N F = Fu.

Суммарная работа всех сил равна изменению кинетической энергии. Следовательно,

Подставив найденное значение A P во второе уравнение, получим все интересующие нас величины: скорость поршня и, объемную скорость кровотока Q, скорость жидкости в игле v.

Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений , возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.

Физический смысл вязкости

Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ 1

Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ 1 .

Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.

Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде

где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения

μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.

Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.

Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу

Вязкость кинематическая, динамическая и абсолютная

Теперь определимся с различными понятиям вязкости:

Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.

Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.

Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.

Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести

Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.

Коэффициент вязкости жидкости

В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости

где ρ – плотность жидкости.

Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.

В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).

Вязкость некоторых жидкостей

Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью

Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.

Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.

Вязкость жидкостей, как установлено из опытов, зависит так же и от давления . Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.

Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.

Методы измерения вязкости. Метод Стокса.

Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.

Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.

Существует следующие методы определения вязкости жидкости.

Капиллярный метод.

Сущность этого метода заключается в использовании сообщающихся сосудов . Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.

Метод по Гессе.

Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.

Ротационный метод.

Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.

Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.

Метод Стокса

Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.

Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.

Видео по теме вязкости

Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.

Вязкость (внутреннее трение) - это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою.

На рисунке представлены два слоя, отстоящие друг от друга на расстоянии х и движущиеся со скоростями v 1 и v 2 При этом v 1 -v 2 = v. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина v/x показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения

где коэффициент пропорциональности , зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью).

Единица вязкости - паскаль секунда (Па с):1 Па с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м 2 поверхности касания слоев (1 Па с=1 Н с/м 2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей т] с увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них

механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18-40 ° С падает в четыре раза. Советский физик П. Л. Капица (1894-1984; Нобелевская премия 1978г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю.

Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента

скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах;(рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения.

Английский ученый О. Рейнольдс (1842-1912) в 1883 г. установил, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса:

где v = / - кинематическая вязкость;

 - плотность жидкости; (v)-средняя по сечению трубы скорость жидкости; d - характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса (Re1000) наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000:Re2000, а при Re = 2300 (для гладких труб) течение - турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.

При течении жидкости по трубе различные слои имеют разные скорости. Наибольшая скорость течения у центрального слоя. Слой, прилегающий к стенкам трубы, покоится. Поэтому в направлении оси Х, перпендикулярной к направлению течения, возникает градиент скорости. Перенос импульса от слоя к слою осуществляется молекулами, изредка совершающими скачкообразные поступательные движения, меняя при этом положение равновесия, около которых они совершают колебания. При не очень высоких температурах такие перескоки происходят сравнительно редко. Перенос импульса вызывает изменение скорости движения слоев, то есть начинает действовать сила, которая по закону Ньютона равна

где F - сила внутреннего трения (вязкости) между слоями жидкости; - градиент скорости, характеризующий быстроту изменения скорости вдоль оси х, перпендикулярной к скорости; S - площадь поверхности, разделяющая два соседних слоя жидкости; h - коэффициент вязкости или коэффициент внутреннего трения.

Сила веса

Вес -- сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. (В случае нескольких опор под весом понимается суммарная сила, действующая на все опоры; впрочем, для жидких и газообразных опор в случае погружения тела в них часто делается исключение, т. е. тогда силы воздействия тела на них исключают из веса и включают в силу Архимеда

Сила, выталкивающая целиком погружённое тело в жидкость или газ, равна весу жидкости в объёме этого тела. Силу можно рассчитать с помощью математического выражения:

F- сила Архимеда

p- плотность жидкости

g - ускорение свободного падения

V - объём, погружаемого тела.

Следовательно, архимедова сила зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.

Определим теперь вес тела, погружённого в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости Р1 будет меньше веса тела в вакууме на архимедову силу.

Р1=Р - F P1= mg - mжg = g (m - mж)

Таким образам, если тело погружено в жидкость (или газ), то оно теряет в своём весе столько, сколько весит вытесненная им жидкость (или газ).

Плавание тел

  • 1) Если сила тяжести больше архимедовой силы, то тело будет опускаться на дно, тонуть.
  • 2) Если сила тяжести равна архимедовой силе, то тело может находиться в равновесии в любом месте жидкости, то есть тело плавает внутри жидкости.
  • 3) Если сила тяжести меньше архимедовой силы, то тело будет подниматься из жидкости, всплывать.

Вязкость (внутреннее трение) - это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою.

На рисунке представлены два слоя, отстоящие друг от друга на расстоянии х и движущиеся со скоростями v 1 и v 2 При этом v 1 -v 2 = v. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина v/x показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения

где коэффициент пропорциональности , зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью).

Единица вязкости - паскаль секунда (Па с):1 Па с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м 2 поверхности касания слоев (1 Па с=1 Н с/м 2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей т] с увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них

механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18-40 ° С падает в четыре раза. Советский физик П. Л. Капица (1894-1984; Нобелевская премия 1978г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю.

Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента

скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах;(рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения.

Английский ученый О. Рейнольдс (1842-1912) в 1883 г. установил, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса:

где v = / - кинематическая вязкость;

 - плотность жидкости; (v)-средняя по сечению трубы скорость жидкости; d - характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса (Re1000) наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000:Re2000, а при Re = 2300 (для гладких труб) течение - турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.