Биографии Характеристики Анализ

Железо получение и применение. Химические и физические свойства железа

Бражникова Алла Михайловна,

ГБОУ СОШ №332

Невского района Санкт-Петербурга

Настоящее пособие рассматривает вопросы по теме «Химия железа». Помимо традиционных теоретических вопросов рассматриваются вопросы, выходящие за рамки базового уровня. Содержатся вопросы для самоконтроля, которые дают возможность учащимся проверить уровень усвоения ими соответствующего учебного материала при подготовке к ЕГЭ.

ГЛАВА 1. ЖЕЛЕЗО - ПРОСТОЕ ВЕЩЕСТВО.

Строение атома железа.

Железо - d-элемент, находится в побочной подгруппе VIIIгруппы периодической системы. Самый распространенный в природе металлпосле алюминия. Входит в состав многих минералов: бурый железняк (гематит) Fe 2 O 3 , магнитный железняк (магнетит) Fe 3 O 4 , пирит FeS 2 .

Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .

Валентность: II, III, (IV).

Степени окисления: 0, +2, +3, +6 (только в ферратах K 2 FeO 4).

Физические свойства.

Железо - блестящий, серебристо-белый металл, т. пл. - 1539 0 С.

Получение.

Чистое железо можно получить восстановлением оксидов водородом при нагревании, а также электролизом растворов его солей. Доменный процесс - получение железа в виде сплавов с углеродом (чугун и сталь):

1) 3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2

2) Fe 3 O 4 + CO → 3FeO + CO 2

3) FeO + CO → Fe + CO 2

Химические свойства.

I. Взаимодействие с простыми веществами - неметаллами

1) С хлором и серой (при нагревании). Более сильным окислителем хлором железо окисляется до Fe 3+ , более слабым - серой - до Fe 2+ :

2Fe 2 + 3Cl → 2FeCl 3

2) С углем, кремнием и фосфором (при высокой температуре).

3) В сухом воздухе окисляется кислородом, образуя окалину - смесь оксидов железа (II) и (III):

3Fe + 2O 2 → Fe 3 O 4 (FeO Fe 2 O 3)

II. Взаимодействие со сложными веществами.

1) Во влажном воздухе протекает коррозия (ржавление) железа:

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

При высокой температуре (700 - 900 0 С) в отсутствие кислорода железо реагирует с парами воды, вытесняя из неё водород:

3Fe+ 4H 2 O→ Fe 3 O 4 + 4H 2

2) Вытесняет водород из разбавленной соляной и серной кислот:

Fe+ 2HCl= FeCl 2 + H 2

Fe + H 2 SO 4(разб.) = FeSO 4 + H 2

Высококонцентрированные серная и азотная кислоты при обычной температуре с железом не реагируют вследствие его пассивации.

Разбавленной азотной кислотой железо окисляется до Fe 3+ , продукты восстановления HNO 3 зависят от её концентрации и температуры:

8Fe + 30HNO 3(оч. разб.) →8Fe(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O

Fe + 4HNO 3(разб.) → Fe(NO 3) 3 + NO + 2H 2 O

Fe + 6HNO 3(конц.) → (температура) Fe(NO 3) 3 + 3NO 2 + 3H 2 O

3) Реакция с растворами солей металлов, стоящих правее железа в электрохимическом ряду напряжений металлов:

Fe + CuSO 4 → Fe SO 4 + Cu

ГЛАВА 2. СОЕДИНЕНИЯ ЖЕЛЕЗА (II).

Оксид железа(II ) .

Оксид FeO- черный порошок, нерастворим в воде.

Получение.

Восстановление из оксида железа (III) при 500 0 С действием оксида углерода (II):

Fe 2 O 3 + CO→2FeO+ CO 2

Химические свойства.

Основный оксид, ему соответствует гидрокосид Fe(OH) 2: растворяется в кислотах, образуя соли железа (II):

FeO+ 2HCl→ FeCl 2 + H 2 O

Гидроксид железа (II ).

Гидроксид железа Fe(OH) 2 - нерастворимое в воде основание.

Получение.

Действие щелочей на соли железа () без доступа воздуха:

FeSO 4 + NaOH → Fe(OH) 2 ↓+ Na 2 SO 4

Химические свойства .

Гидроксид Fe(OH) 2 проявляет основные свойства, хорошо растворяется в минеральных кислотах, образуя соли.

Fe(OH) 2 + H 2 SO 4 →FeSO 4 + 2H 2 O

При нагревании разлагается:

Fe(OH) 2 → (температура) FeO+ H 2 O

Окислительно-восстановительные свойства.

Соединения железа (II) проявляют достаточно сильные восстановительные свойства, устойчивы только в инертной атмосфере; на воздухе (медленно) или в водном растворе при действии окислителей (быстро) переходят в соединения железа (III):

4 Fe(OH) 2 (в осадок)+ O 2 + 2H 2 O→ 4 Fe(OH) 3 ↓

2FeCl 2 + Cl 2 → 2FeCl 3

10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 → 5 Fe 2 (SO 4) 3 + 2MnSO 4 + K 2 SO 4 + 8 H 2 O

Соединения железа (II) могут выступать и в роли окислителей:

FeO+ CO→ (температура) Fe+ CO

ГЛАВА 3. СОЕДИНЕНИЯ ЖЕЛЕЗА (III ).

Оксид железа(III )

Оксид Fe 2 O 3 - самое устойчивое природное кислородсодержащее соединение железа. Это амфотерный оксид, нерастворимый в воде. Образуется при обжиге пирита FeS 2 (см. 20.4 «Получение SO 2 ».

Химические свойства.

1)Растворяясь в кислотах, образует соли железа (III):

Fe 2 O 3 + 6HCl→ 2FeCl 3 + 3H 2 O

2) При сплавлении с карбонатом калия образует феррит калия:

Fe 2 O 3 + K 2 СO 3 → (температура) 2KFeO 2 + CO 2

3) При действии восстановителей выступает как окислитель:

Fe 2 O 3 + 3H 2 → (температура) 2Fe+ 3H 2 O

Гидроксид железа (III )

Гидроксид железа Fe(OH) 3 - красно-бурое вещество, нерастворимое в воде.

Получение.

Fe 2 (SO 4) 3 + 6NaOH → 2Fe(OH) 3 ↓ + 3Na 2 SO 4

Химические свойства .

Гидроксид Fe(OH) 3 - более слабое основание, чем гидроксид железа (II), обладает слабо выраженной амфотерностью.

1) Растворяется в слабых кислотах:

2Fe(OH) 3 + 3H 2 SO 4 → Fe 2 (SO 4) 3 + 6H 2 O

2) При кипячении в 50% растворе NaOHобразует

Fe(OH) 3 + 3NaOH → Na 3

Соли железа (III ).

Подвергаются сильному гидролизу в водном растворе:

Fe 3+ + H 2 O ↔ Fe(OH) 2+ + H +

Fe 2 (SO 4) 3 + 2H 2 O ↔ Fe(OH)SO 4 + H 2 SO 4

При действии сильных восстановителей в водном растворе проявляют окислительные свойства , переходя в соли железа (II):

2FeCl 3 + 2KI → 2FeCl 2 + I 2 + 2KCl

Fe 2 (SO 4) 3 + Fe → 3 Fe

ГЛАВА 4. КАЧЕСТВЕННЫЕ РЕАКЦИИ.

Качественные реакции на ионы Fe 2+ и Fe 3+ .

  1. Реактивом на ион Fe 2+ является гексацианоферрат (III) калия (красная кровавая соль), который дает с ним интенсивно синий осадок смешанной соли - гексацианоферрат (III) калия-железа (II) или турнбулева синь :

FeCl 2 + K 3 → KFe 2+ ↓ + 2KCl

  1. Реактивом на ион Fe 3+ является тиоцианат-ион (роданид-ион) CNS - , при взаимодействии которого с солями железа (III) образуется вещество кроваво-красного цвета - роданид железа (III) :

FeCl 3 + 3KCNS→ Fe(CNS) 3 + 3KCl

3)Ионы Fe 3+ можно обнаружить также с помощью гексацианоферрата (II) калия (желтая кровяная соль). При этом образуется нерастворимое в воде вещество интенсивного синего цвета - гексацианоферрат (II) калия-железа (III) или берлинская лазурь :

FeCl 3 + K 4 → KFe 3+ ↓ + 3KCl

ГЛАВА 5. МЕДИКО-БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ЖЕЛЕЗА.

Роль железа в организме.

Железо участвует в образовании гемоглобина в крови, в синтезе гормонов щитовидной железы, в защите организма от бактерий. Оно необходимо для образования иммунных защитных клеток, требуется для "работы" витаминов группы В.

Железо входит в состав более чем 70 различных ферментов, в том числе дыхательных, обеспечивающих процессы дыхания в клетках и тканях, и участвующих в обезвреживании чужеродных веществ, поступающих в организм человека.

Кроветворение. Гемоглобин.

Газообмен в легких и тканях.

Железодефицитная анемия.

Недостаток железа в организме приводит к таким заболеваниям, как анемия, малокровие.

Железодефицитная анемия (ЖДА) — гематологический синдром, характеризующийся нарушением синтеза гемоглобина вследствие дефицита железа и проявляющийся анемией и сидеропенией. Основными причинами ЖДА являются кровопотери и недостаток богатой гемом пищи и питья.

Больного может беспокоить усталость, одышка и сердцебиение, особенно после физической нагрузки, часто - головокружение и головные боли, шум вушах, возможен даже обморок. Человек становится раздражительным,нарушается сон, снижается концентрация внимания. Поскольку кровоток в коже снижен, может развиватьсяповышенная чувствительность к холоду. Возникает симптоматика и со стороны желудочно-кишечного тракта - резкое снижение аппетита, диспепсические расстройства (тошнота, изменение характера и частоты стула).

Железо - составная часть жизненно важных биологических комплексов, таких как гемоглобин (транспорт кислорода и углекислого газа), миоглобин (запасание кислорода в мышцах), цитохромы(ферменты). В организме взрослого человека содержится 4-5 г железа.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

  1. К.Н. Зеленин, В.П. Сергутин, О.В. Солод «Сдаем экзамен по химии отлично». ООО «Элбль-СПб», 2001 год.
  2. К.А.Макаров «Медицинская химия». Издательство СПбГМУ Санкт-Петербурга, 1996 год.
  3. Н.Л. Глинка «Общая химия». Ленинград «Химия», 1985 год.
  4. В.Н. Доронькин, А.Г. Бережная, Т.В. Сажнева, В.А. Февралева «Химия. Тематические тесты для подготовки к ЕГЭ». Издательство «Легион», Ростов-на-Дону, 2012 год.

ЖЕЛЕЗО (Ferrum, Fe ) - элемент VIII группы периодической системы Д. И. Менделеева; входит в состав дыхательных пигментов, в т. ч. гемоглобина, участвует в процессе связывания и переноса кислорода к тканям в организме животных и человека; стимулирует функцию кроветворных органов; применяется в качестве лекарственного средства при анемических и некоторых других патологических состояниях. Радиоактивный изотоп 59 Fe используется в качестве радиоактивного индикатора в клин, лабораторных исследованиях. Порядковый номер 26, ат. вес 55,847.

В природе обнаружены 4 стабильных изотопа Ж. с массовыми числами 54 (5,84%), 56 (91,68%), 57 (2,17%) и 58 (0,31%).

Железо встречается всюду, как на Земле, особенно в ее ядре, так и в метеоритах. В земной коре содержится 4,2 весовых, или 1,5 атомных, процента Ж. Содержание Ж. в каменных метеоритах составляет в среднем 23%, а иногда доходит до 90% (такие метеориты называют железными). В виде сложных органических соединений Ж. входит в состав растительных и животных организмов.

Ж. входит в состав многих минералов, представляющих собой оксиды железа (красный железняк- Fe 2 O 3 , магнитный железняк - FeO-Fe 2 O 3 , бурый железняк - 2Fe 2 O 3 -3H 2 O), или карбонаты (сидерит - FeCO 3), либо сернистые соединения (железный колчедан, магнитный колчедан), либо, наконец, силикаты (напр., оливин и др.). Ж. обнаруживается в грунтовых водах и водах различных водоемов. В морской воде Ж. содержится в концентрации 5 10 -6 %.

В технике Ж. применяется в виде сплавов с другими элементами, которые существенно изменяют его свойства. Наибольшее значение имеют сплавы Ж. с углеродом.

Физико-химические свойства железа и его соединений

Чистое Ж. - блестящий белый с сероватым оттенком ковкий металл; t° пл 1539 ± 5°, t° кип ок. 3200°; уд. вес 7,874; обладает по сравнению с другими чистыми металлами наивысшими ферромагнитными свойствами, т. е. способностью приобретать свойства магнита под влиянием внешнего магнитного поля.

Известны две кристаллические модификации Ж.: альфа- и гамма-железо. Первая, альфа-модификация, устойчива ниже 911° и выше 1392°, вторая, гамма-модификация, - в интервале температур от 911° до 1392°. При температурах выше 769° альфа-железо немагнитно, а ниже 769° - магнитно. Немагнитное альфа-железо иногда называют бета-железом, а высокотемпературную альфа-модификацию дельта-железом. Ж. легко взаимодействует с разведенными к-тами (напр., с соляной, серной, уксусной) с выделением водорода и образованием соответствующих закисных солей Ж., т. е. солей Fe (II) . Взаимодействие Ж. с сильно разведенной азотной к-той происходит без выделения водорода с образованием закисной азотнокислой соли Ж. - Fe(NO 3) 2 и азотноаммонийной соли - NH 4 NO 3 . При взаимодействии Ж. с конц. азотной к-той образуется окисная соль Ж., т. е. соль Fe (III), - Fe(NO 3) 3 , причем одновременно выделяются оксиды азота.

В сухом воздухе Ж. покрывается тонкой (толщиной ок. 3 нм) пленкой окиси (Fe 2 O 3), но не ржавеет. При высокой температуре в присутствии воздуха Ж. окисляется, образуя железную окалину - смесь закиси (FeO) и окиси (Fe 2 O 3) Ж. В присутствии влаги и воздуха Ж. подвергается коррозии; оно окисляется с образованием ржавчины, к-рая представляет собой смесь гидратированных оксидов Ж. Для защиты Ж. от ржавления его покрывают тонким слоем других металлов (цинка, никеля, хрома и др.) или масляными красками и лаками либо добиваются образования на поверхности Ж. тонкой пленки закись-окиси - Fe 3 O 4 (воронение стали).

Ж. принадлежит к элементам с переменной валентностью, и поэтому его соединения способны принимать участие в окислительно-восстановительных реакциях. Известны соединения двух-, трех- и шестивалентного Ж.

Наиболее устойчивыми являются соединения двух- и трехвалентного Ж. . Кислородные соединения Ж. - закись (FeO) и окись (Fe 2 O 3) - обладают основными свойствами и с к-тами образуют соли. Гидраты этих окислов Fe(OH) 2 , Fe(OH) 3 нерастворимы в воде. Соли закисного, т. е. двухвалентного, Ж. (FeCl 2 , FeSO 4 и т. д.), называемые солями Fe (II) или ферросолями, в безводном состоянии бесцветны, а при наличии кристаллизационной воды или в растворенном состоянии имеют голубовато-зеленый цвет;, диссоциируют они с образованием ионов Fe 2+ . Кристаллогидрат двойной сернокислой соли аммония и двухвалентного Ж. (NH 4) 2 SO 4 -FeSO 4 -6Н 2 O носит название соли Мора. Чувствительной реакцией на соли Fe (II) является образование с р-ром K 3 Fe(CN) 6 осадка турнбулевой сини - Fe 3 2 .

Соли окисного, т. е. трехвалентного Ж. или Fe(III), называемые солями Fe(III) или феррисолями, окрашены в желто-бурый или красно-бурый цвет, напр, хлорное железо, поступающее в продажу в виде желтого гигроскопического кристаллогидрата FeCl 3 -6H 2 O. Широко распространены двойные сернокислые соли Fe (III), называемые железными квасцами, напр, железо-аммонийные квасцы (NH 4) 2 SO 4 Fe 2 (SO 4) 3 24Н 2 O. В р-ре соли Fe (III) диссоциируют с образованием ионов Fe 3+ . Чувствительными реакциями на соли Fe (III) являются: 1) образование осадка берлинской лазури Fe 4 3 с р-ром K 4 Fe(CN) 6 и 2) образование красного роданового железа Fe(CNS) 3 при добавлении роданистых солей (NH 4 CNS или KCNS).

Соединения шестивалентного Ж. представляют собой соли железной к-ты (ферраты K2FeO4, BaFeO4). Соответствующая этим солям железная к-та (H2FeO4) и ее ангидрид нестойки и в свободном состоянии не получены. Ферраты являются сильными окислителями, они нестабильны и легко разлагаются с выделением кислорода.

Существует большое количество комплексных соединений Ж. Напр., при добавлении к солям закисного Ж. цианистого калия вначале образуется осадок цианистого Ж. Fe(CN) 2 , который затем при избытке KCN вновь растворяется с образованием K 4 Fe(CN)6 [гексациано- (II) феррат калия, железисто-синеродистый калий, или феррицианид калия]. Другим примером может служить K 3 Fe(CN) 6 [гексациано-(III)феррат калия, железосинеродистый калий, или ферроцианид калия] и др. Ферроцианид дает в р-ре ион Fe(CN) 4 - , а феррицинид - ион Fe(CN) 6 3- . Ж., содержащееся в этих анионах, не дает качественных реакций на ионы железа Fe 3+ и Fe 2+ . Ж. легко образует комплексные соединения со многими органическими к-тами, а также с азотистыми основаниями. Образование окрашенных комплексных соединений железа с а, альфа1-дипиридилом или с о-фенантролином лежит в основе очень чувствительных методов обнаружения й количественного определения малых количеств Ж. Вещества типа гема (см. Гемоглобин) биогенного происхождения являются также комплексными соединениями Ж.

С окисью углерода Ж. дает летучие соединения - карбонилы. Карбонил Ж. Fe(CO) 5 называется пентакарбонилом Ж. и используется для получения наиболее чистого, свободного от каких-либо примесей Ж. для целей получения хим. катализаторов, а также для некоторых электротехнических целей.

Железо в организме человека

Организм взрослого человека содержит в среднем 4-5 г Fe, из которых ок. 70% находится в составе гемоглобина , (см.), 5-10%- в составе миоглобина (см.), 20-25% в виде резервного Ж. и не более 0,1% - в плазме крови. Нек-рое количество Ж. находится в составе различных органических соединений внутриклеточно. Ок. 1% Ж. входит также в состав ряда дыхательных ферментов (см. Дыхательные пигменты , Дыхательные ферменты , Окисление биологическое), катализирующих процессы дыхания в клетках и тканях.

Ж., обнаруживаемое в плазме крови, является транспортной формой Ж., к-рое связано с белком трансферрином, представляющим собой бета-глобулины и, возможно, альфа-глобулины и альбумины. Теоретически с 1 мг белка может быть связано 1,25 мкг Ж., т. е. в общей сложности в плазме в связанном состоянии постоянно может находиться ок. 3 мг Ж. Однако на самом деле трансферрин насыщен Ж. лишь на 20-50% (в среднем на одну треть). Дополнительное количество Ж., к-рое в определенных условиях может связаться с трансферрином, определяет ненасыщенную железосвязывающую способность (НЖСС) крови; общее количество Ж., к-рое может быть связано трансферрином, определяет общую железосвязывающую способность (ОЖСС) крови. В сыворотке крови содержание Ж. определяют по Вальквисту (В. Vahlquist) в модификации Хагберга (В. Hagberg) и Е. А. Ефимовой. Метод основан на том, что железобелковые комплексы в плазме крови в кислой среде диссоциируют с высвобождением Ж. Белки осаждают, а в безбелковом фильтрате Fe (III) переводят в Fe (II), образующее окрашенный растворимый комплекс с о-фенантролином, интенсивность окраски к-рого пропорциональна количеству Ж. в р-ре. Для определения берут 0,3 мл негемолизированной сыворотки крови, расчет производят по калибровочной кривой.

Железосвязывающую способность сыворотки крови определяют по Шаде (A. Schade) в модификации Рата (С. Rath) и Финча (С. Finch). Метод основан на том, что при взаимодействии бета-глобулинов и двухвалентного Ж. образуется комплекс оранжево-красного цвета. Поэтому при добавлении ферросолей (обычно соли Мора) к сыворотке крови нарастает интенсивность этой окраски, к-рая резко стабилизируется в точке насыщения белка. По количеству Ж., необходимого для насыщения белка, судят о НЖСС. Эта величина, суммированная с количеством Ж. в сыворотке крови, отражает ОЖСС.

Содержание Ж. в плазме крови подвержено суточным колебаниям- оно снижается ко второй половине дня. Концентрация Ж. в плазме крови зависит также от возраста: у новорожденных она равна 175 мкг%, у детей в возрасте 1 года - 73 мкг%; затем концентрация Ж. вновь увеличивается до 110-115 мкг% и до 13 лет существенно не меняется. У взрослых людей отмечаются различия в концентрации Ж. в сыворотке крови в зависимости от пола: содержание Ж. у мужчин составляет 120 мкг%, а у женщин - 80 мкг%. В цельной крови это различие выражено менее резко. ОЖСС нормальной сыворотки крови составляет 290-380 мкг%. С мочой у человека за сутки выводится 60-100 мкг Ж.

Отложение железа в тканях

Ж., откладывающееся в тканях организма, может иметь экзогенное и эндогенное происхождение. Экзогенный сидероз наблюдается при некоторых профессиях как профессиональная вредность, в частности у шахтеров, занятых на разработках красного железняка, и у электросварщиков. В этих случаях происходит отложение оксидов Fe (III) (Fe 2 O 3) в легких, иногда с образованием сидеротических узелков, диагностируемых посредством рентгенографии. Гистологически узелки представляют собой скопление содержащей Ж. пыли в просвете альвеол, в слущенных альвеолярных клетках, в межальвеолярных перегородках, в адвентиции бронхов с развитием вокруг соединительной ткани. У электросварщиков количество Ж., откладывающегося в легких, обычно невелико; частички его преимущественно меньше 1 мкм; у шахтеров наблюдаются массивные отложения Ж., количество к-рого в обоих легких может достигать 45 г и составлять 39,6% веса золы, остающейся после сгорания легкого. Чистый сидероз легких, напр, у электросварщиков, не сопровождается пневмосклерозом и нарушением трудоспособности; у шахтеров, однако, обычно наблюдается сидеро-силикоз с развитием пневмосклероза (см.).

Экзогенный сидероз глазного яблока наблюдается при внедрении в глаз железных осколков, стружек и т. п.; при этом металлическое Ж. переходит в двууглекислое, затем в гидрат окиси Ж. и откладывается в отростках цилиарного тела, эпителии передней камеры, капсуле хрусталика, эписклеральной ткани, сетчатке и зрительном нерве, где его можно обнаружить при помощи соответствующих микрохим. реакций. Экзогенный местный сидероз может наблюдаться вокруг железных осколков., попавших в ткани при бытовой и боевой травме (осколки гранат, снарядов и т. п.).

Источником эндогенного сидероза в подавляющем большинстве случаев служит гемоглобин при вне- и внутрисосудистом его разрушении. Одним из конечных продуктов распада гемоглобина является железосодержащий пигмент гемосидерин, который откладывается в органах и тканях. Гемосидерин был открыт в 1834 г. И. Мюллером, однако термин «гемосидерин» был предложен Нейманном (A. Neumann) лишь позднее, в 1888 г. Гемосидерин образуется при расщеплении гема. Он является полимером ферритина (см.) [Граник (S. Granick)]. Химически гемосидерин представляет собой агрегат гидроокиси Fe (III), более или менее прочно соединенный с белками, мукополисахаридами и липидами клетки. Образование гемосидерина происходит в клетках как мезенхимальной, так и эпителиальной природы. Эти клетки

В. В. Серов и В. С. Пауков предложили называть сидеробластами. В сидеросомах сидеробластов происходит синтез гранул гемосидерина. Микроскопически гемосидерин имеет вид зерен от желтоватого до золотисто-коричневого цвета, расположенных большей частью внутри клеток, но иногда и внеклеточно. Гранулы гемосидерина содержат до 35% Ж.; гемосидерин никогда не образует кристаллических форм.

В связи с тем что источником гемосидерина в большинстве случаев является гемоглобин, очаговые отложения последнего могут наблюдаться в любом месте человеческого тела, где имело место кровоизлияние (см. Гемосидероз). При гемосидерозе в местах отложения гемосидерина выявляется SH-ферри-тин (сульфгидрильная активная форма), который обладает вазопаралитическими свойствами. Особенно большие отложения гемосидерина, возникающего из ферритина вследствие нарушения клеточного метаболизма Ж., наблюдаются при гемохроматозе (см.); при этом в печени количество депонированного Ж. часто превышает 20-30 г. Отложения Ж. при гемохроматозе, помимо печени, наблюдаются в поджелудочной железе, почках, миокарде, органах ретикулоэндотелиальной системы, иногда слизистых железах трахеи, в щитовидной железе, мышцах и эпителии языка и т. д.

Помимо отложений гемосидерина, иногда наблюдается импрегнация Ж. (ожелезнение) эластического каркаса легких, эластических мембран сосудов легкого при бурой индурации или сосудов мозга в окружности очага кровоизлияния (см. Бурое уплотнение легких). Наблюдается также ожелезнение отдельных мышечных волокон в матке, нервных клеток в головном мозге при некоторых психических заболеваниях (идиотии, раннем и старческом слабоумии, атрофии Пика, некоторых гиперкинезах). Указанные образования пропитываются коллоидным Ж., и обнаружить ожелезнение можно лишь при помощи специальных реакций.

Для обнаружения ионизированного Ж. в тканях наиболее широко используются реакция образования турнбулевой сини по Тирманну - Шмельцеру для выявления Fe (II) и реакция образования берлинской лазури [метод Перльса с использованием Fe (III)].

Реакция образования турнбулевой сини производится следующим образом: приготовленные срезы помещают на 1- 24 часа в 10% р-р сернистого аммония для переведения всего Ж. в двухвалентное сернистое Ж. Затем тщательно прополосканные в дистиллированной воде срезы переносят на 10-20 мин. в свежеприготовленную смесь из равных частей 20% р-ра железосинеродистого калия и 1% р-ра соляной к-ты. Ж. окрашивается в ярко-синий цвет; ядра можно докрасить кармином. Для переноски срезов нужно пользоваться только стеклянными иглами.

По методу Перльса срезы помещают на несколько минут в свежеприготовленную смесь из 1 ч. 2% водного р-ра железистосинеродистого калия и 1,5 ч. 1% р-ра соляной к-ты; потом срезы ополаскивают водой и ядра докрашивают кармином. Ж. окрашивается в синий цвет. SH-ферритин выявляют с помощью сульфата кадмия (Н. Д. Клочков).

Библиография: Биохимические методы исследования в клинике, под ред. А. А. Покровского, с. 440, М., 1969; В e р б о л о-в и ч П. А. и У т e ш e в А. Б. Железо в животном организме, Алма-Ата, 1967, библиогр.; Глинка Н. Л. Общая химия, с. 682, Л., 1973; Кассирский И. А. и Алексеев Г. А. Клиническая гематология, с. 168, М., 1970, библиогр.; Левин В. И. Получение радиоактивных изотопов, с. 149, М., 1972; Машковский М. Д. Лекарственные средства, ч. 2, с. 94, М., 1977; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, с. 244, М., 1976; Петров В. Н. и Щерба М. М. Выявление, распространенность и география дефицита железа, Клин, мед., т. 50, № 2, с. 20, 1972, библиогр.; P я-бов С. И. и Шостка Г. Д. Молекулярно-генетические аспекты эритропоэза, Л., 1973, библиогр.; Щ ер б а М. М. Железодефицитные состояния, Л., 197 5; Klinische Hamatologie, hrsg. v. H. Be-gemann, S. 295, Stuttgart, 1970; Pharmacological basis of therapeutics, ed. by L. S. Goodman a. A. Gilman, L., 1975.

Г. E. Владимиров; Г. А. Алексеев (гем.), В. В. Бочкарев (рад.), А. М. Вихерт (пат. ан.), В. В. Чурюканов (фарм.).

ОПРЕДЕЛЕНИЕ

Железо - элемент восьмой группы четвёртого периода Периодической системы химических элементов Д. И. Менделеева.

А томный номер — 26. Символ – Fe (лат. «ferrum»). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Физические свойства железа

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3». Температура плавления железа – 1539С. Железо образует две кристаллические модификации: α- и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая – кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 и от 1394С до температуры плавления. Между 912 и 1394С устойчиво γ-железо.

Механические свойства железа зависят от его чистоты – содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способностью растворять в себе многие элементы.

Химические свойства железа

Во влажном воздухе железо быстро ржавеет, т.е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа (III):

2Fe + 3/2O 2 + nH 2 O = Fe 2 O 3 ×H 2 O.

При недостатке кислорода или при затрудненном доступе образуется смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2 .

Железо растворяется в соляной кислоте любой концентрации:

Fe + 2HCl = FeCl 2 + H 2 .

Аналогично происходит растворение в разбавленной серной кислоте:

Fe + H 2 SO 4 = FeSO 4 + H 2 .

В концентрированных растворах серной кислоты железо окисляется до железа (III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.

Однако, в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит. В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO +2H 2 O.

При высоких концентрациях азотной кислоты растворение замедляется и железо становится пассивным.

Как и другие металлы железо вступает в реакции с простыми веществами. Реакции взаимодействия железа с галогенами (вне зависимости от типа галогена) протекают при нагревании. Взаимодействие железа с бромом протекает при повышенном давлении паров последнего:

2Fe + 3Cl 2 = 2FeCl 3 ;

3Fe + 4I 2 = Fe 3 I 8 .

Взаимодействие железа с серой (порошок), азотом и фосфором также происходит при нагревании:

6Fe + N 2 = 2Fe 3 N;

2Fe + P = Fe 2 P;

3Fe + P = Fe 3 P.

Железо способно реагировать с такими неметаллами, как углерод и кремний:

3Fe + C = Fe 3 C;

Среди реакций взаимодействия железа со сложными веществами особую роль играют следующие реакции — железо способно восстанавливать металлы, стоящие в ряду активности правее него, из растворов солей (1), восстанавливать соединения железа (III) (2):

Fe + CuSO 4 = FeSO 4 + Cu (1);

Fe + 2FeCl 3 = 3FeCl 2 (2).

Железо, при повышенном давлении, реагирует с несолеобразующим оксидом – СО с образованием веществ сложного состава – карбонилов — Fe(CO) 5 , Fe 2 (CO) 9 и Fe 3 (CO) 12 .

Железо при отсутствии примесей устойчиво в воде и в разбавленных растворах щелочей.

Получение железа

Основной способ получения железа – из железной руды (гематит, магнетит) или электролиз растворов его солей (в этом случае получают «чистое» железо, т.е. железо без примесей).

Примеры решения задач

ПРИМЕР 1

Задание Железная окалина Fe 3 O 4 массой 10 г была сначала обработана 150 мл раствора соляной кислоты (плотность 1,1 г/мл) с массовой долей хлороводорода 20%, а затем в полученный раствор добавили избыток железа. Определите состав раствора (в % по массе).
Решение Запишем уравнения реакций согласно условию задачи:

8HCl + Fe 3 O 4 = FeCl 2 +2FeCl 3 + 4H 2 O (1);

2FeCl 3 + Fe = 3FeCl 2 (2).

Зная плотность и объем раствора соляной кислоты, можно найти его массу:

m sol (HCl) = V(HCl) × ρ (HCl);

m sol (HCl) = 150×1,1 = 165 г.

Рассчитаем массу хлороводорода:

m(HCl) = m sol (HCl) ×ω(HCl)/100%;

m(HCl) = 165×20%/100% = 33 г.

Молярная масса (масса одного моль) соляной кислоты, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Найдем количество вещества хлороводорода:

v(HCl) = m(HCl)/M(HCl);

v(HCl) = 33/36,5 = 0,904 моль.

Молярная масса (масса одного моль) окалины, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 232 г/моль. Найдем количество вещества окалины:

v(Fe 3 O 4) = 10/232 = 0,043 моль.

Согласно уравнению 1, v(HCl): v(Fe 3 O 4) = 1:8, следовательно, v(HCl) = 8 v(Fe 3 O 4) = 0,344 моль. Тогда, количество вещества хлородорода, рассчитанное по уравнению (0,344 моль) будет меньше, чем указанное в условии задачи (0,904 моль). Следовательно, соляная кислота находится в избытке и будет протекать еще одна реакция:

Fe + 2HCl = FeCl 2 + H 2 (3).

Определим количество вещества хлоридов железа, образующихся в результате первой реакции (индексами обозначим конкретную реакцию):

v 1 (FeCl 2):v(Fe 2 O 3) = 1:1 = 0,043 моль;

v 1 (FeCl 3):v(Fe 2 O 3) = 2:1;

v 1 (FeCl 3) = 2×v(Fe 2 O 3) = 0,086 моль.

Определим количество хлороводорода, которое не прореагировало в реакции 1 и количество вещества хлорида железа (II), образовавшееся в ходе реакции 3:

v rem (HCl) = v(HCl) – v 1 (HCl) = 0,904 – 0,344 = 0,56 моль;

v 3 (FeCl 2): v rem (HCl) = 1:2;

v 3 (FeCl 2) = 1/2×v rem (HCl) = 0,28 моль.

Определим количество вещества FeCl 2 , образовавшегося в ходе реакции 2, общее количество вещества FeCl 2 и его массу:

v 2 (FeCl 3) = v 1 (FeCl 3) = 0,086 моль;

v 2 (FeCl 2): v 2 (FeCl 3) = 3:2;

v 2 (FeCl 2) = 3/2× v 2 (FeCl 3) = 0,129 моль;

v sum (FeCl 2) = v 1 (FeCl 2) + v 2 (FeCl 2) + v 3 (FeCl 2) = 0,043+0,129+0,28 = 0,452 моль;

m(FeCl 2) = v sum (FeCl 2) ×M(FeCl 2) = 0,452×127 = 57,404 г.

Определим количество вещества и массу железа, вступившего в реакции 2 и 3:

v 2 (Fe): v 2 (FeCl 3) = 1:2;

v 2 (Fe) = 1/2× v 2 (FeCl 3) = 0,043 моль;

v 3 (Fe): v rem (HCl) = 1:2;

v 3 (Fe) = 1/2×v rem (HCl) = 0,28 моль;

v sum (Fe) = v 2 (Fe) + v 3 (Fe) = 0,043+0,28 = 0,323 моль;

m(Fe) = v sum (Fe) ×M(Fe) = 0,323 ×56 = 18,088 г.

Вычислим количество вещества и массу водорода, выделившегося в реакции 3:

v(H 2) = 1/2×v rem (HCl) = 0,28 моль;

m(H 2) = v(H 2) ×M(H 2) = 0,28 ×2 = 0,56 г.

Определяем массу полученного раствора m’ sol и массовую долю FeCl 2 в нём:

m’ sol = m sol (HCl) + m(Fe 3 O 4) + m(Fe) – m(H 2);

ЖЕЛЕЗО, Fe (а. iron; н. Eisen; ф. fer; и. hierro), — химический элемент VIII группы периодической системы элементов , атомный номер 26, атомная масса 55,847. Природное состоит из 4 стабильных изотопов: 54 Fe (5,84%), 56 Fe (91,68%), 57 Fe (2,17%) и 58 Fe (0,31%). Получены радиоактивные изотопы 52 Fe, 53 Fe, 55 Fe, 59 Fe, 60 Fe. Железо известно с доисторических времён. Впервые человек, вероятно, познакомился с метеоритным железом, т.к. древнеегипетское название железа "бени-пет" означает небесное железо. В хеттских текстах встречается упоминание о железе как о металле, упавшем с неба.

Железо в природе

Железо — единственный породообразующий элемент с переменной валентностью. Отношение оксидного железа к закисному устойчиво растёт с увеличением кремнекислотности расплавов. Ещё больший рост происходит в щелочных системах, где минерал, содержащий трёхвалентное железо — , (Na,Fe)Si 2 О 6 , становится породообразующим. В метаморфическом процессе железо, по-видимому, мало подвижно. Содержание железа в современных океанических осадках близко к содержаниям в древних глинистых породах и глинистых . Основные генетические типы месторождений и схемы обогащения смотреть в статье .

Получение железа

Чистое железо получают восстановлением из оксидов (железо пирофорное), электролизом водных растворов его солей (железо электролитическое), разложением пентакарбонила железа Fe(CO) 5 при нагревании до t 250°С. Особо чистое железо (99,99%) получают с помощью зонной плавки. Технически чистое железо (около 0,16% примесей углерода, серы и др.) выплавляют, окисляя компоненты чугуна в мартеновских сталеплавильных и в кислородных конверторах. Сварочное или кирпичное железо получают, окисляя примеси малоуглеродистой стали железным или путём восстановления руд твёрдым углеродом. Основную массу железа выплавляют в виде сталей (до 2% углерода) или чугунов (свыше 2% углерода).

Применение железа

Железоуглеродистые сплавы — основа конструкции материалов, применяющихся во всех отраслях промышленности. Техническое железо — материал для сердечников электромагнитов и якорей электромашин, пластин аккумуляторов. Железный порошок в больших количествах применяется при сварке. Оксиды железа — минеральные краски; ферромагнитные Fe 3 О 4 , g-Fe используются для производства магнитных материалов. Сульфат FeSO 4 .7Н 2 О применяется в текстильной промышленности, в производстве берлинской лазури, чернил; FeSO4 — коагулянт для . Железо используется также в полиграфии, медицине (как антианемическое средство); искусственные радиоактивные изотопы железа — индикаторы при исследовании химико-технологических и биологических процессов.

Как материал стало известно с 3–4 тыс. до н. э. Поначалу в поле зрения человека попало метеоритное железо, так что в те времена оно ценилось выше золота. Затем хетты освоили разработку осадочных месторождений, а римляне научились плавить чугун.

С тех пор область использования металла только расширялась. И поэтому сегодня мы поговорим о применении железа и его соединений в жизни человека: в быту, народном хозяйстве, промышленности и об использовании металла в иных сферах.

Итак, давайте узнаем, почему железо получило наибольшее применение в металлургии.

Под железом зачастую подразумевают вовсе не вещество как таковое, а низкоуглеродистую электротехническую сталь – так называется сплав металла по ГОСТ. Действительно чистое железо получить непросто, и используется оно исключительно для производства магнитных материалов.

Железо является ферромагнетиком, то есть, намагничивается в присутствии магнитного поля. Однако это его свойство сильно зависит от примесей и структуры металла. абсолютного чистого железа в 100–200 раз превышают аналогичные показатели технической стали. То же самое можно сказать о величине зерна: чем крупнее зерно, тем лучше магнитные свойства вещества. Имеет значение и механическая обработка, хотя ее влияние и не столь впечатляющее. Только такое железо применяют для получения всех магнитных материалов для электротехники и магнитоприводов.

Во всех остальных областях народного хозяйства находит свое применение сталь и чугун, так что, говоря о применении железа, говорят об использовании стали.

Про способы применения сплавов железа расскажет видеоролик ниже:

Соединения

Все металлы, используемые в производстве, делят на цветные и черные. Черные – это сплавы железа, в частности, сталь и чугун, остальные – , серебряные, относятся к цветным. Соответственно, занимающееся выплавкой чугуна и стали, называется черной металлургией, а всех остальных – цветной. На долю черной металлургии приходится 95% всех металлургических процессов. Разделяются черные сплавы таким образом:

  • сталь – сплав железа с углеродом и другими ингредиентами, чья массовая доля не превышает 2,14%. Углерод придает стали пластичность и твердость. В состав могут входить также марганец, фосфор, сера и так далее;
  • чугун – сплав с углеродом, где допускается большее содержание элемента – до 4,3%. Причем чугуны отличаются по своим свойствам в зависимости от того, в каком виде сплав содержит углерод: если вещество вступило в реакцию с железом, получают белый чугун, если включено в виде графита – серый;
  • феррит – железо с минимальной примесью углерода и других элементов – 0,04%. Собственно, это и есть химически чистое железо;
  • перлит – не сплав, а механическая смесь карбида железа и феррита. Свойства его заметно отличаются от свойств металла;
  • аустенит – раствор углерода в железе с долей первого до 0,8%. Аустенит отличается пластичностью, магнитными свойствами не обладает.

Про методы применения железа в виде стали читайте ниже.

Стали

Конечно, наибольшее применение находят сталь и чугун, а их использование зависит от доли углерода в составе. По этому признаку различают углеродистые и легированные стали. В первом случае примеси носят постоянный характер, то есть, попадают в сплав из-за особенностей процесса выплавки. В легированные добавки вводят специально для придания материалу особых свойств. В качестве легирующих элементов применяют ванадий, хром, и так далее.

Углеродистые стали разделяются на 3 группы:

  • малоуглеродистые – доля элемента менее 0,25%, наиболее ковкие и пластичные;
  • среднеуглеродистые – с долей углерода до 0,6%;
  • высокоуглеродистые – содержание элемента превышает 0,6%.

Легированные стали тоже составляют собой 3 группы:

  • низколегированные – массовая доля всех компонентов составляет 2,5%:
  • среднелегированные – здесь суммарное содержание может достигать 10%;
  • высоколегированные – доля легирующих элементов превышает 10%.

Легированные стали обычно являются материалом для инструментов и машинных узлов, так как введение дополнительных ингредиентов повышает прочность сплава, придает ему жаростойкость или коррозионную стойкость. Углеродистые, в основном, применяют для каркасных сооружений, изготовления водопровода и так далее.

Все стали можно разделить по назначению:

  • строительные – в основном это высоко- или среднеуглеродистые стали. Сплавы применяются для всех строительных работ: от сооружения металлических каркасов до изготовления предметов быта и кровельного листа;
  • конструкционные – низкоуглеродистые стали с долей элемента до 0,75%. Это материал для всех отраслей машиностроения – от велосипедов до морских судов;
  • инструментальная – низкоуглеродистая, но отличается от конструкционной еще и очень низким содержанием марганца – не более 0,4%. Это основа измерительного, штампованного, режущего инструмента;
  • специальные стали – разделяются на 2 подвида: с особыми физическими качествами – электротехническая сталь с заданными магнитными свойствами, и с особыми химическими – жаропрочная, нержавеющая и так далее.

Применение легированных сталей определяется их качествами.

  • Так, нержавеющая сталь используется в строительстве и машиностроении, где требуется более высокая, чем обычно стойкость к коррозии.
  • Жаропрочные сплавы «работают» в условиях высоких температур – турбины, магистрали отопления. Жаростойкие – не окисляются при высоких температурах, что важно для многих рабочих узлов в теплотехнике.

Еще одно разделение сплавов – по качеству. Этот параметр определяет содержание фосфора и серы – вредных примесей, которые уменьшают прочность сплава. Различают 4 вида:

  • сталь обыкновенного качества включает до 0,06% серы и 0,07% фосфора. Это обычные строительные материалы, применяемые при изготовлении труб, швеллеров, уголков, профилей и другого металлопроката;
  • качественная – допускает долю серы до 0,035% и такую же долю фосфора. Также применяется в производстве металлопроката, корпусов, деталей машин и некоторых марок инструментальной стали;
  • высококачественная – доля серы и фосфора не превышает 0,025%, соответственно. К этой категории относят инструментальные и конструкционные стали, применяемые в условиях высокой нагрузки;
  • особовысококачественная – содержание серы менее 0,015%, фосфора – менее 0,025%. Этот материал отличается максимальной стойкостью к износу. Некоторые марки выделяются в особую категорию и маркируются соответствующим образом, например, шарикоподшипниковая сталь, или быстрорежущая – незаменимый элемент качественного режущего инструмента.

О применении чугуна и стали расскажет видео ниже:

Чугун

Применение чугуна не намного меньше, поскольку его механические качества вполне сопоставимы со многими марками стали. В соответствии с категорией чугуна различается и применение:

  • серый чугун – углерод в железе находится в виде графитовых пластинок. Отличается хорошими литьевыми свойствами и малой усадкой. Но наиболее примечательное его качество – стойкость к переменным нагрузкам. Серый чугун используют при изготовлении прокатных станков, станин, подшипников, маховиков, поршневых колец, деталей тракторных и автомобильных двигателей, корпусов и так далее;
  • белый чугун – углерод связан с железом. Почти целиком используется для получения стали;
  • высокопрочный чугун – углерод находится в виде включений шаровидной формы. Такая форма обеспечивает высокую стойкость к нагрузке на растяжение и изгиб. Из чугуна изготавливают детали турбин, коленчатые валы тракторов и автомобилей, шестерни, изложницы и так далее.

Чугун также можно легировать и получать сплав с самыми разными свойствами.

  • Износостойкий чугун применяется для изготовления насосных деталей, тормозов, дисков сцепления.
  • Жаростойкий применяется при сооружении доменных, мартеновских, термических печей.
  • Жаропрочный используется при сооружении газовых печей, при изготовлении компрессорного оборудования, дизельных двигателей.

Использование в строительстве

Сталь и чугун уникальным образом сочетают прочность, эксплуатационную долговечность и доступную стоимость. Поэтому заменить его каким-либо другим конструкционным материалом не представляется возможным. В строительстве продукция металлопроката является базовой наряду с бетоном и кирпичом.

Капитальное строительство

Металлу можно придать любую форму: от самой простой – прут, до причудливой сложной – кованое железо. В строительстве находят применение для всех вариантов.

Кроме того, что сталь сама по себе отличается прочностью, тем более после специальной обработки, в этой области активно применяется и еще одна особенность. Дело в том, что профильные изделия из металла ничем не уступают по прочности цельной детали таких же размеров и формы. А это значительно уменьшает материалоемкость строительных элементов, уменьшает их стоимость, снижает вес и так далее. В строительстве такое сочетание исключительно важно.

Применяемый металлопрокат разделяют на 3 основные группы.

  • Фасонный – швеллеры, двутавры, угловой и обычный профиль, а также перфорированный. Сюда же относят и специальный профиль, применяемый, например, в шахтных выработках. Фасонный металлопрокат применяют при возведении всех типов каркасов для любого сооружения – от зданий до мостов и плотин. Его же используют при необходимости усилить конструкцию.
  • Сортовой – арматура, балки, трубы, круги и прочее. Эти элементы используются едва ли не чаще, чем фасонный и очень многообразны:
    • арматура – стальные прутья разного диаметра, гладкие и с ребрами. Арматура предназначена для повышения прочности здания, причем показателем является не только стойкость к стационарной нагрузке, но и повышение прочности при нагрузке на растяжение и изгиб. Арматуру используют при возведении фундамента, перекрытий, усиления стен, а также при упрочнении и других конструктивных узлов – лестниц, например;
    • трубы – причем используются и круглые, и профильные. Предпочтительнее трубы прямоугольного квадратного сечения, поскольку их сварка и крепление более проста, чем в случае круглых, а стойкость к нагрузкам такая же;
    • балка – вариант цельнолитого изделия, когда требуется прочность при самых высоких нагрузках.
  • Листовой прокат – листы горячего и холодного проката с покрытием и без. Это кровельные листы, и так далее. Профнастил применяют не только для устройства кровли, но и при сооружении разнообразных ограждений, поскольку материал соединяет относительную легкость с высокой прочностью и стойкостью к перепадам температур.

Нержавеющие стали для листового проката применяют редко, поскольку стоимость сплава выше.

Отделочные работы

Основой их часто выступают металлические изделия – и трубы, и профиль, и листовое железо.

  • Трубы необычных форм активно применяют в современных интерьерах. Из них сооружают спальные блоки, перекрытия и перегородки в комнате, ограждения как лестничные, так и уличные, используют даже в производстве мебели. Здесь трубы, конечно, подбирают с красивым покрытием – , хром, хотя встречаются и окрашенные изделия.
  • Профиль – ниши и декоративные выступы, колонны и потолки, отделка стен и каминов и прочее и прочее. Все, что обшивается и облицовывается гипсокартоном, пленкой, вагонкой, панелями – абсолютно все имеет каркас из металлического профиля. В изготовлении мебели – шкафов-купе, например, также применяется специализированный профиль. Стальной по сравнению с отличается куда большей прочностью и долговечностью.
  • Металл может выступать не только каркасом, но отделочным материалом. Реечные, кассетные, панельные потолки исключительно разнообразны, интересны и долговечны. И рейки, и панели могут изготавливаться из , но если требуется долговечное и прочное решение – например, для отделки потолка железнодорожного вокзала, где требуется стойкость к вибрациям, используется, конечно же, сталь.
  • Двери – к отделочным работам уже не относятся, а выступают, скорее, элементом системы защиты. Входные двери из стали достаточной толщины являются самым популярным и надежным способом предупредить взлом жилища. То же самое можно сказать о гаражных воротах, например, или воротах во двор.
  • Лестничные конструкции – металлические лестницы очень разнообразны: от приставной или складной мансардной, до капитального сооружения на 2 этаж. Такой вариант прочен и надежен, при этом может быть очень красив. Современные модульные лестницы комбинируются со стеклом, прозрачным пластиком или даже деревом, а каменную лестницу могут украсить кованые перила.

Коммуникации

Несмотря на то что стальной трубопровод активно вытесняет пластиковые и металлопластиковые, до полной сдачи позиций еще чрезвычайно далеко. Причина проста: с прочностью и стойкостью стали мало что сравнится.

  • Водопровод и канализация – если для обслуживания частного дома или квартиры можно подключать пластиковые изделия, то о магистрали и даже трубопроводе, обслуживающем многоквартирный дом этого сказать нельзя. Допускаются только железные трубы, причем соответствующие твердо установленным стандартам.
  • Газопровод – вариантов нет, используется только сталь.
  • Системы отопления – в здании система может включать пластиковые трубы. Городские и районные магистрали, не говоря уже о трубопроводе, непосредственно обслуживающем котельную, могут быть только железными. Начальная температура нагретой воды намного выше той, которую может выдержать пластиковые водоводы, не говоря уж о давлении.
  • Батареи и радиаторы, как правило, тоже используются железные или чугунные – у чугуна выше теплоемкость и стойкость к гидроударам. Какими бы современными вариантами отопители не заменялись, сталь в конструкции все равно наличествует. Электрические радиаторы – конвекторные, масляные, всегда изготавливаются из стали, поскольку последняя, обладая высокой теплопроводностью, моментально отдает тепло воздуху.
  • Кабели – проводку в доме чаще всего прячут в пластиковые короба. Однако силовые кабели с большим сечением защищаются металлическими трубами.
  • Дымоходы – стальные трубы являются вариантом самым простым, доступным и легким. Для их изготовления применяют специальную жаростойкую сталь, причем устойчивую к коррозии.

Оборудование и предметы быта

Любая техника, устанавливаемая в доме, производится из стали.

  • Отопительные котлы – на каком бы топливе аппараты не работали, корпуса их всегда изготавливаются из стали. В твердотопливных печах есть чугунные детали.
  • Кухонное оборудование – плиты, духовки, микроволновки, пароварки и так далее имеют стальные корпуса и детали. На кухне сталь является и востребованным отделочным материалом: рабочие столешницы, например, отделка фартука. Сталь – материал очень декоративный и лишь кажется простым.
  • Стиральные машины, сушилки и посудомойки также не обходятся без железа.
  • Сантехника из стали применяется редко – из-за высокой теплопроводности, а вот чугунные ванны и умывальники устанавливают до сих пор. Материал лучше хранит тепло и очень долговечен.
  • Посуда и столовые приборы, подставки и вазы, держатели и фурнитура, электрооборудование и мелкие аксессуары – места, где железо не используется, на пальцах можно пересчитать.
  • Кованое железо – декоративные предметы такого рода являются настоящим произведением искусства, особенно когда речь идет о горячей ковке, при которой каждое изделие, каждая деталь изготавливается вручную и только один раз. Кованые решетки, перила, камины, ограждения украшают дворцы и современные павильоны, и, конечно, жилые квартиры.

Железо – главный конструкционный материал. В строительстве сталь и чугун являются базовыми материалами наряду со строительным камнем. Применение и разнообразие сплавов не поддается описанию.

Еще больше полезной информации по вопросу применения железа содержится в этом видео: