Биографии Характеристики Анализ

Значение периодической системы и периодического закона Д. И

Открытие Д.И. Менделеевым периодического закона имеет огромное значение для развития химии. Закон явился научной основой химии. Автору удалось систематизировать богатейший, но разрозненный материал, накопленный поколениями химиков по свойствам элементов и их соединений, уточнить многие понятия, например, понятия «химический элемент» и «простое вещество». Кроме того, Д.И. Менделеев предсказал существование и с потрясающей точностью описал свойства многих не известных к этому времени элементов, например, скандия (экабор), галлия (экаалюминий), германия (экасилиций). В ряде случаев, основываясь на периодическом законе, ученый изменил принятые в то время атомные массы элементов (Zn , La , I , Er , Ce , Th ,U ), которые ранее были определены на основе ошибочных представлений о валентности элементов и составе их соединений. В некоторых случаях Менделеев расположил элементы в соответствии с закономерным изменением свойств, предполагая возможную неточность значений их атомных масс (Os , Ir , Pt , Au , Te , I , Ni , Co ) и для некоторых из них в результате последующего уточнения атомные массы были исправлены.

Периодический закон и периодическая система элементов служат научной основой прогнозирования в химии. С момента опубликования периодической системы в ней появилось более 40 новых элементов. На основе периодического закона были получены искусственным путем трансурановые элементы, в том числе № 101, названный менделевием.

Периодический закон сыграл решающую роль в выяснении сложной структуры атома. Нельзя забывать, что закон был сформулирован автором в 1869 году, т.е. почти за 60 лет до того, как окончательно сложилась современная теория строения атома. И все открытия ученых, последовавшие после опубликования закона и периодической системы элементов (о них мы говорили в начале изложения материала) послужили подтверждением гениального открытия великого русского химика, его необыкновенной эрудиции и интуиции.

ЛИТЕРАТУРА

1. Глинка Н. А. Общая химия / Н. А. Глинка. Л.: Химия, 1984. 702 с.

2. Курс общей химии / под ред. Н. В. Коровина. М.: Высшая школа, 1990. 446 с.

3. Ахметов Н.С. общая и неорганическая химия/ Н.С. Ахметов. М.: Высшая школа, 1988. 639 с.

4. Павлов Н.Н. Неорганическая химия/ Н.Н. Павлов. М.: Высшая школа, 1986. 336 с.

5. Рэмсден Э.Н. Начала современной химии/ Э.Н. Рэмсден. Л.: Химия, 1989. 784 с.

Строение атома

Методические указания

по курсу «Общая химия»

Составили: СТАНКЕВИЧ Маргарита Ефимовна

Ефанова Вера Васильевна

Михайлова Антонина Михайловна

Рецензент Е.В.Третьяченко

Редактор О.А.Панина

Подписано в печать Формат 60х84 1/16

Бум. офсет. Усл.-печ. л. Уч.-изд.л.

Тираж экз. Заказ Бесплатно

Саратовский государственный технический университет

410054 г. Саратов, ул. Политехническая, 77

Отпечатано в РИЦ СГТУ, 410054 г. Саратов, ул. Политехническая, 77

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки

Билеты по химии за курс 10 класса.

Билет №1

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки.

В 1869 г. Д. И. Менделеев на основе анализа свойств простых веществ и соединений сформулировал Периодический закон:

Свойства простых тел... и соединений элементов находятся в периодической зависимости от вели­чины атомных масс элементов.

На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в верти­кальные столбцы - группы. В некоторых случаях при размещении элементов в Периодической системе приходилось нарушать последовательность возрастания атомных масс, чтобы соблюда­лась периодичность повторения свойств. Например, пришлось "поменять местами" теллур и йод, а также аргон и калий.

Причина состоит в том, что Менделеев предложил периодической закон в то время, когда не было ничего известно о строении атома.

После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

Свойства химических элементов и соединений на­ходятся в периодической зависимости от зарядов атомных ядер.

Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома.

Эта формулировка объяснила "нарушения" Перио­дического закона.

В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для эле­ментов главных подгрупп равен числу электронов на внешнем уровне.

Причиной периодического изменения свойств химиче­ских элементов является периодическое заполнение электронных оболочек. После заполнения очередной оболочки начинается новый период. Периодическое изменение элементов ярко видно на изменении состава и свойств и свойств оксидов.

Научное значение периодического закона. Периоди­ческий закон позволил систематизировать свойства хи­мических элементов и их соединений. При составлении периодической системы Менделеев предсказал сущест­вование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойст­ва неоткрытых элементов, что облегчило их открытие.

6. ???

7. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Зна­чение периодического закона и периодической системы.

Периодический закон Д. И. Менделеева Свойства простых тел, а также формы и свойства соеди­нений элементов находятся в периодической зависимости от. величины атомных весов элементов

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической системы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

8. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Zимеет периодический характер. В пределах одного периода с увеличе­ниемZпроявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров^ а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего элек­тронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах.

При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона) .втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

(?)9. Химическая связь. Основные типы и характеристики химической свя­зи. Условия и механизм ее образования. Метод валентных связей. Ва­лентность. Понятие о методе молекулярных орбиталей

При взаимодействии атомов между ними может возникать хи­мическая связь, приводящая к образованию устойчивой мно­гоатомной системы - молекулы, молекулярного нона, кристалла. условием образования химической связи является, уменьше­ние потенциальной энергии системы взаимодействующих атомов.

Теория химического строения. Основу теории, разработан­ной А. М. Бутлеровым, составляют следующие положения:

    Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

    Соединение атомов происходит в соответствии с их валент­ностью.

    Свойства веществ зависят не только от их состава, но и от их «химического строения», т. е. от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой.

Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Разработан­ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентиой связи, позволил понять строение большого числа молекул. Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде слу­чаев не в состоянии правильно описать структуру и свойства мо­лекул, все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял сво­его значения до настоящего времени. Валентность - сложное понятие. Поэтому существует несколь­ко определений валентности, выражающих различные стороны этого понятия. Наиболее общим можно считать следующее опре­деление: валентность элемента - это способность его атомов со­единяться с другими атомами в определённых соотношениях.

Первоначально за единицу валентности была принята валент­ность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента.

Мы уже знаем, что состояние электродов в атоме описывается квантовой механикой как совокупность атомных электронных ор­биталей (атомных электронных облаков); каждая такая орбиталь характеризуется определенным набором атомных квантовых чисел. Метод МО исходит из предположения, что состояние электронов в молекуле также может быть описано как совокупность молеку­лярных электронных орбиталей (молекулярных электронных обла­ков), причем каждой молекулярной орбитали (МО) соответствует определенный набор молекулярных квантовых чисел. Как и в лю­бой другой многоэлектронной системе, в молекуле сохраняет свою справедливость принцип Паули (см. § 32), так что на каждой МО может находиться не более двух электронов, которые должны об­ладать противоположно направленными спинами.

Значение периодического закона для развития науки

На основе Периодического закона Менделеев составил классификацию хмических элементов -- периодическую систему. Она состоит из 7 периодов и 8 групп.
Периодический закон положил начало современному этапу развития химии. С его открытием появилась возможность предсказывать новые элементы и описывать их свойства.
С помощью Периодического закона были исправлены атомные массы и уточнены валентности некоторых элементов; закон отражает взаимосвязь элементов и взаимообусловленность их свойств. Периодический закон подтвердил наиболее общие законы развития природы, открыл путь к познанию строения атома.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году - задолго до того, как было изучено строение атома. Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон: Свойства элементов периодически изменяются в соответствии с их атомным весом.

Принципиальная новизна Периодического закона, открытого и сформулированного Д. И. Менделеевым, заключалась в следующем:

1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял ПРЕДСКАЗЫВАТЬ свойства этих элементов.

Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам.

Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.

Периодический закон по Менделееву: «Свойства простых тел... и соединений элементов находятся в периодической зависимости от величины атомных масс элементов».

На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в вертикальные столбцы группы. В некоторых случаях при размещении элементов в Периодической системе приходилось нарушать последовательность возрастания атомных масс, чтобы соблюдалась периодичность повторения свойств. Например, пришлось "поменять местами" теллур и йод, а также аргон и калий.

Впрочем, даже после огромной и тщательной работы химиков по исправлению атомных весов, в четырех местах Периодической таблицы элементы "нарушают" строгий порядок расположения по возрастанию атомной массы.

Во времена Д. И. Менделеева подобные отступления считались недостатками Периодической системы. Теория строения атома расставила все на свои места: элементы расположены совершенно правильно - в соответствии с зарядами их ядер. Как же тогда объяснить, что атомный вес аргона больше атомного веса калия?

Атомный вес любого элемента равен среднему атомному весу всех его изотопов с учетом их распространенности в природе. Случайно атомный вес аргона определяется наиболее "тяжелым" изотопом (он встречается в природе в большем количестве). У калия, наоборот, преобладает более "легкий" его изотоп (то есть изотоп с меньшим массовым числом).

Причина состоит в том, что Менделеев предложил периодической закон в то время, когда не было ничего известно о строении атома. После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

«Свойства химических элементов и соединений находятся в периодической зависимости от зарядов атомных ядер.»

Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома. Эта формулировка объяснила "нарушения" Периодического закона. В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для элементов главных подгрупп равен числу электронов на внешнем уровне.

Причиной периодического изменения свойств химических элементов является периодическое заполнение электронных оболочек. После заполнения очередной оболочки начинается новый период. Периодическое изменение элементов ярко видно на изменении состава и свойств оксидов.

Научное значение периодического закона.

Периодический закон позволил систематизировать свойства химических элементов и их соединений. При составлении периодической системы Менделеев предсказал существование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойства неоткрытых элементов, что облегчило их открытие. Первое из них последовало через четыре года. Элемент, для которого Менделеев оставил место и свойства, атомный вес которого он предсказал, вдруг объявился! Молодой французский химик Лекок де Буабодран послал в Парижскую академию наук письмо. В нем говорилось: <Позавчера, 27 августа 1875 года, между двумя и четырьмя часами ночи я обнаружил новый элемент в минерале цинковая обманка из рудника Пьерфитт в Пиренеях>. Но самое поразительное еще предстояло. Менделеев предсказал, еще оставляя для этого элемента место, что его плотность должна быть 5,9. А Буабодран утверждал: открытый им элемент имеет плотность 4,7. Менделеев, и в глаза-то не видевший новый элемент - тем это и удивительней,- заявил, что французский химик ошибся в расчетах. Но и Буабодран оказался упрямцем: он уверял, что был точен. Чуть позже после дополнительных измерений выяснилось: Менделеев был безоговорочно прав. Первый элемент, заполнивший пустое место в таблице, Буабодран назвал галлием в честь своей родины Франции. И никому тогда не пришло в голову дать ему имя человека, который предсказал существование этого элемента, человека, который раз и навсегда предопределил путь развития химии. Это сделали ученые двадцатого века. Имя Менделеева носит элемент, открытый советскими физиками.

Но не только в открытии нового большая заслуга Менделеева.

Менделеев открыл новый закон природы. Вместо разрозненных, не связанных между собою веществ перед наукой встала единая стройная система, объединившая в единое целое все элементы Вселенной, атомы стали рассматриваться как:

1. органически связанные между собой общей закономерностью,

2. обнаруживающие переход количественных изменений атомного веса в качественные изменения их химич. индивидуальностей,

3. свидетельствующие о том, что противоположность металлических и неметаллических свойств у атомов носит не абсолютный, как считалось раньше, а лишь относительный характер.

Открытие взаимной связи между всеми элементами, между их физическими и химическими свойствами поставило научно-философскую проблему огромной важности: эта взаимная связь, это единство должны быть объяснены.

Исследования Менделеева дали прочный и надежный фундамент попыткам объяснить строение атома: после открытия периодического закона стало ясно, что атомы всех элементов должны быть построены «по единому плану», что в их устройстве должна быть отображена периодичность свойств элементов.

Только та модель атома могла иметь право на признание и развитие, которая приближала бы науку к пониманию загадки положения элемента в таблице Менделеева. Величайшие ученые нашего столетия, решая эту большую проблему, раскрыли строение атома - так закон Менделеева оказал огромное влияние на развитие всех современных знаний о природе вещества.

Все успехи химии наших дней, успехи атомной и ядерной физики, включая атомную энергетику и синтез искусственных элементов, стали возможными лишь благодаря периодическому закону. В свою очередь успехи атомной физики, появление новых методов исследования, развитие квантовой механики расширили и углубили сущность периодического закона.

За истекшее столетие закон Менделеева - подлинный закон природы - не только не устарел и не утратил своего значения. Наоборот, развитие науки показало, что его значение до конца еще не познано и не завершено, что оно много шире, чем мог предполагать его творец, чем думали до недавнего времени ученые. Недавно установлено, что закону периодичности подчиняется не только строение внешних электронных оболочек атома, но и тонкая структура атомных ядер. По-видимому, и те закономерности, которые управляют сложным и во многом не понятым миром элементарных частиц, также имеют в своей основе периодический характер.

Дальнейшие открытия в химии и физике многократно подтвердили фундаментальный смысл Периодического закона. Были открыты инертные газы, которые великолепно вписались в Периодическую систему - особенно наглядно это показывает длинная форма таблицы. Порядковый номер элемента оказался равным заряду ядра атома этого элемента. Многие неизвестные ранее элементы были открыты благодаря целенаправленному поиску именно тех свойств, которые предсказывались по Периодической таблице.

Периодический закон Д. И. Менделеева имеет исключительно большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в периодической системе. Химия перестала быть описательной наукой. С открытием периодического закона в ней стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения. Блестящий пример тому — предсказание Д. И. Менделеевым существования еще не открытых в его время элементов, из которых для трех — Ga, Sc, Ge — он дал точное описание их свойств.

На основе закона Д. И. Менделеева были заполнены все пустые клетки его системы с Z=1 до Z=92, а также открыты трансурановые элементы. И сегодня этот закон служит ориентиром для открытия или искусственного создания новых химических элементов. Так, руководствуясь периодическим законом, можно утверждать, что если будет синтезирован элемент Z=114, то это будет аналог свинца (экасвинец), если будет синтезирован элемент Z=118, то он будет благородным газом (экарадон).

Русский ученый Н. А. Морозов в 80-х годах XIX века предсказал существование благородных газов, которые были затем открыты. В периодической системе они завершают собой периоды и составляют главную подгруппу VII группы. «До периодического закона, — писал Д. И. Менделеев, — элементы представляли лишь отрывочные случайные явления природы; не было повода ждать каких-либо новых, а вновь находимые были полной неожиданной новинкой. Периодическая законность первая дала возможность видеть неоткрытые еще элементы в такой дали, до которой невооруженное этой закономерностью зрение до тех пор не достигало».

Периодический закон послужил основой для исправления атомных масс элементов. У 20 элементов Д. И. Менделеевым были исправлены атомные массы, после чего эти элементы заняли свои места в периодической системе.

На основе периодического закона и периодической системы Д. И. Менделеева быстро развивалось учение о строении атома. Оно вскрыло физический смысл периодического закона и объяснило расположение элементов в периодической системе. Правильность учения о строении атома всегда проверялась периодическим законом. Вот еще один пример. В 1921 г. Н. Бор показал, что элемент Z=72, существование которого предсказано было Д. И. Менделеевым в 1870 г. (экабор), должен иметь строение атома, аналогичное атому циркония (Zr — 2. 8. 18. 10. 2; a Hf — 2. 8. 18. 32. 10. 2), а поэтому искать его следует среди минералов циркония. Следуя этому совету, в 1922 г. венгерский химик Д. Хевеши и голландский ученый Д. Костер в норвежской циркониевой руде открыли элемент Z=72, назвав его гафнием (от латинского названия г. Копенгагена — места открытия элемента). Это был величайший триумф теории строения атома: на основе строения атома предсказано местонахождение элемента в природе.

Учение о строении атомов привело к открытию атомной энергии и использованию ее для нужд человека. Можно сказать, что периодический закон является первоисточником всех открытий химии и физики XX века. Он сыграл выдающуюся роль в развитии других, смежных с химией естественных наук.

Периодический закон и система лежат в основе решения современных задач химической науки и промышленности. С учетом периодической системы химических элементов Д. И. Менделеева ведутся работы по получению новых полимерных и полупроводниковых материалов, жаропрочных сплавов, веществ с заданными свойствами, по использованию ядерной энергии, используются недра Земли, Вселенной.

Периодическая система элементов оказала большое влияние на последующее развитие химии.

Дмитрий Иванович Менделеев (1834-1907)

Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, по и явилась могучим орудием для дальнейших исследований.

В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид , да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы эка-алюминием и экасилицием.

В течение следующих 15 лет предсказания Менделеева блестяще подтвердились: все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия; вслед за тем в Швеции Л. Ф. Нильсоном был открыт скандий, имевший свойства экабора, и, наконец, спустя еще несколько лет в Германии К. А. Винклер открыл элемент, названный им германием, который оказался тождественным экасилицию.

Чтобы судить об удивительной точности предвидения Менделеева, сопоставим предсказанные им в 1871 г. свойства экасилиция со свойствами открытого в 1886 г. германия:

Открытие галлия, скандия и германия было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу . Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно - над магнием, так что его оксид должен иметь формулу , откуда атомная масса бериллия получается равной десяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида.

Точно И в настоящее время периодический закон остается путеводной нитью и руководящим принципом химии. Именно на его основе были искусственно созданы в последние десятилетия трансурановые элементы, расположенные в периодической системе после урана. Один из них - элемент № 101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы - закона перехода количества в качество.

Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

Разработанная в XX веке теория строения атома в свою очередь дала периодическому закону и периодической системе элементов новое, более глубокое освещение. Блестящее подтверждение нашли пророческие слова Менделеева: «Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие».

Периодическая система элементов оказала большое влияние на последующее развитие химии.

Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, по и явилась могучим орудием для дальнейших исследований.

В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид, да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы эка-алюминием и экасилицием.

В течение следующих 15 лет предсказания Менделеева блестяще подтвердились: все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия; вслед за тем в Швеции Л. Ф. Нильсоном был открыт скандий, имевший свойства экабора, и, наконец, спустя еще несколько лет в Германии К. А. Винклер открыл элемент, названный им германием, который оказался тождественным экасилицию.

Чтобы судить об удивительной точности предвидения Менделеева, сопоставим предсказанные им в 1871 г. свойства экасилиция со свойствами открытого в 1886 г. германия:

Открытие галлия, скандия и германия было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу. Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно - над магнием, так что его оксид должен иметь формулу, откуда атомная масса бериллия получается равной десяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида.



Точно <гак же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Например, цезию раньше приписывали атомную массу 123,4. Менделев же, располагая элементы в таблицу, нашел, что по своим свойствам цезий должен стоять в главной подгруппе первой группы под рубидием и потому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса цезия равна 132,9054.

И в настоящее время периодический закон остается путеводной нитью и руководящим принципом химии. Именно на его основе были искусственно созданы в последние десятилетия трансурановые элементы, расположенные в периодической системе после урана. Один из них - элемент № 101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы - закона перехода количества в качество.

Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

Разработанная в XX веке теория строения атома в свою очередь дала периодическому закону и периодической системе элементов новое, более глубокое освещение. Блестящее подтверждение нашли пророческие слова Менделеева: «Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие».

    Предпосылкой открытия Периодического закона послужили решения международного съезда химиков в городе Карлсруэ в 1860 году, когда окончательно утвердилось атомно - молекулярное учение были предприняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой.

    Д. И. Менделеев в своём открытии опирался на чётко сформулированные исходные положения:

    Общее неизменное свойство атомов всех химических элементов - их атомная масса;

    Свойства элементов зависят от их атомных масс;

    Форма этой зависимости - периодическая.

    Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

    III Периодический закон и Периодическая система химических элементов.

    Открытие Менделеевым Периодического закона.

    Первый вариант Периодической таблицы элементов был опубликован Д. И. Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.

    Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:

    Свойства элементов периодически изменяются в соответствии с их атомным весом.

    Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Ядро состоит из протонов и нейтронов. Число протонов и нейтронов в ядрах большинства элементов примерно одинаково, поэтому атомный вес увеличивается примерно так же, как увеличивается число протонов в ядре (заряд ядра Z).

    Принципиальная новизна Периодического закона заключалась в следующем:

    1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

    2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами.

    Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми. Это давало возможность предсказать существование еще неизвестных элементов.

    Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.

    Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и точно предсказать их свойства! Д. И. Менделеев точно предсказал свойства элемента, названного им "эка-силицием". Спустя 16 лет этот элемент действительно был открыт немецким химиком Винклером и назван германием.

    Сопоставление свойств, предсказанных Д. И. Менделеевым для еще не открытого элемента "эка-силиция" со свойствами элемента германия (Ge). В современной Периодической таблице германий занимает место "эка-силиция".

    Свойство

    Предсказано Д. И. Менделеевым для "эка-силиция" в 1870 году

    Определено для германия Ge, открытого в 1886 году

    Цвет, внешний вид

    коричневый

    светло-коричневый

    Атомный вес

    72,59

    Плотность (г/см3)

    5,5

    5,35

    Формула оксида

    ХО2

    GeO2

    Формула хлорида

    XCl4

    GeCl4

    Плотность хлорида (г/см3)

    1,9

    1,84

    Точно так же блестяще подтвердились предсказанные Д. И. Менделеевым свойства "эка-алюминия" (элемент галлий Ga, открыт в 1875 году) и "эка-бора" (открытый в 1879 году элемент скандий Sc).

    После этого ученым всего мира стало ясно, что Периодическая таблица Д. И. Менделеева не просто систематизирует элементы, а является графическим выражением фундаментального закона природы - Периодического закона.

    Структура Периодической системы.

    На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов, которая состояла из 7 периодов и 8 групп (короткопериодный вариант таблицы). В настоящее время чаще используется длиннопериодный вариант Периодической системы (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды).

    Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом.

    Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную).

    Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы.

    В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл).

    В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности).

    Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) - галогены, VIIIА (He-Rn) - благородные газы. Форма Периодической системы, которую предложил Д.И. Менделеева, называлась короткопериодной или классической. В настоящее время больше используется другая форма Периодической системы - длиннопериодная.

    Периодический закон Д.И. Менделеева и Периодическая система химических элементов стали основой современной химии. Относительные атомные массы приведены по Международной таблице 1983 года. Для элементов 104-108 в квадратных скобках приведены массовые числа наиболее долгоживущих изотопов. Названия и символы элементов, приведенные в круглых скобках, не являются общепринятыми.

    IV Периодический закон и строение атома.

    Основные сведения строения атомов.

    В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:

    катодные лучи (английский физик Дж. Дж. Томсон, 1897 г.), частицы которых получили название электроны e− (несут единичный отрицательный заряд);

    естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование α-частиц (ядер гелия 4He2+);

    наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);

    искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с α-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p+, ядро 1H)

    наличие в ядре атома электронейтральных частиц - нейтронов n0 (английский физик Дж. Чедвик, 1932 г.).

    В результате проведенных исследований было установлено, что в атоме каждого элемента (кроме 1H) присутствуют протоны, нейтроны и электроны, причем протоны и нейтроны сосредоточены в ядре атома, а электроны - на его периферии (в электронной оболочке).

    Число протонов в ядре равно числу электронов в оболочке атома и отвечает порядковому номеру этого элемента в Периодической системе.

    Электронная оболочка атома представляет собой сложную систему. Она делится на подоболочки с разной энергией (энергетические уровни); уровни, в свою очередь, подразделяются на подуровни, а подуровни включают атомные орбитали, которые могут различаться формой и размерами (обозначаются буквами s, p, d, f и др.).

    Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая и точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

    Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1 до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов, то и они периодически повторяются. В этом физический смысл периодического закона.

    Каждый период в периодической системе начинается элементами, атомы которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

    Заканчивается период элементами, атомы которых на внешнем уровне содержат 2(s2) электрона (в первом периоде) или 8 (s2p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Аr, Кr, Хе, имеющие инертные свойства.