Биографии Характеристики Анализ

Что такое z преобразование сигнала. Обратное z- преобразование

При анализе и синтезе дискретных и цифровых устройств широко используют так называемые z-преобразования, играющие по отношению к дискретным сигналам такую же роль, как интегральное преобразование Фурье и Лапласа по отношению к непрерывным сигналам.

Определение z-преобразования

Пусть – числовая последовательность, конечная или бесконечная, содержащая отсчётные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицательным степеням комплексной переменной z:

Назовём эту сумму, если она существует, z-преобразованием последовательности . Целесообразность введения такого математического объекта связана с тем, что свойства дискретных последовательностей чисел можно изучать, исследуя их z-преобразования обычными методами математического анализа. В математике z-преобразование называют также производящей функцией исходной последовательности.

На основании формулы (1.46) можно непосредственно найти z-преобразования дискретных сигналов с конечным числом отсчётов. Так, простейшему дискретному сигналу с единственным отсчётом соответствует . Если же, например, , то

Сходимость ряда

Если в ряде (1.46) число слагаемых бесконечно велико, то необходимо исследовать его сходимость. Из теории функций комплексного переменного известно следующее. Пусть коэффициенты рассматриваемого ряда удовлетворяют условию

при любых . Здесь и – постоянные вещественные числа.

Тогда ряд (1.46) сходится при всех значениях z, таких, что . В этой области сходимости сумма ряда представляет собой аналитическую функцию переменной z, не имеющую ни полюсов, ни существенно особых точек.

Рассмотрим, например, дискретный сигнал , образованный одинаковыми единичными отсчётами и служащий моделью обычной функции включения. Бесконечный ряд

является суммой геометрической прогрессии и сходится при любых z в кольце . Суммируя прогрессию, получим:

На границе области аналитичности при z = 1 эта функция имеет единственный простой полюс. Аналогично получается z-преобразование бесконечного дискретного сигнала , где а – некоторое вещественное число. Здесь:

Данное выражение имеет смысл в некоторой кольцевой области .

Z-преобразование непрерывных функций

Полагая, что отсчёты есть значения непрерывной функции в точках , любому сигналу можно сопоставить его z-преобразование при выбранном шаге дискретизации:

Например, если , то соответствующее z-преобразование

является аналитической функцией при .

Обратное z-преобразование

Пусть p-content/image_post/osncifr/pic45_8.gif> – функция комплексной переменной z, аналитическая в кольцевой области . Замечательное свойство z-преобразования состоит в том, что функция определяет всю бесконечную совокупность отсчётов . Действительно, умножим обе части ряда (1.46) на множитель :

Затем вычислим интегралы от обеих частей полученного равенства, взяв в качестве контура интегрирования произвольную замкнутую кривую, лежащую целиком в области аналитичности и охватывающую все полюсы :

Обход контура интегрирования проводится в положительном направлении, против часовой стрелки.

Для решения уравнения (1.50) воспользуемся фундаментальным положением, вытекающим из теоремы Коши:

Очевидно, интегралы от всех слагаемых правой части выражения (1.50) обратятся в нуль, за исключением слагаемого с номером m , поэтому

Формула (1.51) называется обратным z-преобразованием.

Пример

Задано z-преобразование вида . Найти коэффициенты дискретного сигнала , отвечающего этой функции.

Прежде всего, определим, что функция аналитична во всей плоскости, за исключением точки , поэтому она действительно может быть z-преобразованием некоторого дискретного сигнала.

Перед тем, как решать данную задачу, вспомним из курса высшей математики методику решения криволинейных интегралов с использованием теории вычетов и теоремы Коши о вычетах. Пусть точка есть изолированная особая точка функции . Вычетом функции в точке называется число, обозначаемое символом и определяемое равенством:

В качестве контура g можно взять окружность с центром в точке достаточно малого радиуса такого, чтобы окружность не выходила за пределы области аналитичности функции

И не содержала внутри других особых точек функции . Вычет функции равен коэффициенту при минус первой степени в лорановском разложении в окрестности точки : . Вычет в устранимой особой точке равен нулю.

Если точка есть полюс n -го порядка функции , то

В случае простого полюса ()

Если функция в окрестности точки представима как частное двух аналитических функций

причем , т.е. есть простой полюс функции , то

Обращаясь к формуле (1.48), находим, что

при любых idth=41 height=19 src=http://electrono.ru/wp-content/image_post/osncifr/pic46_12.gif> . Таким образом, исходный дискретный сигнал имеет вид:

Связь с преобразованием Лапласа и Фурье

Определим при сигнал вида идеальной МИП:

Преобразовав его по Лапласу, получим изображение при любых постоянных a и b. Доказать данное свойство можно путём подстановки суммы в формулу (1.46). – последовательность чисел, общий член которой равен:

Подобную дискретную свёртку в отличие от круговой иногда называют линейной свёрткой.

Вычислим z-преобразование дискретной свёртки:

Свёртке двух дискретных сигналов отвечает произведение их z-преобразований.

При анализе и синтезе дискретных и цифровых устройств широко используют так называемое z-преобразование, играю­щее по отношению к дискретным сигналам такую же роль, как интегральные преобразования Фурье и Лапласа по отно­шению к непрерывным сигналам. В данном параграфе изла­гаются основы теории этого функционального преобразова­ния и некоторые его свойства.

Определение z -преобразования. Пусть - числовая последовательность, конечная или бесконечная, со­держащая отсчетные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицатель­ным степеням комплексной переменнойz :

Назовем эту сумму, если она существует, z -преобразова­нием последовательности к }. Целесообразность введения такого математического объекта связана с тем, что свойства дискретных последовательностей чисел можно изучать, иссле­дуя ихz-преобразования обычными методами математиче­ского анализа.

На основании формулы (2.113) можно непосредственно найти z-преобразования дискретныхсигналов с конечным числом отсчетов. Так, простейшему дискретному сигналу с единс твенным отсчетом соответствует .

Если же, например,

Сходимость ряда. Если в ряде (2.113) число слагаемых бесконечно велико, то необходимо исследовать его сходи­мость. Из теории функций комплексного переменного известно следующее. Пусть коэффициенты рассматриваемого ряда удовлетворяют условию

при любых . ЗдесьМ > 0 иR 0 > 0 - постоянные ве­щественные числа. Тогда ряд (2.113) сходится при всех зна­ченияхz, таких, что |z| >R 0 . В этой области сходимости сумма ряда представляет собой аналитическую функцию переменнойz, не имеющую ни полюсов, ни существенно особых точек.

Рассмотрим,например,дискретный сигнал , образованный одинаковыми единичными отсчетами и служа­щий моделью обычной функции включения. Бесконечный ряд является суммой геометрической прогрессии и сходится при любыхzв кольце .

Сум­мируя прогрессию, получаем

На границе области аналитичности при z= 1эта функция имеет единственный простой полюс.

Аналогично получается z-преобразование бесконечного дис­кретного сигнала , гдеа - некоторое вещественное число. Здесь

Данное выражение имеет смысл в кольцевой области .

z -преобразование непрерывных функций. Полагая, что от­счеты есть значения непрерывной функцииx (t ) в точках , любому сигналуx (t ) можно сопоставить егоz-преобразование при выбранном шаге дискретизации:

Например, если , то соответствующееz-преобразование

.

является аналитической функцией при .

Обратное z -преобразование. ПустьX (z) - функция ком­плексной переменнойz, аналитическая в кольцевой области |z| >R 0 . Замечательное свойствоz-преобразования состоит в том, что функцияX (z) определяет всю бесконечную совокупность отсчетов .

Действительно, умножим обе части ряда (2.113) на множитель :

. (2.115)

а затем вычислим интегралы от обеих частей полученного равенства, взяв в качестве контура интегрирования произ­вольную замкнутую кривую, лежащую целиком в области аналитичности и охватывающую все полюсы функции X (z). При этом воспользуемся –фундаментальным положением, вытекающим из теоремы Коши:

.

Очевидно, интегралы от всех слагаемых правой части обратятся в нуль, за исключением слагаемого с номером т, поэтому

Данная формула называется обратным z -преобразованием .

Связь с преобразованиями Лапласа и Фурье . Определим при сигнал вида идеальнойМИП:

.

Преобразовав его по Лапласу, получим изображение

которое непосредственно переходит в z-преобразование, если выполнить подстановку . Если же положить , то выражение

Вернемся к формуле дискретного преобразования Фурье:

В теории дискретных систем принято использовать несколько иную форму записи, связанную с введением Z – преобразования. Сделаем такую подстановку:

.

Тогда вышеприведенная формула значительно упростится:

.

Вновь полученная функция X(z) переменной z называется Z – изображением или Z – образом дискретного сигнала x(k).

Z – преобразования для дискретных сигналов и систем играют ту же роль, что и преобразование Лапласа для аналоговых систем. Поэтому рассмотрим ряд примеров определения Z – изображений некоторых типичных дискретных сигналов.

1.Единичный импульс (рис. 9.14) является дискретным аналогом δ - импульса и представляет собой единичный отчет с единичным значением:

Z – преобразование единичного импульса находится как

как и для δ - импульса Дирака.

2. Дискретный единичный скачок (рис. 9.15) - это полный аналог функции включения Хевисайда:

Z – образ единичного скачка найдется как

Полученная сумма – это сумма членов бесконечной геометрической прогрессии с начальным членом, равным 1, и знаменателем
. Сумма членов ряда составляет:

.

3. Дискретная экспонента (рис. 9.16) - это сигнал, определяемый выражением:

При
дискретная экспонента является убывающей (рис. 9.16), при
- возрастающей, при
- знакопеременной.Z – образ такой экспоненты

Как и в предыдущем случае, мы получили геометрическую прогрессию с нулевым членом, равным единице, но со знаменателем
. Бесконечная сумма членов прогрессии определяетZ – образ экспоненты:

4. Дискретная затухающая гармоника . В противоположность предыдущим примерам запишем ее в общем виде:

где α – коэффициент затухания гармоники,

ω – частота гармоники,

φ – начальная фаза колебаний,

- период дискретизации.

Введем следующие обозначения:

На рис.9.17 представлен график дискретной затухающей гармоники при следующих данных: а=0.9,
, φ=π/9. С учетом принятых обозначений выражение для дискретной затухающей гармоники можно представить в виде:

.

При получении Z – образа гармоники следует выразить функцию косинуса через сумму двух комплексных экспонент. Тогда, проделав целый ряд алгебраических и тригонометрических преобразований, в конце концов, можно будет получить следующее выражение:

.

Из приведенных примеров видно, что Z – образы большинства дискретных сигналов представляют собой дробно-рациональные функции от переменной
. ПроисхождениеZ – преобразования от преобразования Лапласа и Фурье приводит к тому, что Z – преобразование имеет и похожие свойства.

1. Линейность.

Z – преобразование линейно, так что если имеются два сигнала , то сумма этих сигналов
имеетZ – образ
.

2. Временная задержка дискретного сигнала .

Если дискретный сигнал x(k), имеющий Z – образ X(z), задержать на m шагов дискретизации
, то задержанный сигналy(k)=x(k-m) имеет Z – образ
. Выражение
можно рассматривать как оператор задержки сигнала на один шаг дискретизации.

3. Свертка дискретных сигналов .

По аналогии со сверткой аналоговых сигналов

,

Фурье – образ которой равен произведению Фурье – образов сворачиваемых сигналов, свертка двух дискретных сигналов определяется как

.

Z – образ свертки двух сигналов равен произведению Z – образов исходных дискретных сигналов

4. Умножение на дискретную экспоненту .

Если дискретный сигнал
, имеющийZ – образ
, умножается на экспоненту
, тоZ – образ произведения примет вид
.

Рассмотренные свойства Z – преобразования позволяют во многих случаях без особого труда найти Z – образ заданного сигнала или решить обратную задачу – по известному Z – образу сигнала найти его представление во времени.

Z–преобразование применяется в основном для расчета дискретных фильтров. Математический аппарат z-преобразования играет для цифровых устройств ту же роль, что и для аналоговых схем. При помощи z-преобразования легко расчитываются частотные фильтры, фазовые корректоры или преобразователи Гильберта для реализации их в цифровом виде. Сразу же разделим понятия дискретного и цифрового фильтра. В дискретных фильтрах импульсная характеристика дискретна во времени, но при этом отсчеты сигнала и параметры фильтра могут принимать любое значение. В цифровых фильтрах как отсчеты сигналов, так и параметры фильтров (например коэффициенты) представляются двоичными числами определенной разрядности. В качестве примера дискретного фильтра можно привести фильтр на переключаемых конденсаторах.

При рассмотрении дискретизации сигналов мы выяснили, что спектр входного аналогового сигнала при преобразовании в дискретную форму повторяется по оси частот бесконечное количество раз. То же самое происходит и с частотной характеристикой дискретного фильтра. Пример изменения амлитудно-частотной характеристики фильтра НЧ при его дискретной реализации приведен на рисунке 1.


Рисунок 1. Пример амплитудно-частотной характеристики дискретного фильтра

В приведенном примере частота дискретизации выбрана 50 кГц. Поэтому возле данной частоты образуются еще две полосы пропускания дискретного фильтра. Для правильной работы дискретного фильтра, такого как фильтр на переключаемых конденсаторах или цифровой фильтр, потребуется аналоговый антиалиайсинговый фильтр, подавляющий высокочастотные составляющие входного сигнала. Его идеализированная амплитудно-частотная характеристика проведена на рисунке 1 красным цветом.

Если имеется передаточная характеристика аналогового фильтра H (s ) в виде нулей и полюсов фильтра, то в дискретном фильтре нули и полюса периодически повторяются с периодом 1/T , где T — период дискретизации. Другими словами таким образом повторяется фильтра как это показано на рисунке 1. Положение нулей и полюсов на оси частот s-плоскости для обычного и дискретного фильтров приведено на рисунке 2.



Рисунок 2. Периодическое повторение нулей и полюсов на s-плоскости

У дискретного фильтра мы видим бесконечное количество нулей и полюсов, что не совсем удобно при его реализации. Вместо бесконечного повторения нулей и полюсов на бесконечной оси частот можно преобразовать эту ось в кольцевую (использовать вместо декартовой полярную систему координат). Подобное преобразование показано на рисунке 3.



Рисунок 3. Преобразование комплексной s-плоскости в комплексную z-плоскость

При этом преобразовании нулевая частота занимает положение точки +1 на реальной оси z-плоскости, частота, равная ∞, преобразуется в точку −1 на реальной оси z-плоскости, а сама ось частот преобразуется в круг единичного радиуса. При увеличении частоты мы будем двигаться по кругу против часовой стрелки, реализуя тем самым бесконечное повторение амплитудно-частотных характеристик дискретного фильтра.

Математически отображение комплексной s-плоскости в комплексную z-плоскость осуществляется следующим образом:

Z = e s·T (1)

где s = σ + jω

Тогда преобразование Лапласа дискретного сигнала переходит в z–преобразование:

(2)

При переходе из комплексной s–плоскости в комплексную z-плоскость все бесконечно-повторяющиеся нули и полюса дискретного фильтра в s-плоскости отображаются в конечное количество нулей и полюсов в z-плоскости. Тогда выражение для передаточной характеристики дискретного фильтра может быть представлено в следующем виде:

(3)