Биографии Характеристики Анализ

Эквивалентный коэффициент теплоотдачи. Что такое коэффициент теплоотдачи, его размерность, как его определить для выполнения расчетов

1. Основные понятия конвективного теплообмена:

конвекция, конвективный теплообмен, коэффициент теплоотдачи, термическое сопротивление теплоотдачи, сущность процессов конвективного теплообмена

2. Циклонные топки

3. Газообразное топливо


1. Основные понятия конвективного теплообмена

Конвекция, конвективный теплообмен, коэффициент теплоотдачи, термическое сопротивление теплоотдачи, сущность процессов конвективного теплообмена.

Конвекцией называют процесс переноса теплоты при перемещении макрочастиц (газа или жидкости). Поэтому конвекция возможна лишь в среде, частицы которой могут легко перемещаться.

Конвективным называют теплообмен , обусловленный совместным действием конвективного и молекулярного переноса теплоты. Другими словами, конвективный теплообмен осуществляется одновременно двумя способами: конвекцией и теплопроводностью.

Конвективный теплообмен между движущейся средой и поверхностью ее раздела с другой средой (твердым телом, жидкостью или газом) называют теплоотдачей.

Главной задачей теории конвективной теплоотдачи является определение количества теплоты, которое проходит через поверхность твердого тела, омываемого потоком. Результирующий поток теплоты всегда направлен в сторону уменьшения температуры,

При практических расчетах теплоотдачи пользуются законом Ньютона:

Q= б F(t ж -tcт) (15-1)

т. е. тепловой поток Q от жидкости к стенке или от стенки к жидкости пропорционален поверхности F, участвующей в теплообмене, и температурному напору (t ж - t ст, где t ст - температура поверхности стенки, а - температура среды, омывающей поверхность стенки. Коэффициент пропорциональности б, учитывающий конкретные условия теплообмена между жидкостью и поверхностью тела, называют коэффициентом теплоотдачи.

Приняв по формуле (15-1) F=1м², а ф =1 сек, получим плотность теплового потока в ваттах на квадратный метр;

q= б (t ж -tcт) (15-2)

Величину 1/б обратную коэффициенту теплоотдачи, называют термическим сопротивлением теплоотдачи.

б = q: (t ж -tcт) (15-3)

Из равенства (15-3) следует, что коэффициент теплоотдачи, а есть плотность теплового потока q , отнесенная к разности температур поверхности тела и окружающей среды.

При температурном напоре, равном 1 ° (t ж -tcт= 1 °), коэффициент теплоотдачи численно равен плотности теплового потока б = q

Теплоотдача является достаточно сложным процессом и коэффициент теплоотдачи, а зависит от многих факторов, основными из которых являются:

а) причина возникновения течения жидкости;

б) режим течения жидкости (ламинарный или турбулентный);

в) физические свойства жидкости;

г) форма и размеры теплоотдающей поверхности.

По причине возникновения движения жидкости, бывает свободным и вынужденным.

Свободное движение (тепловое) возникает в неравномерно прогрето» жидкости. Возникающая при этом разность температур приводит к разности плотностей и всплыванию менее плотных (более легких), элементов жидкости, что вызывает движение. В этом случае свободное движение, называют естественной или тепловой конвекцией . Так, например, теплообмен между внутренним и внешним стеклами оконной рамы осуществляется естественной конвекцией (при условии, что расстояние между стеклами достаточно для циркуляции воздуха).

2. Циклонные топки


Циклонные топки предназначены для сжигания дробленого угля. Схема такой топки представлена на рис. 19-8. Дробленый уголь с первичным воздухом подается через штуцер I в циклонную камеру 2. В нее же тангенциально подается вторичный воздух, который поступает через штуцер 3 со скоростью около 100 м/сек, В камере создается вращающийся поток продуктов горения, отбрасывающий крупные частички топлива на ее стены, где они под действием горячих воздушных потоков газифицируются.

Из циклонной камеры продукты горения с недогоревшими частицами топлива поступают в камеру дожигания 4. Шлак из циклонной камеры через камеру дожигания поступает в шлаковую ванну, где он гранулируется водой.

Достоинствами циклонных топок являются:

1)возможность горения топлива с небольшим избытком воздуха1,05-1,1, что снижает потери теплоты с отходящими газами;

2)повышенная удельная тепловая мощность топочного объема;

3)возможность работы на дробленом угле (вместо пылевидного);

4)улавливание золы топлива в топке до 80-90%.

К недостаткам циклонной топки относятся:

1) трудность сжигания высоковлажных углей и углей с малым выходом летучих веществ;

2) повышенный расход энергии на дутьё.

3. Газообразное топливо

Естественное. Природный (естественный) газ встречается во многих местах земного шара.

Запасы газового топлива в некоторых месторождениях достигают сотен миллиардов кубических метров. Его добывают не только из специальных газовых скважин, но и как побочный продукт при добыче нефти. Такой природный газ называют попутным нефтяным газом.

Основной составной частью природного газа является метан СН 4 .

Природный газ обладает высокой теплотой сгорания. Его используют в качестве топлива для промышленных печей, автотранспорта, а также для бытовых нужд.

Часть природного газа подвергают химической переработке для получения жидкого топлива, технологического газа, химического сырья.

В СССР крупные газоносные районы расположены в Поволжье, на Северном Кавказе, Украине, в Зауралье и др.

Искусственное. Искусственное газовое горючее (коксовый, мазутный, генераторный газы) получают при переработке нефти и естественного твердого топлива, а также в качестве побочного продукта в сырья.. Газообразное топливо.х углей и углей с малым выходом летучих веществ;лообмен, коэффициент теплоотдачи, термическое снекоторых отраслях промышленного производства, как, например, в доменном.

Доменный газ образуется в доменных печах при выплавке чугуна. Примерно половина полученного газа расходуется на собственные нужды доменной печи. Вторая половина газа может быть использована в качестве топлива.


Задача

Условие: Какое количество теплоты необходимо подвести к 1кг. воздуха с t =20С, чтобы его объем при постоянном давлении увеличился в два раза.

Вопрос: Определить температуру воздуха в конце процесса, теплоемкость воздуха –постоянная.

1) t = 25C – согласно IS- диаграммы.

2) Т = t +273=298К

3) Т = t +273=293К

Объем конечный вычислить так:

Vк = Vн х 2 = 0,058х2=0,116м²

Определить количество теплоты по формуле:

Q = mc(Т -Т) =1,5х1,005(298-293)= =7,537

где m-масса кг. - по заданию 1.5кг, с-теплоемкость кДж (кгС) из таблицы- 1,005кДж/кг.

Ответ: необходимо подвести теплоту в количестве Q =7,537,температура воздуха в конце процесса составит 25С.

Согласно уравнению конвективной теплоотдачи, называемому также законом Ньютона-Рихмана, тепловой поток прямо пропорционален разности температур стенки и жидкости и площади поверхности теплообмена. Коэффициент пропорциональности в этом уравнении называют средним коэффициентом конвективной теплоотдачи:

, (1)

или
, (2)

или
, (3)

где Q - тепловой поток, Вт; q = Q/F - поверхностная плотность теплового потока, Вт/м 2 ; - средний коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К);
- температурный напор теплоотдачи, о С; - температура поверхности теплообмена (стенки), о С; - температура жидкости вдали от стенки, о С; F - площадь поверхности теплообмена (стенки), м 2 .

Независимо от направления теплового потока (от стенки к жидкости или наоборот) будем считать его положительным, то есть будем использовать модуль разности температур.

Величина коэффициента теплоотдачи зависит от большого числа различных факторов: а) физических свойств жидкости; б) скорости движения жидкости; в) формы, размеров и ориентации в пространстве поверхности теплообмена; г) величины температурного напора, направления теплообмена и т.п. Поэтому его теоретическое определение в большинстве случаев невозможно.

Выражения (1)-(3) позволяют опытным путем определить средний коэффициент теплоотдачи посредством измерения величин Q, F, и
:

, (4)

то есть средний коэффициент теплоотдачи численно равен тепловому потоку, передаваемому через единицу поверхности теплообмена при единичном температурном напоре (1 о С или 1 К).

3. Локальный (местный) коэффициент конвективной теплоотдачи

Средний коэффициент теплоотдачи является важной, но не всегда достаточной характеристикой процессов теплообмена. Во многих случаях требуются значения коэффициентов теплоотдачи в отдельных точках поверхности теплообмена, то есть локальные (местные) значения. Локальные коэффициенты характеризуют теплоотдачу в окрестности заданной точки (x) и входят в состав локального уравнения теплоотдачи:

, (5)

или
, (6)

где dF – элементарная (бесконечно малая) поверхность теплообмена в окрестности точки x, м 2 ;
- элементарный тепловой поток, Вт;
- локальная плотность теплового потока, Вт/м 2 ;
- локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К);
- локальный температурный напор, о С; - локальная температура поверхности (стенки), о С;
- температура жидкости вдали от стенки (полагаем, что она постоянна вдоль всей поверхности теплообмена), о С.

Из выражений (5) и (6) следует, что локальные коэффициенты теплоотдачи в принципе могут быть найдены опытным путем посредством измерения величин
,dF, и
, относящихся к соответствующему бесконечно малому участку:

. (7)

На практике вдоль поверхности выделяют необходимое количество конечных, но достаточно малых участков и производят измерения для каждого i-го участка поверхности:

, (8)

где - среднее для i-го участка значение коэффициента теплоотдачи, Вт/(м 2 ∙К);
- площадь поверхности i-го участка, м 2 ;
- тепловой поток в пределах i-го участка, Вт;
- среднее для i-го участка значение температуры поверхности;
- средняя плотность теплового потока в пределах i-го участка, Вт/м 2 ; i = 1,2,…,n – номер очередного участка; n - количество участков.

При теплоотдаче на вертикальной поверхности выделяют n одинаковых по высоте участков (см. рис.4). Если измерять температуру поверхности на границах выделенных участков, начиная с ее нижней кромки (i=1), то средняя для i-го участка температура определится по формуле

. (9)

Среднее для малого i-го участка значение коэффициента теплоотдачи (8) является приближенным значением локального коэффициента теплоотдачи (7). Чем меньше размеры участка, тем точнее получаемый результат.

Результаты большого количества опытов по определению коэффициентов теплоотдачи (8) обобщают в виде эмпирических (опытных) критериальных уравнений (см.разд.5). В дальнейшем эти уравнения используют в инженерных расчетах для определения коэффициентов теплоотдачи.

Содержание раздела

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос тепла осуществляется одновременно конвекцией и теплопроводностью. Конвекция возможна только в текучей среде, здесь перенос тепла неразрывно связан с переносом самой среды. Под теплопроводностью в данном случае понимают процесс передачи тепла при непосредственном соприкосновении отдельных частиц среды, имеющих различные температуры.

Конвективный теплообмен между потоком жидкости или газа и поверхностью твердого тела называют конвективной теплоотдачей. В инженерных расчетах определяют теплоотдачу, при этом конвективный теплообмен внутри среды представляет косвенный интерес, поскольку перенос тепла внутри среды количественно ограждается на теплоотдаче.

При практических расчетах используют закон Ньютона-Рихмана. Согласно закону, тепловой поток – Q от среды к стенке или от стенки к среде пропорционален коэффициенту теплоотдачи конвекцией – á к, поверхности теплообмена – F и температурному напору – ∆t = t с -t ж, т.е.

Q = á к (t с -t ж)⋅F, Вт (ккал/час),

где: t с – температура поверхности тела; t ж – температура окружающей тело жидкой или газообразной среды.

Тепловой поток – Q от греющей среды к нагреваемой среде через разделяющую их поверхность (стенку) пропорционален коэффициенту теплопередачи – k, поверхности теплообмена – F и температурному напору ∆t, т.е.

Q = ê⋅∆t⋅F, Вт (ккал/час).

Температурный напор ∆t в данном случае есть средняя по всей поверхности нагрева разность температур сред, участвующих в теплообмене. При установившемся режиме теплообмена для прямоточной и противоточной схем движения сред ∆t определяют среднелогарифмической разностью температур греющей и нагреваемой сред по формуле:

t = ∆t б - ∆t м , К (°С),

2,31g (∆t б / ∆t м )

где: ∆t б – разность температур сред на том конце поверхности теплопередачи, где она наибольшая, К (°С); ∆t м – разность температур сред на другом конце поверхности теплопередачи, где она наименьшая, К (°С); k – коэффициент пропорциональности, называемый коэффициентом теплопередачи, Вт/(м 2 ⋅К) или ккал/м 2 ⋅час⋅гр.

Он выражает собой количество тепла в ваттах или килокалориях, переданное от греющей среды к нагреваемой через 1 м 2 поверхности раздела в течение часа при разности температур сред в 1 градус.

Для плоской поверхности и для труб при отношении наружного диаметра к внутреннему как d н ≤ 2 коэффициент теплопередачи определяют по формуле:

ê = 1 , Вт/(м 2 К) или ккал/м 2 ⋅ч⋅град,

1 + S cm + 1

á гр á á наг

где: á гр – термическое сопротивление теплоотдачи от греющей среды к поверхности раздела в м 2 ⋅К/Вт или м 2 ⋅ч⋅град/ккал (á – коэффициент конвективной теплоотдачи греющей среды);

ë – термическое сопротивление стенки; S cm – толщина стенки в м; ë – теплопроводность материала стенки в Вт/(м⋅К) или ккал/м⋅ч⋅град;

á наг – термическое сопротивление теплоотдаче от стенки к нагреваемой среде в м 2 К/Вт или м 2 ⋅ч⋅град/ккал (á наг – коэффициент конвективной теплоотдачи к нагреваемой среде).

В тепловых агрегатах (котлах) при нагревании и охлаждении газов (воздуха) коэффициент теплоотдачи á к изменяется в пределах 17–58 Вт/м 2 К (15–50 ккал/м 2 ⋅ч⋅град). При нагревании и охлаждении воды – в пределах 233–11630 Вт/м 2 К (200–10000 ккал/м 2 ⋅ч⋅град).

Коэффициент теплоотдачи á к зависит от:

Характера течения среды, определяемого критерием Рейнольдса

Re = Wd = ñ ⋅ W ⋅d ;

Отношения внутренних тепловых сопротивлений к внешним тепловым сопротивлениям é , называемого критерием Нуссельта ë

Nu = á к d ;

Физических свойств среды (жидкости, газов), характеризуемых критерием Прандтля

Pr = í c ñ = í .

Теплоотдача при турбулентном режиме течения

При турбулентном течении различных газов и жидкостей по длинным трубам и каналам для определения á к наиболее часто используют критериальное уравнение М.А. Михеева:

(при Re ≥ 10000 и é ≥ 50) : Nu = 0,021Re 0,8 Pr ср 0,43 (Pr СР) 0,25 ,

где Pr ср – значения критерия Прандтля при средней температуре газов и жидкостей, равной полусумме температур потока на входе и выходе из трубы; Pr ст – значения критерия Прандтля при температуре газов и жидкостей, равной средней температуре стенки.

Коэффициент теплоотдачи á к в коротких трубах или каналах (d < 50) имеет большие значения по сравнению с длинными трубами или каналами. Уравнение М.А. Михеева для течения по коротким трубам или каналам:

Nu = 0,021Re 0,8 Pr ср 0,43 (Pr СР) 0,25 ⋅ ϕ

Значения ϕ приведены в табл. 7.20.

Таблица 7.20. Значения поправочного коэффициента ϕ
Re é Отношение d
2 5 10 20 40 50
1⋅10 4 2⋅10 4 5⋅10 4 1⋅10 5 1⋅10 6 1,50 1,40 1,27 1,22 1,11 1,34 2,27 1,18 1,15 1,08 1,23 1,18 1,13 1,10 1,05 1,13 1,10 1,08 1,06 1,05 1,03 1,02 1,02 1,02 1,01 1,00 1,00 1,00 1,00 1,00

Например, для продуктов горения критерий Pr ср составляет 0,72, уравнение М.А. Михеева принимает вид:

á к d Wd

Для длинных труб Nu ≅ 0,018Re 0,8 или = 0,018 () 0,8 ;

á к d Wd

Для коротких труб Nu ≅ 0,018Re 0,8 ⋅ ϕ или = 0,018() 0,8 ⋅ ϕ .

Из этих уравнений определяют коэффициенты теплоотдачи:

Для длинных труб и каналов

á к = 0,018 ⋅ ⋅ , Вт/м 2 К, (ккал/м 2 час град).

Для коротких труб и каналов

á к = 0,018 ⋅ ⋅ ⋅ ϕ, Вт/м 2 К, (ккал/м 2 час град).

Коэффициент á к при нагревании не равен á к при охлаждении газов. При охлаждении á к больше ∼ в 1,3 раза, чем при нагревании. Поэтому коэффициент теплоотдачи конвекцией при охлаждении дымовых газов в турбулентном режиме течения и при Pr ср = 0,72 следует определять по формуле:

Для длинных труб á к = 0,0235 ⋅ ⋅ , Вт/м 2 К, (ккал/м 2 час град).

Для коротких труб:

á к = 0,0235 ⋅ ⋅ ⋅ ϕ, Вт/м 2 К (ккал/м 2 час град).

Физические характеристики воздуха приведены в разделе 6.1. Физические характеристики дымовых газов приведены в табл. 7.21. Значения критерия Прандтля для воды на линии насыщения приведены в разделе 6.2.

Таблица 7.21. Физические характеристики дымовых газов среднего состава
Температура Коэффициент теплопроводности ë СР, ккал/м час °C Коэффициент кинематичесой вязкости í СР ⋅10 6 , м 2 /сек Критерий Прандтля Pr СР
1 2 3 4
0 0,0196 12,2 0,72
100 0,0269 21,5 0,69
200 0,0345 32,8 0,67
300 0,0416 45,8 0.65
400 0,0490 60,4 0,64
500 0,0564 76,3 0,63
1 2 3 4
600 0,0638 93,6 0,62
700 0,0711 112 0,61
800 0,0787 132 0,60
900 0,0861 152 0,59
1000 0,0937 174 0,58
1100 0,101 197 0,57
1200 0,108 221 0,56
1300 0,116 245 0,55
1400 0,124 272 0,54
1500 0,132 297 0,53
1600 0,14 323 0,52

Теплоотдача при ламинарном режиме течения

Приближенную оценку среднего коэффициента теплоотдачи наиболее часто осуществляет с использованием критериального уравнения М.А. Михеева (для Re ≤ 2200):

á к = 0,15 ⋅ ⋅ Re 0,33 ⋅ Pr ср 0,33 (Gr ср ⋅ Pr ср) 0,1 ⋅ () 0,25 ⋅ ϕ ,

в которое, кроме ранее представленных, входит еще один критерий – Gr, называемый критерием Грасгофа, характеризующий подъемную силу газов (силу тяжести для жидкостей).

â ⋅ g ⋅ d 3 ⋅ ∆t

где: â – коэффициент объемного расширения жидкости или газов, для газов â = 273, 1 град.

g – ускорение свободного падения (ускорение силы тяжести), м/с 2 ;

d – приведенный диаметр или для вертикальных стенок – высота стенки, м;

∆t – разность температур между нагретыми стенками и средой (t ст - t ср) или (t ср - t ст);

í – коэффициент кинематической вязкости, м 2 /с

ϕ – коэффициент, учитывающий относительную длину труб, равный

Теплоотдача при вынужденном поперечном омывании пучков труб

Коэффициент теплоотдачи конвекцией в поперечно омываемом коридорном пучке труб (рис. 7.10):

á к = 0,206С z ⋅ С s ⋅ d í 0,65 ⋅ Pr 0,33 , Вт/(м 2 К),

где: С z – коэффициент, учитывающий число рядов труб z по ходу газов в газоходе, при z10 С z = 1;

С s – коэффициент, учитывающий геометрическую компоновку пучка труб – зависит от продольного S 2 и поперечного S 1 шагов,

С s = 1+ 2S 1 – 3 1– S 2 3 -2

ë – коэффициент теплопроводности газов при средней температуре потока, Вт/(м⋅К) или ккал/м⋅ч⋅гр.;

d – наружный диаметр труб, м;

w – средняя скорость газов, м/с;

í – коэффициент кинематической вязкости газов при средней температуре потока, м 2 /с.

Коэффициент теплоотдачи конвекцией в поперечно-омываемом пучке труб (рис. 7.9.):

á к = С s ⋅ С z ⋅ d í 0,6 ⋅ Pr 0,33 , Вт/(м 2 ⋅ К),

где: С s зависит от S 1 и ϕ s ;

ϕ s = (S 1 /d – 1) (S ′ 2 /d), S ′ 2 – средний диагональный шаг труб (рис. 7.9.);

при 0,1 < ϕ s ≤ 1,7 и при S 1 /d ≥ 3,0 С s = 0,34 ⋅ ϕ s 0,1 ;

при 1,7 < ϕ s ≤ 4,5 и при S 1 /d < 3,0 С s = 0,275 ⋅ ϕ s 0,5 ;

С z = 4 при z < 10 и S 1 /d ≥ 3.

Теплоотдача при вынужденном продольном омывании трубчатых поверхностей нагрева

Коэффициент теплоотдачи конвекцией:

á к = 0,023 d экв í 0,8 ⋅ Pr 0,4 ⋅ С t ⋅ С d ⋅ С l , Вт/(м 2 ⋅К),

где: С t – температурный коэффициент, зависящий от температуры среды и стенки – для воды и пара, а также при охлаждении газов С t = 1,0, при нагревании продуктов сгорания и воздуха С t = (Т/Т ст) 0,5 , где Т и Т ст – температура газа, воздуха и стенки, в градусах К;

С d – коэффициент, вводимый при течении в кольцевых каналах, при одностороннем обогреве поверхности 0,85 ≤ С d ≤ 1,5, при двустороннем С d = 1;

С l – коэффициент, зависящий от длины канала; при продольном омывании труб 1 ≤ С l ≤ 2, при l > 50d С l = 1,0.

Частные формулы для определения коэффициентов теплоотдачи конвекцией

Для высокотемпературных тепловых агрегатов (по Н.Н. Доброхотову):

á к = 10,5W 0 , Вт/м 2 К (или á к = 9W 0 , ккал/м 2 час град), где: W 0 – скорость газов в топочном пространстве, отнесенная к 0° С, т.е. нм 3 /с.

Для движения дымовых газов (воздуха) по кирпичным каналам размерами от 40×40 до 90×90 мм (по М.С. Мамыкину):

W 0 0,8 4 W 0,8 4

á к = 0,9 √ T , Вт/м 2 К (или 0,74 √ T , ккал/м 2 час град),

где: Т – абсолютная температура газов, °К; d – приведенный диаметр в м;

Для свободного движения воздуха вдоль вертикальных поверхностей стен при невысоких температурах (по М.С. Мамыкину):

á к = 2,56 √ t 1 – t 2 , Вт/м 2 К (или 2,2 √ t 1 – t 2 , ккал/м 2 час град), где:

(t 1 – t 2) – разность температур поверхностей стен и газа. Для горизонтальной поверхности, обращенной вверх, вместо коэффициента 2,56 (2,2) принимается 3,26 (2,8) и для обращенной вниз 1,63 (1,4).

Для насадок регенеративных теплообменных аппаратов (по М.С. Мамыкину):

á к = 8,72 , Вт/м 2 ⋅К (или á к = 7,5 , ккал/м 2 ⋅час⋅град).

Спокойная вода – металлическая стенка (по Х. Кухлингу):

á к = 350 ÷ 580, Вт/(м 2 ⋅К);

Текущая вода – металлическая стенка (по Х. Кухлингу):

á к = 350 + 2100 √ W , Вт/(м 2 ⋅К), где W – скорость в м/с.

Воздух – гладкая поверхность (по Х. Кухлингу):

á к = 5,6 + 4W, Вт/(м 2 ⋅К), где W – скорость в м/с.

На рис. 7.17.–7.22. приведены номограммы для определения á к графическим методом.

Рис. 7.17. Коэффициент теплоотдачи конвекцией при поперечном омывании коридорных гладкотрубных пучков, αк = Cz⋅Cф⋅αн, Вт/м2⋅К (ккал/м2⋅ч⋅град) (rH2О – объемная доля водяных паров)


Рис. 7.18. Коэффициент теплоотдачи конвекцией при поперечном омывании шахматных гладкотрубных пучков, αк = Cz⋅Cф⋅αн, Вт/м2⋅К (ккал/м2⋅ч⋅град), (rH2О – объемная доля водяных паров)

Рис. 7.19. Коэффициент теплоотдачи конвекцией при продольном омывании гладких труб воздухом и дымовыми газами

Рис. 7.20. Коэффициент теплоотдачи конвекцией при продольном омывании гладких труб некипящей водой, α = C ⋅ α , Вт/м2 ⋅К (ккал/м2 ⋅ч⋅град)

Рис. 7.21. Коэффициент теплоотдачи конвекцией для пластинчатых воздухоподогревателей при Re < 10000, αк = Cф⋅ αн, Вт/м2⋅К (ккал/м2⋅ч⋅град)

Рис. 7.22. Коэффициент теплоотдачи конвекцией для регенеративных воздухоподогревателей при Re ≤ 5200, αк = Cф⋅ αн, Вт/м2⋅К (ккал/м2⋅ч⋅град)

Закон охлаждения Ньютона устанавливает, что скорость теплопередачи при покидании поверхности при температуре Ts в окружающие газ или жидкость при температуре Tf дается уравнением:

Qконвекции = h A (Ts - Tf )

где коэффициент конвективной теплопередачи h имеет размерность Вт/м 2 . K или БТЕ/с.дюйм 2 .F. Коэффициент h не является термодинамическим свойством. Он представляет собой упрощенное соотношение для состояния газа или жидкости и условий на поток и потому часто называется потоковым свойством.

Конвекция связана с концепцией пограничного слоя, которым является тонкий слой перехода между поверхностью, считающейся примыкающей к стационарным, и потоком жидкости ли газа по соседству. Это проиллюстрировано на следующем рисунке для потока поверх плоской пластины.

Здесь u(x,y) – скорость по направлению x. Область поверх внешнего края слоя газа или жидкости, определяемого как 99% свободной скорости потока, называется толщиной пограничного слоя жидкости или газа d (x).

Похожий эскиз можно выполнить для температурного переноса от температуры поверхности к температуре окружения. Схематика изменения температуры дана на следующем рисунке. Отметим, что толщина термического пограничного слоя не обязательно должна быть той же, что у жидкости или газа. Свойства жидкости ли газа, которые увязываются в число Прандтля , определяют относительную величину двух типов пограничных слоев. Число Прандтля (Pr), равное 1, вызывало бы одинаково поведение для обоих пограничных слоев.

Актуальный механизм теплопередачи через пограничный слой принимается как проводимость по направлению оси y через стационарную жидкость рядом со стенкой, равная скорости конвекции от пограничного слоя к самой жидкости ли газу. Это можно записать так:

h A (Ts - Tf ) = - k A (dT/dy)s

Таким образом, коэффициент конвекции для заданной ситуации может быть оценен измерением скорости теплопереноса и разницы температур или измерением температурного градиента, примыкающего к поверхности, и разницы температур.

Измерение температурного градиента поперек пограничного слоя требует высокой точности и обычно проводится в научно-исследовательских лабораториях. Во многих учебниках приводятся табличные данные коэффициентов конвективной теплопередачи для различных конфигураций.

Следующая таблица показывает некоторые типичные значения для коэффициента конвективной теплопередачи:

Коэффициент теплопередачи h (Вт/м 2 . K)

Воздух (естественная конвекция)

Воздух/перегретый пар (принудительная конвекция)

Масло (принудительная конвекция)

Вода (принудительная конвекция)

Вода (кипящая)

Пар (конденсирующийся)

α – характеризует интенсивность конвективного теплообмена и зависит от скорости теплоносителя, теплоемкости, вязкости, от формы поверхности и тд.

[Вт/(м 2 град)].

Коэффициент теплоотдачи численно равен мощности теплового потока, передаваемому одному квадратному метру поверхности при разности температур между теплоносителем и поверхностью в 1°С.

Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи α . Современные методы описания процесса коэф. теплопроводности, основанные на теориипограничного слоя , позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методамитеории подобия и представляются обычно в следующем безразмерном виде:

Nu =f (Re, Pr ) - для вынужденной конвекции и

Nu =f (Gr Re, Pr ) - для свободной конвекции,

где
- число Нуссельта,- безразмерный коэффициент теплоотдачи (L - характерный размер потока,λ - коэффициент теплопроводности);Re =- число Рейнольдса, характеризующее соотношение сил инерции и внутреннего трения в потоке (u - характерная скорость движения среды, υ - кинематический коэффициент вязкости);

Pr =- число Прандтля, определяющее соотношение интенсивностей термодинамических процессов (α – коэффициент температуропроводности);

Gr =
- число Грассгофа, характеризующее соотношение архимедовых сил, сил инерции и внутреннего трения в потоке (g - ускорение свободного падения,β - термический коэффициент объёмного расширения).

  • От чего зависит коэффициент теплоотдачи? Порядок его величины для различных случаев теплообмена.

Коэффициент конвективной теплоотдачи α тем больше, чем больше коэффициент теплопроводностиλ и скорость потокаw , чем меньше коэффициент динамической вязкости υ и больше плотностьρ и чем меньше приведенный диаметр каналаd .

Наиболее интересным с точки зрения технических приложений случаем конвективного теплопереноса является конвективная теплоотдача, то есть процесс двух конвективных теплообменов, протекающий на границе раздела двух фаз (твердой и жидкой, твердой и газообразной, жидкой и газообразной). При этом задача расчета состоит в нахождении плотности теплового потока на границе раздела фаз, то есть величины, показывающей, какое количество тепла получает или отдает единица поверхности раздела фаз за единицу времени. Помимо указанных выше факторов, влияющих на процесс конвективного теплообмена, плотность теплового потока зависит также от формы и размеров тела, от степени шероховатости поверхности, а также от температур поверхности и теплоотдающей или тепловоспринимающей среды.

Для описания конвективной теплоотдачи используется формула:

q = α(Т 0 ст ) ,

где q - плотность теплового потока на поверхности, Вт/м 2 ; α - коэффициент теплоотдачи, вт/(м 2 ·°С);T 0 иТ ст - температуры среды (жидкости или газа) и поверхности соответственно. ВеличинуT 0 - Т ст часто обозначают ΔТ и называетсятемпературным напором . Коэффициент теплоотдачиα характеризует интенсивность процесса теплоотдачи; он возрастает при увеличении скорости движения среды и при переходе от ламинарного режима движения к турбулентному в связи с интенсификацией конвективного переноса. Он также всегда больше для тех сред, у которых выше коэффициент теплопроводности. Коэффициент теплоотдачи существенно повышается, если на поверхности происходит фазовый переход (например, испарение или конденсация), всегда сопровождающийся выделением (поглощением) скрытой теплоты. На значение коэффициента теплоотдачи сильное влияние оказываетмассообмен на поверхности.