Биографии Характеристики Анализ

Формула второго закона ньютона для поступательного движения. Второй закон ньютона для вращательного движения

Динамика материальной точки и поступательного движения твердого тела

Первый закон Ньютона. Масса. Сила

Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние . Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют также законом инерции .

Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета .

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса ) и гравитационные (гравитационная масса ) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 –12 их значения).

Итак, сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона

Второй закон Ньютона - основной закон динамики поступательного движения - от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

а ~ F = const ) . (6.1)

а ~ 1 /т (F = const) . (6.2)

а = kF / m . (6.3)

В СИ коэффициент пропорциональности k = 1. Тогда

(6.4)

(6.5)

Векторная величина

(6.6)

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

(6.7)

Выражение (6.7) называется уравнением движения материальной точки .

Единица силы в СИ - ньютон (Н): 1 Н - сила, которая массе 1 кг сообщает ускорение 1 м/с 2 в направлении действия силы:

1 Н = 1 кг м/с 2 .

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго.

В механике большое значение имеет принцип независимости действия сил : если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было.

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона .

F 12 = – F 21 , (7.1)

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек.

Силы трения

В меха­нике мы будем рассматривать различные силы: трения, упругости, тяготения.

Силы трения , которые препятствуют скольжению соприкасающихся тел друг относительно друга.

Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении.

В зависимости от характера их относительного движения говорят о трении скольжения , качения или верчения .

Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазоч­ной прослойки 0,1 мкм и меньше).

Сила трения скольжения F тр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

F тр = f N ,

где f - коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

В пре­дельном случае (начало скольжения тела) F =F тр. или P sin  0 = f N = f P cos  0 , откуда

f = tg 0 .

Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения

F тр = f ист (N + Sp 0 ) ,

где р 0 - добавочное давление, обусловленное силами межмолекулярного притяжения, которые быстро уменьшаются с увеличением расстояния между частицами; S - пло­щадь контакта между телами; f ист - истинный коэффициент трения скольжения.

Радикальным способом уменьшения силы трения является замена трения скольже­ния трением качения (шариковые и роликовые подшипники и т. д.). Сила трения качения определяется по закону, установленному Кулоном:

F тр = f к N / r , (8.1)

где r - радиус катящегося тела; f к - коэффициент трения качения, имеющий размер­ность dim f к =L. Из (8.1) следует, что сила трения качения обратно пропорциональна радиусу катящегося тела.

Закон сохранения импульса. Центр масс

Совокуп­ность материальных точек (тел), рассматриваемых как единое целое, называется механической системой . Силы взаимодействия между материальными точками механичес­кой системы называются - внутренними . Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними . Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной ). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и проти­воположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

Запишем второй закон Ньютона для каждого из n тел механической системы:

Складывая почленно эти уравнения, получаем

Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

(9.1)

где - импульс системы. Таким образом, производная по времени от им­пульса механической системы равна геометрической сумме внешних сил, действующих на систему.

В случае отсутствия внешних сил (рассматриваем замкнутую систему)

Последнее выражение и является законом сохранения импульса : импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Эксперименты доказывают, что он выпол­няется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон сохранения импуль­са - фундаментальный закон природы.

Закон сохранения импульса является следствием определенного свойства симмет­рии пространства - его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Центром масс (или центром инерции ) системы материальных точек называется воображаемая точка С , положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе; – масса системы. Скорость центра масс

Учитывая, что pi = m i v i , a есть импульс р системы, можно написать

(9.2)

т. е. импульс системы равен произведению массы системы на скорость ее центра масс.

Подставив выражение (9.2) в уравнение (9.1), получим

(9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. Выражение (9.3) представляет собой закон движения центра масс.

1. Производная но времени от количества движения К материальной точки или системы материальных точек относительно неподвижной (инерциальной) системы отсчета равна главному вектору F всех внешних сил, приложенных к системе:
dK/dt = F или mac = F

где ac - ускорение центра инерции системы, а т - ее масса.
В случае поступательного движения твердого тела с абсолютной скоростью v скорость центра инерции vc = v. Поэтому при рассмотрении поступательного движения твердого тела это тело можно мысленно заменить материальной точкой, совпадающей с центром инерции тела, обладающей всей его массой и движущейся под действием главного иехтора внешних сил, приложенных к телу.
В проекциях на оси неподвижной прямоугольной декартовой системы координат уравнения основного закона динамики поступательного движения системы имеют вид:
Fx = dK/dt, Fy = dK/dt, Fz = dK/dt

или
macx = Fx , macy = Fy , macz = Fz

2. Простейшие случаи поступательного движения твердого тела.
а) Движение по инерции (F = 0):
mv = const, a=0.

б) Движение под действием постоянной силы:
d/dt (mv) = F = const, mv = Ft + mv0,

где mv0 - количество движения тела в начальный момент времени t = 0.
в) Движение под действием переменной силы. Изменение количества движения тела за промежуток времени от t1 до t2 равно
mv2 - mv1 = Fcp (t2 - t1)

где Fcp - среднее значение вектора силы в интервале времени времени от t1 до t2.

Другие записи

10.06.2016. Первый закон Ньютона

1. Первый закон Ньютона: всякая материальная точка сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет ее из этого состояния.Этот…

10.06.2016. Сила

1. Сила - векторная величина, являющаяся мерой механического воздействия на материальную точку или тело со стороны других тел или полей. Сила полностью задана, если указаны ее численное значение, направление…

10.06.2016. Третий закон Ньютона

1. Действия двух материальных точек друг на друга численно равны и направлены в противоположные стороны:Fij = - Fji,где i не равно j. Эти силы приложены к разным точкам и могут взаимно уравновешиваться…

Глава 2. ЭЛЕМЕНТЫ ДИНАМИКИ

Динамика изучает движение тел с учетом тех причин (взаимодействий между телами), которые обусловливают тот или иной характер движения. В основе классической (ньютоновской) механики лежат три закона динамики, сформулированные И. Ньютоном в XVII в. Законы Ньютона возникли в результате обобщения большого количества опытных фактов. Правильность их подтверждается совпадением с опытом тех следствий, которые из них вытекают.

Первый закон Ньютона формулируется следующим образом: всякое тело находится в состоянии покоя или равномерного и прямолинœейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Оба названных состояния объединяются тем, что ускорение тела равно нулю.

Учитывая, что характер движения зависит от выбора системы отсчета͵ следует сделать вывод, что первый закон Ньютона выполняется не во всякой системе отсчета. Система отсчета͵ в которой выполняется первый закон Ньютона, принято называть инœерциальной. Сам закон называют законом инœерции. Система отсчета͵ в которой первый закон Ньютона не выполняется, принято называть неинœерциальной. Любая система отсчета͵ движущаяся равномерно и прямолинœейно относительно инœерциальной системы, также является системой инœерциальной. По этой причине инœерциальных систем существует бесконечное множество.

Свойство тел сохранять состояние покоя или равномерного и прямолинœейного движения принято называть инœертностью (инœерцией). Мерой инœертности тела является его масса m . Она не зависит от скорости движения тела. За единицу массы принят килограмм (кг) - масса эталонного тела.

В случае если состояние движения тела или его форма и размеры меняются, то говорят, что на тело действуют другие тела. Мерой взаимодействия тел служит сила . Всякая сила проявляется как результат действия одного тела на другое, сводящийся к появлению у тела ускорения или его деформации.

Второй закон Ньютона: результирующая сила, действующая на тело, равна произведению массы этого тела на его ускорение:

Так как масса является скаляром, то из формулы (6.1) следует, что .

На основании этого закона вводится единица силы - ньютон (Н): .

Второй закон Ньютона справедлив только в инœерциальных системах отсчета.

Заменим ускорение в уравнении (6.1) производной скорости по времени:

Векторная величина

принято называть импульсом тела .

Из формулы (6.3) следует, что направление вектора импульса совпадает с направлением скорости. Единица импульса - килограмм-метр на секунду (кг×м/c).

Объединяя выражения (6.2) и (6.3), получаем

Полученное выражение позволяет предложить более общую формулировку второго закона Ньютона: действующая на тело сила равна производной импульса по времени .

Всякое действие тел друг на друга носит характер взаимодействия (рис. 6.1). В случае если тело действует на тело с некоторой силой , то и тело в свою очередь действует на тело с силой .

Третий закон Ньютона формулируется следующим образом: взаимодействующие тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

Эти силы, приложенные к разным телам, действуют по одной прямой и являются силами одной природы. Математическое выражение третьего закона Ньютона имеет вид

Знак "-" в формуле (6.5) означает, что векторы сил противоположны по направлению.

В формулировке самого Ньютона третий закон гласит: "Действию всœегда есть равное и противоположное противодействие, иначе - действия двух тел друг на друга между собою равны и направлены в противоположные стороны".

Поворот тела на некоторый угол можно задать в виде отрезка, длина которого равна j, а направление совпадает с осью, вокруг которой производится поворот. Направление поворота и изображающего его отрезка связано правилом правого винта.

В математике показывается, что очень малые повороты можно рассматривать как векторы, обозначаемые символами или . Направление вектора поворота связывается с направлением вращения тела; - вектор элементарного поворота тела - является псевдовектором, так как не имеет точки приложения.

При вращательном движении твердого тела каждая точка движется по окружности, центр которой лежит на общей оси вращения (рис. 6). При этом радиус-вектор R , направленный от оси вращения к точке, поворачивается за время Dt на некоторый угол Dj . Для характеристики вращательного движения вводится угловая скорость и угловое ускорение.


Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Угол в 1 радиан – это центральный угол, длина дуги которого равна радиусу окружности; 360 о = 2p рад.

Направление угловой скорости задается правилом правого винта : вектор угловой скорости сонаправлен с вектором , то есть с поступательным движением винта, головка которого вращается в направлении движения точки по окружности.

Линейная скорость точки связана с угловой скоростью:

В векторной форме .

Если в процессе вращения угловая скорость изменяется, то возникает угловое ускорение.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени. Вектор угловой скорости сонаправлен с вектором элементарного изменения угловой скорости , происшедшего за время dt:

При ускоренном движении вектор параллелен (рис. 7), при замедленном – противонаправлен (рис. 8).

Угловое ускорение возникает в системе только тогда, когда происходит изменение угловой скорости, то есть когда линейная скорость движения изменяется по величине. Изменение же скорости по величине характеризует тангенциальное ускорение.

Найдем связь между угловым и тангенциальным ускорениями:

.

Изменение направления скорости при криволинейном движении характеризуется нормальным ускорением :



.

Таким образом, связь между линейными и угловыми величинами выражается следующими формулами:

Типы вращательного движения:

а) переменное – движение, при котором изменяются и :

б) равнопеременное – вращательное движение с постоянным угловым ускорением:

в) равномерное – вращательное движение с постоянной угловой скоростью:

.

Равномерное вращательное движение можно характеризовать периодом и частотой вращения .

Период – это время, за которое тело совершает один полный оборот.

Частота вращения – это число оборотов совершаемых за единицу времени.

За один оборот: ,

, .

Законы Ньютона. Основное уравнение динамики поступательного движения.

Динамика изучает движение тел с учетом причин, вызывающих это движение.

Основу динамики составляют законы Ньютона.

I закон. Существуют инерциальные системы отсчета (ИСО), в которых материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет ее из этого состояния.

Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при отсутствии воздействия на него других тел называется инертностью .



ИСО называют систему отсчета, в которой тело, свободное от внешних воздействий, покоится или движется равномерно прямолинейно.

Инерциальной является система отсчета, которая покоится или движется равномерно прямолинейно относительно какой-либо ИСО.

Система отсчета, движущаяся с ускорением относительно ИСО, является неинерциальной.

I закон Ньютона, называемый также законом инерции, был впервые сформулирован Галилеем. Его содержание сводится к 2-м утверждениям:

1) все тела обладают свойством инертности;

2) существуют ИСО.

Принцип относительности Галилея : все механические явления во всех ИСО происходят одинаково, т.е. никакими механическими опытами внутри ИСО невозможно установить, покоится данная ИСО или движется равномерно прямолинейно.

В большинстве практических задач систему отсчета, жестко связанную с Землей, можно считать ИСО.

Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют свою скорость, т.е. приобретают различные ускорения, ускорение тел зависит от их массы.

Масса - мера инерционных и гравитационных свойств тела. С помощью точных экспериментов установлено, что инертная и гравитационная массы пропорциональны друг другу. Выбирая единицы таким образом, чтобы коэффициент пропорциональности стал равным единице, получим, что , поэтому говорят просто о массе тела.

[m]=1кг - масса платино-иридиевого цилиндра, диаметр и высота которого равны h=d=39мм.

Чтобы характеризовать действие одного тела на другое, вводят понятие силы.

Сила - мера взаимодействия тел, в результате которого тела изменяют свою скорость или деформируются.

Сила характеризуется численным значением, направлением, точкой приложения. Прямая, вдоль которой действует сила, называется линией действия силы .

Одновременное действие на тело нескольких сил эквивалентно действию одной силы, называемой равнодействующей или результирующей силой и равной их геометрической сумме:

Второй закон Ньютона - основной закон динамики поступательного движения - отвечает на вопрос, как изменяется движение тела под действием приложенных к нему сил.

Дата: __________ Зам.директора по УВР:___________

Тема; Второй закон Ньютона для вращательного движения

Цель:

Образоввательная: улировать и записать в математической форме второй закон Ньютона; объяснить зависимость между величинами, входящими в формулы этого закона;

Развивающая: развивать логическое мышление, умение объяснять проявления второго закона Ньютона в природе;

Воспитательная : формировать интерес к изучению физики, воспитывать трудолюбие, ответственность.

Тип урока: изучение нового материала.

Демонстрации: зависимость ускорения тела от силы, действующей на него.

Оборудование: тележка с легкими колесами, вращающийся диск, набор грузиков, пружина, блок, брусок.

ХОД УРОКА

    Организационный момент

    Актуализация опорных знаний учащихся

Цепочка формул (воспроизвести формулы):

II. Мотивация учебной деятельности учащихся

Учитель. С помощью законов Ньютона можно не только объяснять наблюдаемые механические явления, но и предсказывать их ход. Напомним, что прямая основная задача механики состоит в нахождении положения и скорости тела в любой момент времени, если известны его положение и скорость в начальный момент времени и силы, которые действуют на него. Эта задача решается с помощью второго закона Ньютона, который сегодня мы будем изучать.

III. Изучение нового материала

1. Зависимость ускорения тела от силы, действующей на него

Более инертное тело имеет большую массу, менее инертно - меньшую:

2. Второй закон Ньютона

Второй закон динамики Ньютона устанавливает связь между кинематическими и динамическими величинами. Чаще всего он формулируется так: ускорение, который получает тело, прямо пропорционально массе тела и имеет то же направление, что и сила:

где - ускорение, - равнодействующая сил, действующих на тело, Н; m - масса тела, кг.

Если из этого выражения определить силу , то получим второй закон динамики в такой формулировке: сила, действующая на тело, равна произведению массы тела на ускорение, которого предоставляет эта сила.

Ньютон сформулировал второй закон динамики несколько иначе, использовав понятие количества движения (импульса тела). Импульс - произведение массы тела на его скорость (то же, что количество движения) - одна из мер механического движения: Импульс (количество движения) является величиной векторной. Поскольку ускорение , то

Ньютон сформулировал свой закон так: изменение количества движения тела пропорциональна действующей силе и происходит по направлению той прямой, вдоль которой эта сила действует.

Стоит рассмотреть еще одна из формулировок второго закона динамики. В физике широко используется векторная величина, которая называется импульсом силы - это произведение силы на время ее действия: Используя это, получим . Изменение импульса тела равно импульсу силы, которая на него действует.

Второй закон динамики Ньютона обобщил исключительно важный факт: действие сил не вызывает собственно движения, а лишь изменяет его; сила вызывает изменение скорости, т.е. ускорение, а не саму скорость. Направление силы совпадает с направлением скорости лишь в частичном случае прямолинейного рівноприскореного (Δ 0) движения. Например, во время движения тела, брошенного горизонтально, сила тяжести направлена вниз, а скорость образует с силой определенный угол, что во время полета тела меняется. А в случае равномерного движения тела по окружности сила все время направлена перпендикулярно скорости движения тела.

Единица измерения силы в СИ определяют на основе второго закона Ньютона. Единица измерения силы называется [H] и определяется так: сила в 1 ньютон придает телу массой 1 кг ускорение 1 м/с2. Таким образом,

Примеры применения второго закона Ньютона

Как пример применения второго закона Ньютона можно рассмотреть, в частности, измерение массы тела при помощи взвешивания. Примером проявления второго закона Ньютона в природе может быть сила, что действует на нашу планету со стороны Солнца, и др.

Границы применения второго закона Ньютона:

1) система отсчета должна быть инерционной;

2) скорость тела должна быть гораздо меньшей, чем скорость света (для скоростей, близких к скорости света, второй закон Ньютона используется в импульсном виде: ).

IV. Закрепление материала

Решение задач

1. На тело массой 500 г одновременно действуют две силы 12 Н и 4 Н, направленные в противоположном направлении вдоль одной прямой. Определить модуль и направление ускорения.

Дано: m = 500 г = 0,5 кг, F1 = 12 Н, F2 = 4 Н.

Найти: а - ?

Согласно второму закону Ньютона: , где Проведем ось Ox, тогда проекция F = F1 - F2. Таким образом,

Ответ: 16 м/с2, ускорение напрямлене в сторону действия большей силы.

2. Координата тела изменяется по закону x = 20 + 5t + 0,5t2 под действием силы 100 Н. Найти массу тела.

Дано: х = 20 + 5t + 0,5t2, F = 100H

Найти: m - ?

Под действием силы тело движется рівноприскорено. Следовательно, его координата изменяется по закону:

Согласно второму закону Ньютона:

Ответ: 100 кг.

3. Тело массой 1,2 кг приобрело скорости 12 м/с на расстоянии 2,4 м под действием силы 16 Н. Найти начальную скорость тела.

Дано: = 12 м/с, s = 2,4m, F = 16H, m = 1,2 кг

Найти: 0 - ?

Под действием силы тело приобретает ускорение согласно второму закону Ньютона:

Для рівноприскореного движения:

Из (2) выразим время t:

и подставим для t в (1):

Подставим выражение для ускорения:

Ответ: 8,9 м/с.

V. Итоги урока

Фронтальная беседа за вопросами

1. Как связаны между собой такие физические величины, как ускорение, сила и масса тела?

2. Или можно по формуле утверждать, что сила, действующая на тело, зависит от его массы и ускорения?

3. Что такое импульс тела (количество движения)?

4. Что такое импульс силы?

5. Какие формулировки второго закона Ньютона вы знаете?

6. Какой важный вывод можно сделать из второго закона Ньютона?

VI. Домашнее задание

Проработать соответствующий раздел учебника.

Решить задачи:

1. Найдите модуль ускорения тела массой 5 кг под действием четырех приложенных к нему сил, если:

а) F1 = F3 = F4 = 20 H, F2 = 16 H;

б) F1 = F4 = 20 H, F2 = 16 H, F3 = 17 H.

2. Тело массой 2 кг, двигаясь прямолинейно, за 4 с изменило свою скорость с 1 м/с до 2 м/с.

а) С каким ускорением двигалось тело?

б) Какая сила действовала на тело в направлении его движения?

в) Как изменился импульс тела (количество движения) за рассматриваемый время?

г) Какой импульс силы, действовавшей на тело?

д) Какое расстояние прошло тело за рассматриваемый время движения?