Биографии Характеристики Анализ

Химическая характеристика аргона. Аргон – это особенный элемент периодической системы

ОПРЕДЕЛЕНИЕ

Аргон - восемнадцатый элемент Периодической таблицы. Обозначение - Ar от латинского «argon». Расположен в третьем периоде, VIIIА группе. Относится к группе благородных (инертных) газов. Заряд ядра равен 18.

Самый распространенный в природе элемент VIIIA-группы. Содержание аргона в воздухе 0,932% (об.), 1,28% (масс).

Представляет собой бесцветный газ. Плохо растворяется в воде (растворимость понижается в присутствии сильных электролитов), лучше — в органических растворителях. Образует клатрат состава 8Ar×46Н 2 О. Не реагирует со всеми другими веществами (простыми и сложными).

Атомная и молекулярная масса аргона

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии аргон существует в виде одноатомных молекул Ar, значения его атомной и молекулярной масс совпадают. Они равны 39,948.

Изотопы аргона

Известно, что в природе аргон может находиться в виде трех стабильных изотопов 36 Ar (0,337%), 38 Ar (0,063%) и 40 Ar (99,6%). Их массовые числа равны 36, 38 и 40 соответственно. Ядро атома изотопа аргона 36 Ar содержит восемнадцать протонов и восемнадцать нейтронов, а изотопов 38 Ar и 40 Ar- такое же количество протонов, двадцать и двадцать два нейтронов/а соответственно.

Существуют искусственные изотопы аргона с массовыми числами от 32-х до 55-ти, среди которых наиболее стабильным является 39 Ar с периодом полураспада равным 269 лет.

Ионы аргона

Как гелий и неон при сильном возбуждении атомов аргон образует молекулярные ионы типа Ar 2 + .

Молекула и атом аргона

В свободном состоянии аргон существует в виде одноатомных молекул Ar.

Примеры решения задач

ПРИМЕР 1

АРГОН, Ar (лат. Argon * а. argon; н. Argon; ф. argon; и. argon), — химический элемент главной подгруппы VIII группы периодической системы , относится к инертным газам, атомный номер 18, атомная масса 39,948. Состоит из трёх стабильных изотопов, основной — 40 Ar (99,600%). Выделен из воздуха в 1894 английскими учёными Дж. Рэлеем и У. Рамзаем.

Аргон в природе

В природе аргон существует только в свободном виде. При обычных условиях аргон — газ без цвета, запаха и вкуса. Твёрдый аргон кристаллизуется в кубические . аргона 1,78 кг/м3, t плавления — 189,3°С, t кипения — 185,9°С, критическое давление 48 МПа, критическая температура — 122,44°С. Первый потенциал ионизации 15,69 эВ. Атомный радиус 0,188 нм (1,88Е).

Свойства аргона

Химические соединения не получены (известны лишь соединения включения). В 1 л дистиллированной воды при нормальных условиях растворяется 51,9 см 3 аргона. Образует кристаллогидраты типа Ar . 6Н 2 О. Весовой кларк в земной коре 4 . 10 -4 ; содержание в атмосфере 0,9325 объёмных % (6,5 . 10 16 кг), в изверженных породах 2,2 . 10 -5 см 3 /г, в океанической воде 0,336 см 3 /л. В мантии продуцировано 5,3. 10 19 кг 40 Ar, средняя скорость накопления 40 Ar в земной коре 2 .10 7 кг/год.

Из минералов атомы аргона мигрируют по дислокациям в зоны нарушения кристаллической структуры и затем по микротрещинам и порам поступают в , нефтяные и газовые залежи. На измерении отношения содержаний 40 Ar/ 40 K в калийсодержащих минералах основан метод определения возраста геологических объектов. Аргоновым методом определяют возрасты изверженных (по слюдам, амфиболам), осадочных (по глауконитам, сильвинам), метаморфизованных пород, для которых также с известным приближением даётся возраст . Разработан активационный метод датирования, основанный на измерении отношения 40 Ar/ 39 Ar.

Получение и применение аргона

В промышленности аргон получают в процессе разделения воздуха при глубоком охлаждении. Возможно получение аргона из продувочных газов колонн синтеза аммиака. Отделение аргона от других инертных газов наиболее полно осуществляется газохроматографическим методом.

Аргон используется при термической обработке легко окисляющихся металлов. В защитной атмосфере аргона проводят сварку и резку редких и цветных металлов, плавку , и др., выращивают кристаллы полупроводниковых материалов. Радиоактивный изотоп (37 Ar) применяют для контроля вентиляционных систем.

В переводе с греческого «argon» означает «медленный» или «неактивный». Такое определение газ аргон получил благодаря своим инертным свойствам, позволяющим широко его использовать во многих промышленных и бытовых целях.

Химический элемент Ar

Ar – 18-й элемент периодической таблицы Менделеева, относящийся к благородным инертным газам. Данное вещество является третьим после N (азота) и O (кислорода) по содержанию в атмосфере Земли. В обычных условиях – бесцветен, не горюч, не ядовит, без вкуса и запаха.

Другие свойства газа аргона:

  • атомная масса: 39,95;
  • содержание в воздухе: 0,9% объема и 1,3% массы;
  • плотность в нормальных условиях: 1,78 кг/м³;
  • температура кипения: -186°С.

На рисунке название химического элемента и его свойства

Данный элемент был открыт Джоном Стреттом и Уильямом Рамзаем при исследовании состава воздуха. Несовпадение плотности при различных химических испытаниях натолкнуло ученых на мысль, что в атмосфере помимо азота и кислорода присутствует инертный тяжелый газ. В итоге в 1894 г. было сделано заявление об открытии химического элемента, доля которого в каждом кубометре воздуха составляет 15 г.

Как добывают аргон

Ar не поддается изменениям в процессе его использования и всегда возвращается в атмосферу. Поэтому ученые считают данный источник неисчерпаемым. Он добывается как сопутствующий продукт при разделении воздуха на кислород и азот посредством низкотемпературной ректификации.

Для реализации этого метода применяются специальные воздухоразделительные аппараты, состоящие из колонн высокого, низкого давления и конденсатора-испарителя. В результате процесса ректификации (разделения) получается аргон с небольшими примесями (3-10%) азота и кислорода. Чтобы произвести очистку, примеси убираются с помощью дополнительных химических реакций. Современные технологии позволяют достичь 99,99% чистоты данного продукта.

Представлены установки по производству данного химического элемента

Хранится и транспортируется газ аргон в стальных баллонах (ГОСТ 949-73), которые имеют серый окрас с полосой и соответствующей надписью зеленого цвета. При этом процесс наполнения емкости должен полностью соответствовать технологическим нормам и правилам безопасности. Детальную информацию о специфике заполнения газовых баллонов можно прочитать в статье: баллоны со сварочной смесью – технические особенности и правила эксплуатации .

Где применяется газ аргон

Данный элемент имеет достаточно большую сферу применения. Ниже приведены основные области его использования:

  1. заполнение внутренней полости ламп накаливания и стеклопакетов;
  2. вытеснение влаги и кислорода для долгого хранения пищевых продуктов;
  3. огнетушащее вещество в некоторых системах тушения пожара;
  4. защитная среда при сварочном процессе;
  5. плазмообразующий газ для плазменной сварки и резки.

В сварочном производстве он применяется как защитная среда в процессе сварки редких металлов (ниобия, титана, циркония) и их сплавов, легированный сталей разных марок, а также алюминиевых, магниевых и хромоникелевых сплавов. Для черных металлов, как правило, применяют смесь Ar с другими газами – гелием, кислородом, углекислотой и водородом.

Вид защитной среды при сварочном процессе, которую создает аргон

Меры предосторожности при эксплуатации

Данный химический элемент не представляет абсолютно никакой опасности для окружающей среды, но при большой концентрации оказывает удушающее воздействие на человека. Он нередко скапливается в районе пола в недостаточно проветриваемых помещениях, а при значительном уменьшении содержание кислорода может привести к потере сознания и даже смертельному исходу. Поэтому важно следить за концентрацией кислорода в закрытом помещении, которая не должна падать ниже 19%.

Жидкий Ar способен вызвать обморожение участков кожи и повредить слизистую оболочку глаз, поэтому в процессе работы важно использовать спецодежду и защитные очки. При работе в атмосфере этого газа с целью предотвращения удушения необходимо применять изолирующий кислородный прибор или шланговый противогаз.

Все мы знаем, что аргон применяется для сварки разных металлов, но не каждый задумывался, о том, что представляет собой этот химический элемент. А между тем его история богата событиями. Что характерно, аргон - это исключительный экземпляр периодической таблицы Менделеева, который не имеет аналогов. Сам ученый удивлялся в свое время, как он вообще мог сюда попасть.

В атмосфере присутствует примерно 0,9 % этого газа. Как и азот, он имеет нейтральный характер без цвета и запаха. Для поддержания жизни он не подходит, но зато просто незаменим в некоторых областях человеческой деятельности.

Небольшой экскурс в историю

Впервые его обнаружил англичанин и физик по образованию Г. Кавендиш, который заметил присутствие в воздухе чего-то нового, стойкого к химическому воздействию. К сожалению, Кавендиш так и не узнал природу нового газа. Чуть более ста лет спустя это заметил и другой ученый - Джон Уильям Страт. Он пришел к выводу, что в азоте из воздуха есть какая-то примесь газа неизвестного происхождения, но аргон это или что-то еще, он пока не мог понять.

При этом газ не вступал в реакцию с различными металлами, хлором, кислотами, щелочами. То есть с химической точки зрения носил инертный характер. Еще одной неожиданностью стало открытие - молекула нового газа включает в себя лишь один атом. А на тот момент подобный состав газов был еще неизвестен.

Публичное сообщение о новом газе привело в шок многих ученых со всего мира - как можно было проглядеть новый газ в воздухе на протяжении многих научных исследований и опытов?! Но в открытие поверили не все ученые, включая Менделеева. Судя по атомной массе нового газа (39,9), он должен расположиться между калием (39,1) и кальцием (40,1), но позиция уже была занята.

Как уже упоминалось, аргон - с богатой и детективной историей. На некоторое время он был забыт, но после открытия гелия новый газ признали официально. Было решено отвести для него отдельную нулевую позицию, расположенную в между галогенов и щелочных металлов.

Свойства

Среди прочих инертных газов, которые входят в тяжелую группу, аргон считается самым легким. Его масса превышает вес воздуха в 1,38 раза. В жидкое состояние газ переходит при температуре -185,9 °С, а при -189,4 °С и нормальном давлении твердеет.

От гелия и неона аргон отличается тем, что способен растворяться в воде - при температуре 20 градусов в количестве 3,3 мл в ста граммах жидкости. Но в ряде органических растворов газ растворяется лучше. Воздействие электрического тока заставляет его светиться, благодаря чему он стал широко применяться в осветительном оборудовании.

Биологами обнаружено другое полезное свойство, которым обладает аргон. Это своего рода среда, где растение прекрасно себя чувствует, что доказано опытами. Так, находясь в атмосфере газа, посаженые семена риса, кукурузы, огурцов и ржи дали свои ростки. В другой атмосфере, где 98 % приходится на аргон и 2 % - на кислород, хорошо прорастает такая овощная культура, как морковь, салат и лук.

Что особенно характерно, содержание этого газа в земной коре намного больше, чем других элементов, находящихся в его группе. Его примерное содержание - 0,04 г на одну тонну. Это в 14 раз превышает количество гелия и в 57 раз - неона. Что касается окружающей нас Вселенной, его там еще больше, в особенности на разных звездах и в туманностях. По некоторым подсчетам, аргона на просторах космоса больше, чем хлора, фосфора, кальция или калия, которых полно на Земле.

Получение газа

Тот аргон в баллонах, в которых мы его чаще встречаем, является неисчерпаемым источником. К тому же он в любом случае возвращается в атмосферу в силу того, что при использовании не меняется в физическом или химическом плане. Исключением могут быть случаи расхода малого количества изотопов аргона на получение новых изотопов и элементов в ходе ядерных реакций.

В промышленности газ получают путем разделения воздуха на кислород и азот. В результате чего и рождается газ как побочный продукт. Для этого используется специальное промышленное оборудование двукратной ректификации с двумя колоннами высокого и низкого давления и промежуточным конденсатором-испарителем. Помимо этого, для получения аргона могут быть использованы отходы аммиачного производства.

Область применения

Сфера применения аргона насчитывает несколько областей:

  • пищевая промышленность;
  • металлургия;
  • научные исследования и опыты;
  • сварочные работы;
  • электроника;
  • автомобильная промышленность.

Этот нейтральный газ находится внутри электрических лапочек, что замедляет испарение вольфрамовой спирали внутри. Благодаря этому свойству широко применяется основанный на данном газе сварочный аппарат. Аргон позволяет надежно соединять детали из алюминия и дюраля.

Широкое распространение газ получил при создании защитной и инертной атмосферы. Это обычно необходимо для термической обработки тех металлов, которые легко подвержены окислению. В атмосфере аргона хорошо растут кристаллы для получения полупроводниковых элементов или сверхчистых материалов.

Преимущества и недостатки применения аргона в сварке

Касательно области сварки аргон дает определенные преимущества. Прежде всего, металлические детали в ходе сварки не так сильно нагреваются. Это позволяет избежать деформации. К прочим достоинствам относятся:

  • надежная защита сварного шва;
  • скорость на порядок выше;
  • процесс легко контролировать;
  • сварку можно механизировать либо полностью перевести в автоматический режим;
  • возможность соединять детали из разнородных металлов.

В то же время сварочный аргон подразумевает и ряд недостатков:

  • при сварке возникает ультрафиолетовое излучение;
  • для использования высокоамперной дуги необходимо качественное охлаждение;
  • сложная работа на открытом воздухе или сквозняке.

Тем не менее при наличии стольких достоинств трудно недооценить значение аргонной сварки.

Меры предосторожности

При использовании аргона стоит проявлять осторожность. Хоть газ нетоксичен, но способен вызывать удушье, замещая собой кислород или сжижая его. Поэтому крайне важно контролировать объем O 2 в воздухе (не менее 19 %) при помощи специальных приборов, ручных или автоматических.

Работа с жидким газом требует предельной осторожности, поскольку низкая температура аргона может вызвать сильное обморожение кожного покрова и повреждение глазной оболочки. Необходимо использовать очки и спецодежду. Лицам, которым необходимо проводить работы в аргонной атмосфере, нужно надевать противогазы либо прочие изолирующие кислородные приборы.

Внешний вид простого вещества

Инертный газ без цвета, вкуса и запаха
Свойства атома
Имя, символ, номер Аргон / Argon (Ar), 18
Атомная масса (молярная масса) 39,948 а. е. м. (г/моль)
Электронная конфигурация 3s 2 3p 6
Радиус атома 71пм
Химические свойства
Ковалентный радиус 106 пм
Радиус иона 154 пм
Электроотрицательность 4,3 (шкала Полинга)
Электродный потенциал 0
Степени окисления 0
Энергия ионизации (первый электрон) 1519,6(15,75) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) (при 186 °C) 1,40 г/см 3
Температура плавления 83,8 K
Температура кипения 87,3 K
Теплота испарения 6,52 кДж/моль
Молярная теплоёмкость 20,79 Дж/(K·моль)
Молярный объём 24,2 см 3 /моль
Кристаллическая решётка простого вещества
Структура решётки кубическая гранецентрированая
Параметры решётки 5,260 A
Температура Дебая 85 K
Прочие характеристики
Теплопроводность (300 K) 0,0177 Вт/(м·К)

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется.

В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекращалось, но, после связывания оставшегося кислорода, оставался газовый пузырь, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г.). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота.

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос.

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы).

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней.

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа.

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество.

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества.

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов.

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %). Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон.

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии.

Основное применение

Пищевая отрасль

В контролируемой среде аргон может во многих процессах использоваться в качестве замены для азота. Высокая растворимость (в два раза превышающая растворимость азота) и определенные молекулярные характеристики обеспечивают его особые свойства при хранении овощей. При определенных условиях он способен замедлять метаболические реакции и значительно сокращать газообмен.

Производство стекла, цемента и извести

При использовании для заполнения ограждений с двойным глазурованием аргон обеспечивает превосходную тепловую изоляцию.

Металлургия

Аргон используется для предупреждения контакта и последующего взаимодействия между расплавленным металлом и окружающей атмосферой.

Использование аргона позволяет оптимизировать такие производственные процессы как перемешивание расплавленных веществ, продувка поддонов реакторов для предупреждения повторного окисления стали и обработка стали узкого применения в вакуумных дегазаторах, включая вакуумно-кислородное обезуглероживание, окислительно-восстановительных процессы и процессы открытого сжигания. Однако наибольшую популярность аргон приобрел в процессах аргоно-кислородного обезуглероживания нерафинированной высокохромистой стали, позволяя минимизировать окисление хрома.

Лабораторные исследования и анализы

В чистом виде и в соединениях с другими газами аргон используется для проведения промышленных и медицинских анализов и испытаний в рамках контроля качества.

В частности аргон выполняет функцию газовой плазмы в эмиссионной спектрометрии индуктивно-связанной плазмой (ICP), газовой подушки в атомно-абсорбционной спектроскопии в графитной печи (GFAAS) и газа-носителя в газовой хроматографии с использованием различных газоанализаторов.

В соединении с метаном аргон используется в счетчиках Гейгера и детекторах рентгеновского флуоресцентного анализа (XRF), где он выполняет функцию гасящего газа.

Сварка, резка и нанесение покрытия

Аргон используется в качестве защитной среды в процессах дуговой сварки, при поддуве защитного газа и при плазменной резке.

Аргон предупреждает окисление сварных швов и позволяет сократить объем дыма, сбрасываемого в процессе сварки.

Электроника

Сверхчистый аргон служит в качестве газа-носителя для химически активных молекул, а также в качестве инертного газа для защиты полупроводников от посторонних примесей (например, аргон обеспечивает необходимую среду для выращивания кристаллов силикона и германия).

В ионном состоянии аргон используется в процессах металлизации напылением, ионной имплантации, нормализации и травления при производстве полупроводников и высокоэффективном производстве материалов.

Автомобильная и транспортная отрасль

Затаренный герметизированный аргон служит для наполнения подушек безопасности в автомобилях.