Биографии Характеристики Анализ

Испарение и конденсация. Насыщенный и ненасыщенный пар

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.

Видеоурок 2: Температурная зависимость давления пара. Точка росы

Лекция: Насыщенные и ненасыщенные пары


Парообразование и конденсация

Твердые тела отличаются от жидких более устойчивым положением молекул. В жидкостях имеются силы притяжения, однако их не всегда достаточно. Если молекуле некоторого жидкого вещества придать кинетическую энергию, которая позволит структурным единицам стать свободными, то они способны покинуть поверхность жидкости и улететь в газ, который находится сверху. Некоторым молекулам энергии становится недостаточно, и они возвращаются обратно в жидкость.


Процесс, в результате которого молекулы покидают жидкость, называется парообразованием. Процесс, обратный парообразованию, называется конденсацией .


Существует два вида образования парообразного состояния: испарение и кипение.


Испарение


Процесс испарения характеризуется способностью молекул жидкости покидать верхние слои при любой температуре. В тот момент, когда молекула покидает поверхность, температура жидкости снижается. Это происходит в результате того, что для отрывания структурной единицы необходима энергия, а когда энергия расходуется, температура падает.


Именно поэтому организм человека выделяет пот. В результате его испарения температура тела падает. Каждый из нас, выходя из реки, моря или другого водоема, ощущал холодок - это происходит в результате испарения.


Скорость процесса испарения зависит :


1. От размера свободной поверхности жидкости . Если взять одинакового объема кружку и тарелку, то с тарелки испарения будет происходить быстрее за счет большей площади.


2. От рода жидкости . Вода быстрее испаряется, чем спирт, например. Чем легче структурная единица вещества, тем быстрее происходит испарение.


3. От температуры жидкости . Чем выше температура, тем быстрее протекает процесс.


4. От давления окружающей среды . Если давление большое, то оно не дает жидкости покинуть поверхность, поэтому испарение протекает медленнее.


5. Если жидкость находится в закрытом пространстве, то ей тяжелее испарятся . Поэтому скорость зависит от количества водяного пара над поверхностью жидкости.


Пары: насыщенный и ненасыщенный

Представьте, что вы взяли два сосуда. Один из которых закрыли крышкой. В обоих сосудах происходит и испарение и конденсация.

В сосуде, который не закрыт, количество молекул, что испарились, больше тех, что вернулись обратно. Такой пар называется ненасыщенным. В закрытом сосуде количество молекул, покинувших жидкость, равна тем, что вернулись обратно. Такой пар называется насыщенным.


Кипение


Данный процесс перехода жидкости в газообразное состояние происходит со всего объема и при определенной температуре. Для каждой жидкости соответствует своя температура кипения. Для воды, например, при нормальном давлении температура кипения 100 градусов. Чем меньше давление, тем меньше температура кипения. Таким образом, на высокой горе закипетить воду можно при более низкой температуре.

Только обратите внимание, приготовить на такой воде мясо практически невозможно - для него нужна температура выше.

Во время кипения пузырьки газа, содержащиеся в жидкости, выходят с её объема. Закипетить повторно воду тяжелее, поскольку данных пузырьков нет. Кипение начинается тогда, когда давление в пузырьках меньше, чем в жидкости - они начинают лопаться.

Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.

Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:

  • испарение (переход из жидкого в газообразное состояние);
  • конденсация (переход из газообразного состояния в жидкое);
  • десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
  • возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).

Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.

Как образуется насыщенный и ненасыщенный пар

Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.

Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар . Лишь небольшая их часть возвращается обратно в жидкость.

Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.

Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.

Свойства насыщенного пара

Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.

При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.

Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.

Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.

Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.

Еще о температуре и насыщенном паре

Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.

У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.

Определение давления насыщенного пара в смеси с другими газами

Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.

Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.

О давлении и кипении

Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.

Жидкости кипят при разных температурах. В обычных условиях вода закипает при 100 0 С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.

Кстати, в герметично закрытом сосуде кипение невозможно вообще.

Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/р о * 100%.

При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.

Подведем итоги

На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.

Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

У разных жидкостей динамическое равновесие с паром наступает при различной плотности пара. Причина этого заключается в различии сил межмолекулярного взаимодействия. В жидкостях, у которых силы межмолекулярного притяжения велики, например у ртути, только наиболее «быстрые» молекулы, число которых незначительно, могут вылетать из жидкости. Поэтому для таких жидкостей уже при небольшой плотности пара наступает состояние равновесия. У летучих жидкостей с малой силой притяжения молекул, например у эфира, при той же температуре может вылететь за пределы жидкости множество молекул. Поэтому и равновесное состояние наступает только при значительной плотности пара.

Насыщенный пар имеет максимальные плотность и давление при заданной температуре.

§ 6.3. Изотермы реального газа

Для более детального выяснения условий, при которых возможны взаимные превращения газа и жидкости, недостаточно простых наблюдений за испарением жидкости. Нужно внимательно проследить за изменением давления реального газа в зависимости от его объема при различных температурах.

Пусть в цилиндре под поршнем (рис. 6.3) находится углекислый газ. Будем его медленно сжимать, при этом мы совершаем над газом работу, вследствие чего внутренняя энергия газа должна увеличиваться. Если мы хотим провести процесс при постоянной температуре Т, то нужно обеспечить хороший теплообмен между цилиндром и окружающей средой. Для этого можно поместить цилиндр в большой сосуд с жидкостью постоянной температуры (термостат) и сжимать газ настолько медленно, чтобы теплота успевала передаваться от газа к окружающим телам.

Проводя данный опыт, можно заметить, что вначале, когда объем достаточно велик (V > V 2 , см. рис. 6.3), давление углекислого газа с уменьшением объема растет в соответствии с законом Бойля-Мариотта, а затем при дальнейшем увеличении давления наблюдаются небольшие отклонения от этого закона. Данная зависимость между давлением и объемом газа изображена графически на рисунке 6.3 кривой АВ.

При дальнейшем уменьшении объема, начиная со значения V 2 , давление в цилиндре под поршнем перестает меняться. Если заглянуть при этом в цилиндр через специальное смотровое окно, то можно увидеть, что часть объема цилиндра занимает прозрачная жидкость. Это значит, что газ (пар) превратился в насыщенный пар, а часть его превратилась в жидкость, т. е. сконденсировалась.

Продолжая сжимать содержимое цилиндра, мы заметим, что количество жидкости в цилиндре увеличивается, а пространство, занятое насыщенным паром, уменьшается. Давление, которое показывает манометр, остается постоянным до тех пор, пока все пространство под поршнем не окажется заполненным жидкостью. Этот процесс изображен на рисунке 6.3 участком ВС графика.

В дальнейшем при незначительном уменьшении объема, начиная со значения V 3, давление очень резко нарастает (участок CD графика; см. рис. 6.3). Это объясняется тем, что жидкости малосжимаемы.

Так как рассмотренный процесс происходил при постоянной температуре Г, график ABCD (см. рис. 6.3), изображающий зависимость давления газа р от объема V , называют изотермой реального газа. Участок АВ (V > V 2 ) соответствует ненасыщенному пару, участок ВС (V 3 < V < V 2 ) - равновесному состоянию жидкости и ее насыщенного пара, а участок CD (V < V 3 ) - жидкому состоянию вещества.

Опыты показывают, что такой же вид имеют изотермы и других веществ, если их температура не слишком велика.