Биографии Характеристики Анализ

Какими явлениями сопровождается электрический ток.

Возможное существование тесной связи между элек­тричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распро­странено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались показать различие этих двух явлений. Но это предполо­жение снова возникло в XVIII в. уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность полу­чать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т.е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая при­способления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим» флюи­дом и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Когда 21 июля 1820 г. в статье на латинском языке, озаглавленной “Experimenta circa effectum conflictus electrici in acum magneticam”, датский физик Ганс Христиан Эрстед (1777 – 1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действую­щая между магнитным полюсом и элементом тока, направлена не по соеди­няющей их прямой, а по нормали к этой прямой, т.е. она, как тогда говори­ли, является «силой поворачивающей». Значение этого факта чувствовалось уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, англий­ские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяс­нение, которое он пытается дать наблюдавшимся им явлениям, обусловлен­ным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соот­ветственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое вни­мание экспериментаторов и тео­ретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, по­вторенных Де ла Ривом, рас­сказал о них в Париже, а в сен­тябре 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально распо­ложенный кусок картона, посыпанный железными опилками. Но окружно­стей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «сило­вых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнит», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Простейшие электрические и магнитные явления известны людям с очень давних времен.

По-видимому, уже за 600 лет до н. э. греки знали, что магнит притягивает к себе железо, а натертый янтарь – легкие предметы, вроде соломинок и т. п. Однако различие между электрическими и магнитными притяжениями было еще не ясно; те и другие считались явлениями одной природы.

Четкое разграничение этих явлений – заслуга английского врача и естествоиспытателя Уильяма Гильберта (1544-1603), который в 1600 г. выпустил в свет книгу под названием «О магните, магнитных телах и большом магните – Земле». С этой книги, собственно, и начинается подлинно научное изучение электрических и магнитных явлений. Гильберт описал в своей книге все свойства магнитов, которые в его эпоху были известны, а также изложил результаты собственных очень важных опытов. Он указал на ряд существенных различий между электрическими и магнитными притяжениями и ввел слово «электричество».

Хотя после Гильберта различие между электрическими и магнитными явлениями было уже для всех неоспоримо ясно, тем не менее ряд фактов указывал на то, что при всем своем различии эти явления каким-то образом тесно и неразрывно связаны друг с другом. Наиболее бросающимися в глаза были факты намагничивания железных предметов и перемагничивания магнитных стрелок под влиянием молний. В своей работе «Гром и молния» французский физик Доминик Франсуа Араго (1786-1853) описывает, например, такой случай. «В июле 1681 г. корабль «Королева», находившийся в сотне миль от берега, в открытом море, был поражен молнией, которая причинила значительные повреждения в мачтах, парусах и пр. Когда же наступила ночь, то по положению звезд выяснилось, что из трех компасов, имевшихся на корабле, два, вместо того чтобы указывать на север, стали указывать на юг, а третий стал указывать на запад». Араго описывает также случай, когда молния, ударившая в дом, сильно намагнитила в нем стальные ножи, вилки и другие предметы.

В начале XVIII века было уже установлено, что молния, по сути дела, представляет собой сильный электрический ток, идущий через воздух; поэтому факты вроде описанных выше могли подсказать мысль, что всякий электрический ток обладает какими-то магнитными свойствами. Однако обнаружить на опыте эти свойства тока, и изучить их удалось только в 1820 г. датскому физику Гансу Христиану Эрстеду (1777-1851).

Основной опыт Эрстеда изображен на рис. 199. Над неподвижным проводом 1, расположенным вдоль меридиана, т. е. в направлении север-юг, подвешена на тонкой нити магнитная стрелка 2 (рис. 199, а). Стрелка, как известно, устанавливается также приблизительно по линии север-юг, и поэтому она располагается примерно параллельно проводу. Но как только мы замкнем ключ и пустим ток по проводу 1, мы увидим, что магнитная стрелка поворачивается, стремясь установиться под прямым углом к нему, т. е. в плоскости, перпендикулярной к проводу (рис. 199, б). Этот фундаментальный опыт показывает, что в пространстве, окружающем проводник с током, действуют силы, вызывающие движение магнитной стрелки, т. е. силы, подобные тем, которые действуют вблизи естественных и искусственных магнитов. Такие силы мы будем называть магнитными силами, так же как мы называем силы, действующие на электрические заряды, электрическими.

Рис. 199. Опыт Эрстеда с магнитной стрелкой, обнаруживающий существование магнитного поля тока: 1 – провод, 2 – магнитная стрелка, подвешенная параллельно проводу, 3 – батарея гальванических элементов, 4 – реостат, 5 – ключ

В гл. II мы ввели понятие электрического поля для обозначения того особого состояния пространства, которое проявляется в действиях, электрических сил. Точно так же мы будем называть магнитным полем то состояние пространства, которое дает о себе знать действием магнитных сил. Таким образом, опыт Эрстеда доказывает, что в пространстве, окружающем электрический ток, возникают магнитные силы, т. е. создается магнитное поле.

Первый вопрос, который поставил перед собой Эрстед после того, как он сделал свое замечательное открытие, был таков: влияет ли вещество провода на создаваемое током магнитное поле? «Соединительный провод, – пишет Эрстед, – может состоять из нескольких проволок или металлических полос. Природа металла не меняет результата, разве только, пожалуй, в отношении величины.

С одинаковым результатом мы пользовались проволоками из платины, золота, серебра, латуни и железа, а также оловянными и свинцовыми полисами и ртутью».

Все свои опыты Эрстед проводил с металлами, т. е. с проводниками, в которых проводимость, как мы теперь знаем, имеет электронный характер. Нетрудно, однако, осуществить опыт Эрстеда, заменив металлический провод трубкой с электролитом или трубкой, в которой происходит разряд в газе. Такие опыты мы уже описали в § 40 (рис. 73) и видели, что хотя в этих случаях электрический ток обусловлен движением положительных и отрицательных ионов, но действие его на магнитную стрелку то же, что и в случае тока в металлическом проводнике. Какова бы ни была природа проводника, по которому течет ток, вокруг проводника всегда создается магнитное поле, под влиянием которого стрелка поворачивается, стремясь стать перпендикулярно к направлению тока.

Таким образом, мы можем утверждать: вокруг всякого тока возникает магнитное поле. Об этом важнейшем свойстве электрического тока мы уже упоминали (§ 40), когда говорили подробнее о других его действиях – тепловом и химическом.

Из трех свойств или проявлений электрического тока наиболее характерным является именно создание магнитного поля. Химические действия тока в одних проводниках – электролитах – имеют место, в других – металлах – отсутствуют. Выделяемое током тепло может быть при одном и том же токе больше или меньше в зависимости от сопротивления проводника. В сверхпроводниках возможно даже прохождение тока без выделения тепла (§ 49). Но магнитное поле – неотделимый спутник всякого электрического тока. Оно не зависит ни от каких специальных свойств того или иного проводника и определяется лишь силой и направлением тока. Большинство технических применений электричества также связано с наличием магнитного поля тока.

Билеты по физике

Сила тока, напряжение, сопротивление.

1. Создавать электрическое поле, в котором будут двигаться заряженные частицы, то есть возникнет ток.

2. Электрофорная машина, термоэлемент, гальванический элемент или аккумулятор.

3. А) при работе гальванического элемента в стандартных условиях происходит процессы превращения химической энергии реагентов в электрическую.

Б) Преобразование тепла в электрическую.

В) Происходит превращение механической энергии при трении в электрическую.

Г)Внутренняя энергия, выделяющаяся при химических реакциях, превращается в электрическую.В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой – отрицательно.

4. Основное различие состоит в том, что Аккумулятор можно заряжать вновь. Причем количество циклов заряда/разряда может достигать нескольких тысяч раз. Гальванический элемент имеет только один цикл разряда.

5. Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещённых в раствор серной кислоты.

6. При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный – с отрицательным полюсом.

7. Любой гальванический элементсостоитиз анода, катода и электролита твердого, жидкого или гелеобразного.

8. Источник тока, соединительные провода, ключ, потребитель.

10.Тепловое действие тока.

Электрический ток вызывает разогревание металлических проводников (вплоть до свечения).

Химическое действие тока.

При прохождении электрического тока через электролит возможно выделение веществ,
содержащихся в растворе, на электродах..
- наблюдается в жидких проводниках.

Магнитное действие тока.

Проводник с током приобретает магнитные свойства.
- наблюдается при наличии электрического тока в любых проводниках (твердых, жидких, газообразных).

11.______________________________________________________________________________________________________________________________________________________________________________________________________________________________

12.За направление тока условно приняли то направление, по которому движутся в проводнике положительные заряды, т.е. направление от положительного полюса источника тока к отрицательному.

13.Электрический ток – это упорядоченное движение заряженных частиц.

14.Для создания эл. тока необходимо эл. поле, которое распространяется со скоростью света от источника тока при замыкании цепи.

15.________________________________________________________________________ В металлах – электроны, в электролитах – ионы, в газах – молекулы.

16.сила тока – это эл. Заряд проходящий через поперечное сечение проводника за 1 сек.

17. - сила тока (А)

18. ;

19. q(-e)= -1.6*10^-19 Кулон

20.Силу тока в цепи измеряют прибором, называемым амперметром .

22.Напряжение это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U. Единица напряжения названо вольтом (В) .

23. У амперметра очень малое внутреннее сопротивление поэтому при параллельном его включении в цепь весь ток "ринется" через него и он сгорит.

24. Вольтметр имеет большое внутреннее сопротивление, поэтому он ток почти не проведет. Даже если и проведет через себя ток, то сильно ослабляет его.

25.Сопротивление проводника зависит от его длины, от удельного сопротивления и от площади его поперечного сечения.

26.За единицу сопротивления принимают 1 ом - сопротивление такого проводника в котором при напряжении на концах 1 вольт сила тока равна 1 амперу.

27. ;
где R-сопротивление, p-удельное сопротивление проводника, l- длина проводника.

28. Это означает что сопротивление проводника () прямо пропорционально длине проводника (м) , обратно пропорциональна площади его поперечного и зависит от вещ-ва проводника.

30. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве.

34.Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

35.

37.При последовательном соединении сила тока в любых участках цепи одна и та же, т.е.

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

38.Напряжение на участке цепи АВ и на концах всех параллельно соединённых проводников одно и то же:

Сила тока в неразветвлённой части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

Общее сопротивление цепи при параллельном соединении проводников определяется по формуле:

39.Потому что если сгорит одна из проводок то все остальные будут продолжать работать.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

Исследовать магнитное действие электрического тока начинают после открытия датским ученым Хансом Кристианом Эрстедом (1777-1851) действия электрического тока на магнитную стрелку. Уже задолго до открытия Эрстеда были известны факты, указывающие на существование связи между электричеством и магнетизмом. Еще в XVII в. были известны случаи перемагничения стрелки компаса во время ударов молнии. В XVIII в. после установления электрической природы молнии были сделаны попытки намагнитить железо, пропуская через него разряд лейденской банки, а позже - ток от гальванической батареи. Однако эти попытки не привели к каким-либо определенным результатам. Впервые доказал связь между электрическими и магнитными явлениями Эрстед в 1819 г. Полученный результат оказался неожиданным для всех, в том числе и для него самого. Неожиданным был сам характер связи, а не факт ее существования. Эрстед гораздо раньше был глубоко уверен в наличии связи между электрическими и магнитными явлениями и надеялся изучить ее характер. Уже в 1807 г. он предполагал исследовать действие электричества на магнитную стрелку 1 , но не смог выполнить свое намерение. Уверенность в наличии связи между электрическими и магнитными явлениями была связана у Эрстеда с его общими философскими взглядами на явления природы. Несмотря на разнообразие окружающих явлений, он полагал, что между ними имеются глубокие связи и единство. В одном из своих последних сочинений Эрстед писал: «глубоко проникающий взгляд открывает нам во всем ее многообразии замечательное единство» 2 . Эрстед верил, что между электрическими, тепловыми, световыми, химическими, а также и магнитными явлениями должны существовать связи, раскрыть которые - задача науки. На возникновение у Эрстеда этих идей оказали определенное влияние натурфилософские взгляды Шеллинга, в которых также утверждалось единство электрических, магнитных и химических «сил». Можно также упомянуть малоизвестного венгерского ученого Винтерла, утверждавшего, что все силы природы возникают из единого источника. Его работы были известны Эрстеду, а сам Винтерл знал последнего и даже посвятил ему одно из своих сочинений 3 . Вот как сам Эрстед описал историю своего открытия:

«Так как я уже давно рассматривал силы, проявляющиеся в электрических явлениях всеобщими природными силами, то я должен был отсюда вывести и магнитные действия. Я высказал поэтому гипотезу, что электрические силы, когда они находятся в сильно связанном состоянии, должны оказывать на магнит некоторое действие.

Я не мог тогда проделать опыт для проверки, так как совершал путешествие и внимание мое было занято целиком разработкой химической системы 4 .

Ханс Кристиан Эрстед

Открытие Эрстеда, сделанное им в 1819 г. и опубликованное в 1820 г., заключалось в следующем. Эрстед обнаружил, что если возле магнитной стрелки поместить прямолинейный проводник, направление которого совпадает с направлением магнитного меридиана, и пропустить через него электрический ток, то магнитная стрелка отклоняется. Величину момента силы, действующего на магнитную стрелку под влиянием электрического тока, Эрстед не определил. Он только отметил, что угол, на который отклоняется стрелка под действием тока, зависит от расстояния между ней и током, а также, говоря современным языком, от силы тока (во времена Эрстеда еще не было твердо установлено понятие силы тока).

Теоретические соображения Эрстеда по поводу сделанного им открытия не отличались достаточной ясностью. Он говорил, что в окружающих точках пространства возникает «электрический конфликт», который имеет вокруг проводника вихревой характер. Статью, в которой впервые сообщалось об этом открытии, Эрстед называет «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку».


Андре Мари Ампер

Открытие Эрстеда вызвало большой интерес и послужило толчком к новым исследованиям. В том же 1820 г. были получены новые результаты. Так, Араго показал, что проводник с током действует на железные предметы, которые при этом намагничиваются. Французские физики Био и Савар установили закон действия прямолинейного проводника с током на магнитную стрелку. Поместив магнитную стрелку около прямолинейного проводника с током и наблюдая изменение периода колебаний этой стрелки в зависимости от расстояния до проводника, они установили, что сила, действующая на магнитный полюс со стороны прямолинейного проводника с током, направлена перпендикулярно проводнику и прямой, соединяющей проводник с полюсом, а ее величина обратно пропорциональна этому расстоянию. Этот результат был проанализирован, и после введения понятия элемента тока был установлен закон, известный под названием закона Био - Савара.

Также в 1820 г. был получен новый важный результат в области электромагнетизма французом Андре Мари Ампером (1775-1836). К этому времени Ампер был уже известным ученым, имел ряд трудов по математике, физике и химии. Кроме того, Ампера привлекали биология и геология. Он живо интересовался философией и в конце жизни написал большой труд «Исследование по философским наукам», посвященный вопросу классификации наук. Мировоззрение Ампера формировалось в значительной степени под влиянием французских просветителей и материалистов. Его взгляды на физические явления отличались от взглядов большинства его современников. Он был противником концепции «невесомых». «Разве надо, - говорил Ампер, - для каждой новой группы явлений придумывать специальный флюид?» Ампер очень быстро принял волновую теорию света, которая, по словам Араго, наряду с теорией самого Ампера, объясняющей магнитные явления электрическими, «стала его любимой теорией» 5 . Ампер был противником теории теплорода и считал, что сущность теплоты заключается в движении атомов и молекул. Он даже написал работу, посвященную волновой теории света и теории теплоты. В начале сентября 1820 г. Араго сообщил французским академикам об открытии Эрстеда и вскоре продемонстрировал его опыты на заседании Парижской Академии наук. Ампер чрезвычайно заинтересовался этим открытием. Прежде всего оно натолкнуло его на мысль о возможности сведения магнитных явлений к электрическим и исключении представления о специальной магнитной жидкости. Вскоре Ампер уже докладывал о своих новых гипотезах и говорил об опытах, которые должны их подтвердить. В кратком резюме своего первого доклада Ампер писал:

«Я свел явления, наблюденные г. Эрстедом, к двум о5щим фактам, я показал, что ток, существующий в вольтовом столбе, действует на магнитную стрелку так же, как и ток соединительной проволоки. Я описал опыты, при помощи которых я установил притяжение или отталкивание всей магнитной стрелки под действием соединяющей проволоки. Я описал приборы, которые предполагал соорудить и, между прочим, гальванические винты и спирали. Я указал, что последние будут производить во всех случаях те же действия, что и магниты. Затем я коснулся некоторых подробностей относительно своего воззрения на магниты, согласно которому они обязаны своим свойствам единственно электрическим токам, расположенным в плоскостях, перпендикулярных их оси. Я коснулся также некоторых подробностей относительно подобных же токов, предполагаемых мною в земном шаре. Таким образом, все магнитные явления я свел к чисто электрическим действиям» 6 .

В конце 1820 - начале 1821 г. им было сделано более десяти докладов. В них Ампер сообщал как о своих экспериментальных исследованиях, так и о теоретических соображениях. Ампер показал на опыте взаимодействие двух прямолинейных проводников с током, взаимодействие двух замкнутых токов и т. д. Он также демонстрировал взаимодействие соленоида и магнита; эквивалентное поведение соленоида и магнитной стрелки в поле земного магнетизма и ряд других опытов.

Теоретические выводы Ампера являлись развитием идей, высказанных им в первом сообщении: теперь они были подтверждены опытными исследованиями. Свойства магнита он объяснял наличием в нем токов, а взаимодействие магнитов - взаимодействием этих токов. Сначала Ампер считал эти токи макроскопическими, несколько позже он пришел к гипотезе молекулярных токов. Соответствующую точку зрения Ампер развивает и по вопросу о земном магнетизме, полагая, что внутри Земли протекают токи, которые обусловливают ее магнитное поле.

Теоретические соображения Ампера встретили со стороны некоторых физиков возражения. Не все сразу могли отказаться от существования «магнитного флюида». Кроме того, взгляды Айпера, казалось, не укладывались в общее представление о физических явлениях, в частности, они предполагали наличие сил, зависящих не только от расстояния, но и от движения (от силы тока). Наконец, они могли казаться видоизменением картезианских идей. И действительно, Ампер высказывался в картезианском духе о силах, действующих между электрическими токами. Он писал, что «стремился объяснить ее (силу - Б. С.) реакцией жидкости, разлитой в пространстве, колебание которой вызывает световое явление» 7

Однако такие рассуждения не характерны для Ампера, и его главный труд называется «Теория электродинамических явлений, выведенная исключительно из опыта».

Особенно активным противником теории Ампера был Био, который предложил другое объяснение взаимодействия электрических токов. Он полагал, что когда по проводнику протекает электрический ток, то под его действием хаотично расположенные магнитные диполи, которые имеются в проводнике, определенным образом ориентируются. В результате этого проводник приобретает магнитные свойства и возникают силы, действующие между проводниками, по которым течет электрический ток.

Против этой теории Ампер возражал, основываясь на открытии Фарадеем так называемого электромагнитного вращения. Фарадей с помощью специального прибора (рис. 51) установил факт непрерывного вращения магнита вокруг тока и тока вокруг магнита (1821). Ампер писал:

«Как только было опубликовано открытие первого непрерывного вращательного движения, сделанное Фарадеем, я сразу же увидел, что оно целиком опровергает эту гипотезу, и вот в каких выражениях я изложил мою мысль... Движение, продолжающееся постоянно в одном направлении, несмотря на трение, несмотря на сопротивление среды, и притом движение, вызываемое взаимодействием двух тел, остающихся все время в одном состоянии,- беспримерный факт среди всего, что мы знаем о свойствах неорганической материи. Он доказывает, что действие, исходящее из гальванических проводников, не может быть вызвано особым распределением некоторых жидкостей, находящихся в этих проводниках в состоянии покоя, которому обязаны своим происхождением обыкновенные электрические притяжения и отталкивания. Это действие можно приписать только жидкостям, которые движутся в проводнике, быстро переносясь от одного конца к другому» 8 .

Действительно, ни при каком постоянном расположении силовых центров (каковыми являются магнитные диполи Био) нельзя добиться их непрерывного движения так, чтобы они все время возвращались в первоначальное положение. Иначе опровергался бы принцип невозможности вечного двигателя.

Открыв взаимодействие токов, эквивалентность магнита и соленоида и т. д., а также выдвинув ряд гипотез, Ампер поставил перед собой задачу установить количественные законы этого взаимодействия. Для ее решения естественно было поступить аналогично тему, как поступали в теории тяготения или электростатике, а именно представить взаимодействие конечных проводников с током как результат суммарного взаимодействия бесконечно малых элементов проводников, по которым течет электрический ток, и таким образом свести указанную задачу к нахождению дифференциального закона, определяющего силу взаимодействия между элементами проводников с током или между элементами токов.

Однако эта задача является более трудной, нежели соответствующая задача в теории тяготения или электростатике, так как понятия материальной точки или точечного заряда имеют непосредственный физический смысл и с ними можно было проводить опыт, тогда как элемент электрического тока такого смысла не имел и реализовать его в то время было невозможно. Ампер поступает следующим образом. На основании известных опытных данных он выдвигает гипотезу о том, что сила взаимодействия между элементами проводников с током такова:

где i 1 и i 2 - сила токов, ds 1 и ds 2 - элементы проводников, r - расстояние между элементами, n - некоторое (пока неизвестное) число, Φ (ε, θ 1 , &theta 2 ;) - еще не известная функция углов, определяющих взаимное расположение элементов проводников (рис. 52).

Предположения эти имеют разный характер. Так, предположение о зависимости dF от силы тока следует непосредственно из экспериментов. Предположение, что сила dF должна быть пропорциональна ds 1 и ds 2 , а также некоторой, пока не известной функции углов, также можно рассматривать как следствие, полученное из опытов, хотя и не непосредственно. Предположение о зависимости dF от расстояния между элементами оков основано, безусловно, уже только на предполагаемой аналогии с силами тяготения или силами взаимодействия между электрическими зарядами.

Определить п и выражение функции углов Φ (ε, θ 1 , &theta 2 ;) можно, измерив силы взаимодействия между проводниками с током, различно расположенными друг относительно друга, разной величины и формы. Однако во времена Ампера это сделать было очень трудно, так как рассматриваемые токи были невелики. Ампер вышел из положения, исследовав случаи равновесия проводников с токами различно расположенных и разной формы. В результате он определил n и Φ (ε, θ 1 , &theta 2 ;) и получил окончательный результат для закона взаимодействия элементов токов:

В векторной форме и соответствующих единицах этот закон имеет вид

где dFi3 - сила, действующая на второй элемент тока.

Таким образом, закон, установленный Ампером, отличается от закона взаимодействия двух элементов токов, который в настоящее время называют законом Ампера и выражают формулой

Ошибка, допущенная Ампером, не повлияла на результаты расчетов, так как закон, естественно, применяли для простых случаев определения взаимодействия замкнутых проводников с постоянными токами. В этом случае обе формулы приводят к одному и тому же результату, так как они отличаются друг от друга на величину, которая при интегрировании по замкнутому контуру дает нуль.

В 1826 г. был издан основной труд Ампера «Теория электродинамических явлений, выведенная исключительно из опыта». В этой книге Ампер систематически изложил свои исследования по электродинамике и, в частности, привел вывод закона взаимодействия элементов токов. В заключение обзора работ Ампера следует отметить, что он использовал понятие и* термин «сила тока», а также понятие «напряжение», хотя и не приводил ясной и четкой формулировки этих понятий. Амперу также принадлежит идея создания прибора для измерения силы тока (амперметра). Наконец, следует указать, что Ампер высказал идею электромагнитного телеграфа, которая затем была реализована на практике.

Важным достижением электродинамики первой половины XIX в. было установление законов цепи постоянного тока. Уже в начале XIX в. было высказано предположение, что сила тока (действие тока) в цепи зависит от свойств проводников. Так, Петров элемента тем больше, чем больше поперечное сечение проводников. Несколько позже зависимость химического действия тока.от проводников установил Дэви, который показал, что это действие тем больше, чем короче проводники и чем больше их сечение.


Георг Ом

В середине 20-х годов исследованием цепи постоянного электрического тока занялся немецкий физик Георг Ом (1787-1854). Прежде всего Ом экспериментально установил, что величина электрического тока зависит от длины проводников, их сечения и от числа гальванических элементов, включенных в цепь. Для измерения силы тока Ом использовал простейший гальванометр, представляющий собой крутильные весы, на нити которых была подвешена магнитная стрелка; Под стрелкой располагали проводник, включенный в цепь электрического тока. Когда по проводнику протекал электрический ток, магнитная стрелка отклонялась. Поворачивая головку крутильных весов, приводя стрелку в ее первоначальное положение, Ом измерял момент сил, действующих на маленькую стрелку. Как и Ампер, он считал, что величина этого момента пропорциональна силе тока.


Рис. 53. Прибор Ома (рисунки Ома)

Сначала Ом исследовал зависимость силы тока от длины проводника, включенного в цепь. В качестве источника тока он использовал термоэлемент, состоящий из висмута и меди (рис. 53) Висмутовый стержень bb", имеющий форму буквы П, соединен с медными полосами. Ом нашел, что «сила маг битного действия» тока (сила тока) исследуемого проводника определяется формулой

X=a/(b+x),

где х - длина проводника, а и b - постоянные, причем а зависит от возбуждающей силы термоэлемента (erregende Kraft), а Ь - от особенностей всего остального участка цепи, включая и термоэлемент.

Ом затем установил, что если в цепь включен не один, а m одинаковых источников тока, то «сила магнитного действия тока»

X=ma/(mb+x).

Ом определил также, как зависит сила тока X в проводнике от его длины и поперечного сечения. Он нашел, что

X = kw a/l ,

где k - коэффициент проводимости проводника (Leitungsvermogen), w - поперечное сечение, а l - длина проводника, а - электрическое напряжение на его концах (Electrische Spannung).

Ом исследовал распределение электрического потенциала «электроскопической силы» вдоль однородного проводника с током. Для этого он применял электрометр, который присоединял к различным точкам проводника, когда одна из точек проводника была заземлена. Наконец, Ом попытался теоретически осмыслить обнаруженные им закономерности. Он исходил из представления об электрическом токе как о течении электричества вдоль проводника. Он проводил аналогию между электрическим током и потоком теплоты. Он считал, что, подобно потоку теплоты, электричество течет по проводнику от одного слоя или элемента к другому, близлежащему. Поток теплоты определяется разностью температур в близлежащих слоях стержня, по которому течет эта теплота (т. е. градиентом температуры). Подобно этому, Ом полагает, что поток электричества должен определяться разностью электрической силы в близлежащих сечениях проводника. Он писал:

«Я полагаю, что величина передачи (электричества. - Б. С.) между двумя близлежащими элементами при других равных обстоятельствах пропорциональна разности электрической силы в этих элементах, подобно тому, как в учении о теплоте принимается, что тепловая передача между двумя элементами тепла пропорциональна разности их температур» 9 .

Под электрической силой здесь Ом понимает не напряженность электрического поля, а величину, которую показывает электроскоп, присоединенный к какой-либо точке проводника, если одна из точек гальванической цепи заземлена, т. е. разность потенциалов. Эту величину Ом и называл также «электроскопической силой».

Как часто бывает, аналогия, распространяемая слишком далеко, приводит к ошибкам. Так, Ом из того, что температура пропорциональна количеству теплоты, ошибочно заключил, что и «электроскопическая сила» в проводнике пропорциональна количеству электричества в каждой его точке. Решая задачу о распространении потенциала вдоль цепи тока, Ом полагал, что тем самым находит количество электричества в соответствующих местах проводника.

Закон, открытый Омом и носящий его имя, далеко не сразу получил признание. Еще в 30-х годах по его поводу высказывали сомнения и отмечали ограниченность его применения. Однако в ряде работ различных физиков, применивших более совершенные методы измерения, выводы Ома были подтверждены и его закон получил всеобщее признание. При этом были также исправлены ошибочные представления Ома.

Кирхгоф в работах, относящихся к 1845-1848 гг., уточнил понятие «электроскопической силы». Он установил тождественность понятия этой величины и понятия потенциала в электростатике. Кирхгоф также установил общеизвестные правила для электрических цепей.

Спустя более чем 15 лет после открытия закона Ома был установлен закон, определяющий количество теплоты, выделяемой электрическим током в цепи; он был установлен экспериментально англичанином Джоулем (1843) и независимо от него петербургским академиком Э. X. Ленцем (1844). В настоящее время его называют законом Джоуля - Ленца.

1 См.: Jones В. The Life and Letters of Faraday. Vol. II. London, 1870 p. 395.
2 Oersted H. Ch. Der Geist und der Natur B. 2, MCnchen, 1851, S. 435.
3 Winterl I. Darstellung der vier Bestandtheil der anorganischen Natur. Verna, 1804.
4 Oersted H. Ch. J. Chem. Phys., B. 32, 1821, s. 200-201.
5 Араго Ф. Биографии знаменитых астрономов, физиков и геометров. Т. II. СПб., I860, с. 304.
6 Ампер А. М. Электродинамика. М., Изд-во АН СССР, 1954, с. 410-411.
7 Ампер А. М. Электродинамика, с. 124.
8 Ампер А. М. Электродинамика, с. 127-128.
9 Ohm G. Gesammelte Adhandlungen. Leipzig, 1892, S. 63.

Марио Льоцци

Леопольдо Нобили (1784-1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.

Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели, какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.

Эти измерительные приборы были значительно усовершенствованы лишь в 1837 г. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804-1891). В 1837 г. А. С. Беккерель изобрел "электромагнитные весы", получившие распространение лишь во второй половине столетия. Затем появились другие типы: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.

С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д"Арсонвалем (1851-1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.