Биографии Характеристики Анализ

Клеточный уровень организации жизни анатомия. Каждый уровень организации живой материи по-своему важен

Выделяют следующие уровни организации жизни: молекулярный, клеточный, органно-тканевой (иногда их разделяют), организменный, популяционно-видовой, биогеоценотический, биосферный. Живая природа представляет собой систему, а различные уровни ее организации формируют ее сложное иерархическое строение, когда нижележащие более простые уровни определяют свойства вышележащих.

Так сложные органические молекулы входят в состав клеток и определяют их строение и жизнедеятельность. У многоклеточных организмов клетки организованы в ткани, несколько тканей образуют орган. Многоклеточный организм состоит из систем органов, с другой стороны, организм сам является элементарной единицей популяции и биологического вида. Сообщество представляется собой взаимодействующие популяции разных видов. Сообщество и окружающая среда формируют биогеоценоз (экосистему). Совокупность экосистем планеты Земля образует ее биосферу.

На каждом уровне возникают новые свойства живого, отсутствующие на нижележащем уровне, выделяются свои элементарные явления и элементарные единицы. При этом во многом уровни отражают ход эволюционного процесса.

Выделение уровней удобно для изучения жизни как сложного природного явления.

Рассмотрим подробнее каждый уровень организации жизни.

Молекулярный уровень

Хотя молекулы состоят из атомов, отличие живой материи от неживой начинает проявляться только на уровне молекул. Только в состав живых организмов входит большое количество сложных органических веществ – биополимеров (белков, жиров, углеводов, нуклеиновых кислот). Однако молекулярный уровень организации живого включает и неорганические молекулы, входящие в клетки и играющие важную роль в их жизнедеятельности.

Функционирование биологических молекул лежит в основе живой системы. На молекулярном уровне жизни проявляется обмен веществ и превращение энергии как химические реакции, передача и изменение наследственной информации (редупликация и мутации), а также ряд других клеточных процессов. Иногда молекулярный уровень называют молекулярно-генетическим.

Клеточный уровень жизни

Именно клетка является структурной и функциональной единицей живого. Вне клетки жизни нет. Даже вирусы могут проявлять свойства живого, лишь оказавшись в клетке хозяина. Биополимеры в полной мере проявляют свою реакционную способность будучи организованы в клетку, которую можно рассматривать как сложную систему взаимосвязанных в первую очередь различными химическими реакциями молекул.

На этом клеточном уровне проявляется феномен жизни, сопрягаются механизмы передачи генетической информации и превращения веществ и энергии.

Органно-тканевой

Ткани есть только у многоклеточных организмов. Ткань представляет собой совокупность сходных по строению и функциям клеток.

Ткани образуются в процессе онтогенеза путем дифференцировки клеток имеющих одну и ту же генетическую информацию. На этом уровне происходит специализация клеток.

У растений и животных выделяют разные типы тканей. Так у растений это меристема, защитная, основная и проводящая ткани. У животных - эпителиальная, соединительная, мышечная и нервная. Ткани могут включать перечень подтканей.

Орган обычно состоит из нескольких тканей, объединенных между собой в структурно-функциональное единство.

Органы формируют системы органов, каждая из которых отвечает за важную для организма функцию.

Органный уровень у одноклеточных организмов представлен различными органеллами клетки, выполняющими функции переваривания, выделения, дыхания и др.

Организменный уровень организации живого

Наряду с клеточным на организменном (или онтогенетическом) уровне выделяются обособленной структурные единицы. Ткани и органы не могут жить независимо, организмы и клетки (если это одноклеточный организм) могут.

Многоклеточные организмы состоят из систем органов.

На организменном уровне проявляются такие явления жизни как размножение, онтогенез, обмен веществ, раздражимость, нервно-гуморальная регуляция, гомеостаз. Другими словами, его элементарные явления составляют закономерные изменения организма в индивидуальном развитии. Элементарной единицей является особь.

Популяционно-видовой

Организмы одного вида, объединенные общим местообитанием, формируют популяцию. Вид обычно состоит из множества популяций.

Популяции имеют общий генофонд. В пределах вида они могут обмениваться генами, т. е. являются генетически открытыми системами.

В популяциях происходят элементарные эволюционные явления, приводящие в конечном итоге к видообразованию. Живая природа может эволюционировать только в надорганизменных уровнях.

На этом уровне возникает потенциальное бессмертие живого.

Биогеоценотический уровень

Биогеоценоз представляет собой взаимодействующую совокупность организмов разных видов с различными факторами среды их обитания. Элементарные явления представлены вещественно-энергетическими круговоротами, обеспечиваемыми в первую очередь живыми организмами.

Роль биогеоценотического уровня состоит в образовании устойчивых сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания.

Биосфера

Биосферный уровень организации жизни - это система высшего порядка жизни на Земле. Биосфера охватывает все проявления жизни на планете. На этом уровне происходит глобальный круговорот веществ и поток энергии (охватывающий все биогеоценозы).

1. Клетка как элементарная генетическая и структурно-функциональный биологическая единица. Типы клеточной организации.

Клетка - элементарная биологическая система, способная к самообновлению, самовоспроизведению и саморазвитию. В основе строения ВСЕХ организмов лежат сходные структуры - клетки. Вне клетки не существует настоящей жизнедеятельности (вирусы). Среди современных организмов можно проследить формирование клетки в процессе эволюции органического мира от прокариот (микоплазмы и дробянки) до высших растений и животных.

Клеточная теория. История. Современное состояние. Значение - самостоятельно

Типы клеточной организации:

Прокариотический. Клеточные организмы, которые появились первыми. Это одноклеточные относительно простого строения и простых функций. Эти организмы господствовали на нашей планете более 2 миллиардов лет. С их эволюцией связано появление: 1) механизмов фотосинтеза. 2) организмов эукариотического типа. Генетический аппарат прокариот: единственная кольцевая ДНК, находится в цитоплазме не отграничена оболочкой - нуклеоид. Снаружи клеточная стенка, наружная часть образована гликопептидом - муреином. Внутренняя часть клеточной стенки представлена плазматической мембраной, выпячивания которой в цитоплазму образуют мезосомы, которые выполняют различные функции. Многочисленные мелкие рибосомы, микротрубочек нет, движения цитоплазмы - нет, хлоропласты и других мембранных органелл - нет.

Эукариотический. Появились около 1,5 миллиардов лет назад. Отличаются от прокариотов более сложной организацией и используют больший объем наследственной информации. Общая длина молекулы ДНК в ядре клетки млекопитающего в 1000 раз превосходит длину молекулы ДНК бактерии.

Сравнительная характеристика эу- и прокариот - самостоятельно

Эукариотический тип клеточной организации представлен 2 типами: одноклеточными и многоклеточными организмами. Особенность организмов простейших в структурном отношении соответствуют уровню одной клетки, в физиологическом - полноценной особи. За счет миниатюрных образований органелл выполняются на клеточном уровне функции жизненно важных органов многоклеточных. Клетки многоклеточных организмов, входя в состав тканей и органов утратили свою самостоятельность. Их форма, размеры и строение определяются выполняемыми функциями. Ex. В организме человека более 200 типов клеток, специализированных по функциям, но генотип один и тот же.

Принцип компартментации (клетка поделена на отсеки). Высокая упорядоченность внутреннего содержимого эукариотической клетки достигается путем компартментации ее объема, те подразделением на «ячейки», которые отличаются деталями химического (ферментного) состава. Компартментация способствует пространственному разделению веществ и процессов в клетки, направленных часто противоположно.

2. Структурно-функциональная организация клетки. Строение и функции биологической мембраны

Состав эукариотической клетки:

1. Поверхностный аппарат (комплекс, клеточная оболочка)

2. ядро - это не органоид

3. цитоплазма

Каждый из компонентов содержит свой комплекс.

Строение и функции биологических мембран:

Основная часть поверхностного аппарата клетки - плазматическая или биологическая мембрана (цитоплазматическая мембрана). Клеточная мембрана - важнейший компонент живого содержимого клетки, построенный по общему принципу. Предложено несколько моделей строения. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой фосфолипидов, в который включены молекулы белков. Липиды - водонерастворимые вещества. Молекулы которых имеют два полюса: гидрофильный, гидрофобный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу гидофобными концами. А гидрофильные полюса остаются снаружи, которые образуют гидрофильные поверхности. На поверхности мембраны кнаружи и кнутри расположены НЕСПЛОШНЫМ слоем белки, их 3 группы: периферические, погруженные (полуинтегральные), пронизывающие (интегральные). Большинство белков мембраны - ферменты. Погруженные белки образуют на мембране биохимический конвейер, на котором происходит превращение веществ. Положение погруженных белков стабилизируется периферическими белками. Пронизывающие белки обеспечивают передачу вещ-ва в двух направлениях: через мембрану внутрь клетки и обратно. Бывают двух типов: переносчики и каналообразующие. Каналообразующие выстилают пору, заполненную водой, через которую проходят растворенные неорганические вещества с одной стороны мембраны на другую. На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы, связаны с разветвленными углеводными цепями, образуя гликокаликс, надмебранный, неживой слой, продукт жизнедеятельности клетки. Углеводные цепи выполняют роль рецепторов (межклеточное узнавание- свой-чужой) . Клетка приобретает способность специфически реагировать на воздействие извне. В надмебранный слой у бактерий входим муреин, у растений - целлюлоза или пектин. Под плазматической мембраной со стороны цитоплазмы имеются кортикальный (поверхностный) слой и внутриклеточные фибриллярные структуры, обеспечивают механическую устойчивость мембраны.

Свойства мембраны или плазмалеммы:

Способность к самозамыканию

Пластичность

Избирательная проницаемость

Функции плазмалеммы

Барьерная

Опорная

Рецепторная

Регуляторная

Стабилизирующая

Транспортная

Цитоплазматическая мембрана образует различные типы контактов в зависимости от типа тканей. Ex у нервных клеток - синапсы, сердечная мышца - десмосомы.

Поступление веществ через мембрану. Механизма транспорта веществ зависит от размеров частиц. Малые молекулы и ионы проходят путем пассивного и активного транспорта, макромолекулы и крупные частицы за счет эндо- и экзоцитоза, те образования окруженные мембраной пузырьков. Пассивный транспорт происходит без затрат энергии по градиенту концентрации путем диффузии, осмоса, облегченной диффузии. Активный транспорт идет с затратой энергии АТФ против градиента концентрации при участии белков переносчиков. Ex. Калиевый-натриевый насос. При нарушении избирательной проницаемости мембран организм страдает, особенно при применении специфических лекарственных лекарственных препаратов (при похудении, например), с мембранами связаны многие процессы жизнедеятельности клетки функционирования органоидов. В основе патологических процессов лежит нарушение молекулярной организации мембран.

Структурные элементы цитоплазмы:

Гиалоплазма (матрикс). Основное вещество, заполняет пространство между органоидами.

Включения. Непостоянные компоненты, продукты жизнедеятельности клеток. Неживые, не выполнея активных функций, синтезируется в клетке и синтезируется в процессе обмена.

Органоиды или органеллы. ПОСТОЯННЫЕ компоненты клетки, располагаются в гиалоплазме. Имеют определенное строение и выполняют определенные функции. Подразделяются по назначению на общие, имеются во всех или в большинстве клеток. Это митохондрии, пластиды, и специальные, присущие небольшим группам клеток. Реснички, нейрофибриллы. По строению: 1. немембранные, рибосомы, микротрубочки; 2. мембранные: одномембранные, ЭПС, комплекс Гольджи, лизосомы и др. вакуоли; двумембранные: митохондрии и пластиды - полуавтономные структуры, т. к. содержат ДНК

Ядро. Необходимо для жизни клетки, обладает большими компенсаторными возможностями. Ex. Структура цитоплазмы разрушено, но ядро цело, то структура восстанавливается, а если разрушено ядро, клетка погибает.

Функции ядра:

Хранения генетической информации.

Реализация генетической информации

Центр управления обменом веществ.

Регуляция активности клетки

В зависимости от фазы жизненного цикла различают два состояния ядра: 1. интерфазное, имеет ядерную оболочку или кариолемму, кариоплазму, ядерный сок, ядрышки (нуклеосомма), хроматин. 2) ядро при делении клетки. Присутствует только хроматин в разном состоянии. Хроматин - это плотное вещество ядра, хорошо окрашиваемое основными красителями. Химический состав: примерно 50% ДНК, 40% гистоновые белки или основные, 10% - негистоновые или кислые белки, РНК и ионы. Все вместе это дизоксирибонуклеиновый комплекс, субстрат наследственности. Гистоны представлены 5 фракциями, негистоновые белки - более 100 фракций. Те и другие соединяются с молекулой ДНК и препятствуют считыванию наследственной информации - это регуляторная роль. Эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах (см. таблицу спирализация хроматина)

Строение метафазной хромосомы. Строение хромосом изучают в метафазе или в начале анафазы. Метафазные пластинки хромосом изучаются для определения хромосомных аномалий плода, используют клетки слущенного кожного эпителия в околоплодных водах. Хромосома - это спирализованная нить, от степени скручивания нитчатых структур зависит длина хромосом. Уровни компактизации хроматина в методичке.

Строение хромосом - самостоятельно.

Совокупность признаков хромосомного набора, число размер и форма хромосом - кариотип. Идеограмма - это систематизированный кариотип. Хромосомы расположены по мере убывания их величины. Кариотип человека. В кариотипе выделяют соматические хромосомы или аутосомы и половые хромосомы X и Y.

44А+ХХ (№45,46) - соматическая клетка, гамета: 22А+Х

44А+ХY (№45-Х, №46Y) 22А+Х, 22А+Y

3. Временные организации клетки

Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Апоптоз - запрограммированная гибель клетки. Содержание жизненного цкла клетки - это закономерные изменения структурно-функциональных характеристик во времени. В течении жизни клетки расткт, дифференцируются, выполняют определенные функции, размножаются и гибнуть. В период покоя судьба клетки не определена, она может начать подготовку к митозу, либо приступить к специализации. Чем выше специализация клетки, тем ниже способность к делению. ОП метатической активности выделяют три типа тканей: 1. стабильная, нет митозов, кол-во ДНК постоянно (специализированные клетки, нервные) 2. обновляющиеся ткани, клетки способны постоянно делиться, с большим числом митозов (эпителиальные ткани, кроветворные органы). 3. растущие ткани, часть клеток делится, а часть - активно функционирует (почки, печень).

Жизненный цикл клетки

Жизненный цикл клетки подразделяется на 1) митотический и 2) гетеросентетический (специаализация с потерей пролиферации, способности к делению или гибель клетки).

Некроз - гибель от посторонних случайных воздейсвий

Регуляциия клеточного цикла

Осуществляется окружающими клетками и гуморальными факторами. Существенную роль играют особые белки, образующиеся под действием генетической программы - циклоны, они индуцируют митоз и контролируют различную длительность периодов клеточного цикла.

Кейлоны - белки, способны ингибировать деление клеток и синтез ДНК, их действие ткани специфично.

Митотический цикл.

Интерфаза. Репродуктивная фаза, тк в синтетический период идет редупликация ДНК (удвоение). Подразделяется на 3 периода: G1 - пресентетический или постмитотический,S - синтетический, G2 - постсететический или премиотический. В интерфазе клетка активно работает, готовится к делению. К концу интерфазы активность снижается, наблюдается сдвиг ядерно-цитоплазматический отношений (ЯЦО), в сторону увеличения доли ядра.

Митоз. Разделительная фаза, длится 10% времени митотического цикла. Выделяют 4 периода (фазы).

Периодизация митотического цикла:

G1 – 2n2c, S – 2n4c, G2 – 2n4c

митоз: П: 2n4c; М: 2n4c; А: 2n2c – 4n4c; Т: 2n2c

Цитокенез в растительных клетках: Перегородка формируется изнутри клетки за счет продуктов, концентрируемых в комплексе Гольджи (пектин, целлюлоза). Цитокенез в животных клетках: перетяжка формируется снаружи за счет кортикального слоя цитоплазмы, где располагаются микротрубочки и филоменты.

Биологическое значение митоза:

Происходит точное распределение генетического материала между 2 дочерними клетками. Обе клетки получают ДИПЛОЙДНЫЙ набор хромосом. Поддерживается постоянство чилса хромосомах

Митотический цикл обеспечивает преемственность хромосом в ряду клеточных поколений

Является всеобщим механизмом воспроизведения клеточной организации эукариотического типа.

Нарушение той или иной фазы митоза приводя к патологическим изменениям клеток или возникновению различных соматических мутаций.

Эндомитоз, полиплоидия, политения, амитоз - самостоятельно!

Амитоз - прямое деление клетки, ядро находится в интерфазном состоянии. Хромосомы не выявляются. Приводит к появлению двух клеток, но очень часто в результатте возникают двуядерные и много ядерные клетки. В норме амитоз встречается в животных зародышевых оболочках и в фалликулярных клетках яичника, но никогда не встречается в эмбриональных тканях., только в специализированных. Характерен для патологических процессов (восполение, злокачественный рост).

В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень . Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нуклеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами. Например, диаметр молекулы гемоглобина человека составляет 6,5 нм.

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой (рис. 42). На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Физикохимическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК. В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмоле-кулярные структуры, примерами которых являются нуклеопроте-иды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков). В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи непрерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к. они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках. Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма. Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, глико-лиз и другие реакции. Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом. Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу - механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекуляр-ные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень . Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого ^уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются ос-иовной формой организации живой материи, элементарными еди-Вицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клетками организмов-эукариотов, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки». Надмолекулярные структуры на этом уровне формируют мембранные системы и органеллы клеток (ядра, митохондрии и др.).

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток эукариотов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью. Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические)."Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрии осуществляется окислительное фосфорилирование.

Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток - важнейшее свойство живого.

Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточ-ностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень . Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных орга-нелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень . Этот уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность орга-низменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида. Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

Популяционный уровень . Растения и животные не существуют изолированно; они объединены в популяции. Создавая надорганиз-менную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

Видовой уровень. Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен. В составе одного вида может быть от одной до многих тысяч популяций, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью. Ныне существующие виды не похожи на виды, существовавшие в прошлом. Вид является также единицей классификации живых существ.

Биоценотический уровень. Представлен биоценозами - сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами. На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Биосферный (глобальный) уровень. Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. связан с появлением нового качества.

Вопросы для обсуждения

1. В чем заключается всеобщий методологический подход к пониманию сущности жизни? Когда он возник и в связи с чем?

2. Можно ли определить сущность жизни? Если да, то в чем заключается это определение и каковы его научные обоснования?

3. Возможна ли постановка вопроса о субстрате жизни?

4. Назовите свойства живого. Укажите, какие из этих свойств характерны для неживого и какие только для живого.

5. Какое значение для биологии имеет подразделение живого на уровни организации? Имеет ли такое подразделение практическое значение?

6. Какими общими чертами характеризуются разные уровни организации живого?

7. Почему нуклеопротеиды считают субстратом жизни и при каких условиях они выполняют эту роль?

Литература

Верная Д. Возникновение жизни М.: Мир. 1969. 391 стр.

Опарин А. В. Материя, жизнь, интеллект. М.: Наука. 1977. 204 стр

Пехов А. П. Биология и научно-технический прогресс. М.: Знание. 1984. 64 стр.

Karcher S. J. Molecular Biology. Acad. Press. 1995. 273 pp.

Murphy M. P., O"Neill L. A. (Eds.) What is Life? The Next Fifty Years. Cambridge University Press. 1995. 203 pp.

УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобаль- ный (биосферный) уровни организации живого. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень. Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов и стероидов, находящихся в клетках и получивших название биологических молекул. На этом уровне зачинаются и осуществляются важнейшие процессы жизнедеятельно- сти (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.). Физико-химическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основная масса живого представлена углеродом, кислородом, водородом и азотом. Из группы атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлены нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами, их неспецифи-

ческих частей (участков). Все макромолекулы универсальны, так как построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин или тимин), вследствие чего любой нуклеотид неповторим по своему составу. Неповторима также и вторичная структура молекул ДНК.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Более того, эти процессы осуществляются в результате одних и тех же этапов метаболизма. Например, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, так как они являются основными структурными элементами клеток, катализаторами и регуляторами реакций в клетках. Углеводы и липиды служат важнейшими источниками энергии, тогда как стероиды имеют значение для регуляции ряда метаболических процессов.

На молекулярном уровне осуществляется превращение энергии - лучистой энергии в химическую, запасаемую в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэргических связей АТФ. Наконец, здесь происходит превращение энергии макроэргических фосфатных связей в работу - механическую, электрическую, химическую, осмотическую. Механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулами и следующим за ним уровнем (клеточным), так как являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень. Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организ-

мов (бактерии, простейшие и др.), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клеткамиэукариотами, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки».

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных еди- ниц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток-эукариотов значительно развиты мембранные системы (плазматическая мембра- на, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы). Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают пространственное разделение в клетках многих биологических молекул, а их физическое состояние позволяет осуществлять постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Таким образом, мембраны являются системой, компоненты которой находятся в движении. Для них характерны различные перестройки, что определяет раздражимость клеток - важнейшее свойство живого.

Тканевой уровень. Данный уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, кровь, нервная и репродуктивная). У рас-

тений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень. Представлен органами организмов. У растений и животных органы формируются за счет разного количества тканей. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. У более совершенных организмов имеются системы органов. Для позвоночных характерна цефализация, заклю- чающаяся в сосредоточении важнейших нервных центров и органов чувств в голове.

Организменный уровень. Данный уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность организменного уровня заключается в том, что на этом уровне происходят декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида.

Видовой уровень. Данный уровень определяется видами растений и животных. В настоящее время насчитывают около 500 тыс. видов растений и около 1,5 млн видов животных, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Вид является также единицей классификации живых существ.

Популяционный уровень. Растения и животные не существуют изолированно; они объединены в популяции, которые характеризуются определенным генофондом. В пределах одного и того же вида может насчитываться от одной до многих тысяч популяций. В популяциях осуществляются элементарные эволюционные преобразования, происходит выработка новой адаптивной формы.

Биоценотический уровень. Представлен биоценозами - сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависящих сообществ организмов и абиотических факторов среды. Экосистемам присуще подвижное равновесие между организмами и абиотическими факторами. На том уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Глобальный (биосферный) уровень. Данный уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство. Живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. появляется новое качество.

Уровни организации живой природы

Выделяют 8 уровней.

Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.

Каждый следующий уровень обязательно содержит в себе все предыдущие.

Давайте разберем каждый уровень подробно.

8 уровней организации живой природы

1. Молекулярный уровень организации живой природы

  • : органические и неорганические вещества,
  • (метаболизм): процессы диссимиляции и ассимиляции,
  • поглощение и выделение энергии.

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.

Этот уровень сложно назвать «живым» . Это скорее «биохимический» уровень — поэтому он является основой для всех остальных уровней организации живой природы.

Поэтому именно он лег в основу классификации на царства — какое питательное вещество является основным у организма:у животных — , у грибов — хитин, у растений это- .

Науки, которые изучают живые организмы именно на этом уровене:

2. Клеточный уровень организации живой природы

Включает в себя предыдущий — молекулярный уровень организации.

На этом уровне уже появляется термин « » как «мельчайшая неделимая биологическая система»

  • Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);
  • Органойды клетки;
  • Жизненные циклы — зарождение, рост и развитие и деление клеток

Науки, изучающие клеточный уровень организации :

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации:

Включает в себя 2 предыдущих уровня — молекулярный и клеточный .

Этот уровень можно назвать «многоклеточным » — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

Наука — Гистология

4. Органный (ударение на первый слог) уровень организации жизни

  • У одноклеточных органы — это органеллы — есть общие органеллы — характерные для всех или прокариотических клеток, есть отличающиеся.
  • У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.

Тканевый и органный уровни организации — изучают науки:

5. Организменный уровень

Включает в себя все предыдущие уровни: молекулярный , клеточный, тканевый уровни и органный .

На этом уровне идет деление Живой природы на царства — животных, растений и грибов.

Характеристики этого уровня:

  • Обмен веществ (как на уровне организма, так и на клеточном уровне тоже)
  • Строение (морфология) организма
  • Питание (обмен веществ и энергии)
  • Гомеостаз
  • Размножение
  • Взаимодействие между организмами (конкуренция, симбиоз и т.д.)
  • Взаимодействие с окружающей средой

Науки:

6. Популяционно-видовой уровень организации жизни

Включает молекулярный , клеточный, тканевый уровни, органный и организменный .

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

  • Взаимодействие организмов между собой (конкуренция или размножение)
  • микроэволюция (изменение организма под действием внешних условий)