Биографии Характеристики Анализ

Криволинейное движение определение и формулы. Конспект урока "Прямолинейное и криволинейное движение

Эта тема будет посвящена более сложному виду движения – КРИВОЛИНЕЙНОМУ . Как несложно догадаться, криволинейным называется движение, траектория которого представляет собой кривую линию . И, поскольку это движение сложнее прямолинейного, то для его описания уже не хватает тех физических величин, которые были перечислены в предыдущей главе.

Для математического описания криволинейного движения имеются 2 группы величин: линейные и угловые.

ЛИНЕЙНЫЕ ВЕЛИЧИНЫ.

1. Перемещение . В разделе 1.1 мы не стали уточнять различие между понятием

Рис.1.3 пути (расстояния) и понятием перемещения,

поскольку в прямолинейном движении эти

различия не играют принципиальной роли, да и

Обозначаются эти величины одной и той же бук-

вой S . Но, имея дело с криволинейным движением,

этот вопрос нужно прояснить. Итак, что такое путь

(или расстояние)? – Это длина траектории

движения. То есть, если Вы отследите траекторию

движения тела и измерите ее (в метрах, километрах и т.д.), вы получите величину, которая называется путем (или расстоянием) S (см. рис.1.3). Таким образом, путь – это скалярная величина, которая характеризуется только числом.

Рис.1.4 А перемещение - это кратчайшее расстояние между

точкой начала пути и точкой конца пути. И, поскольку

перемещение имеет строгую направленность из начала

Пути в его конец, то оно является величиной векторной

и характеризуется не только численным значением, но и

направлением (рис.1.3). Нетрудно догадаться, что, если

тело совершает движение по замкнутой траектории, то к

моменту его возвращения в начальное положение перемещение будет равно нулю (см. рис.1.4).

2 . Линейная скорость . В разделе 1.1 мы давали определение этой величины, и оно остается в силе, хотя тогда мы не уточняли, что эта скорость линейная. Как же направлен вектор линейной скорости? Обратимся к рис.1.5. Здесь изображен фрагмент

криволинейной траектории тела. Любая кривая линия представляет собой соединение между собой дуг разных окружностей. На рис.1.5 изображены только две из них: окружность (О 1 , r 1) и окружность (О 2 , r 2). На момент прохождения тела по дуге данной окружности ее центр становится временным центром поворота с радиусом, равным радиусу этой окружности.

Вектор, проведенный из центра поворота в точку, где в данный момент находится тело, называется радиусом-вектором. На рис.1.5 радиусы-векторы представлены векторами и . Также на этом рисунке изображены и вектора линейной скорости: вектор линейной скорости всегда направлен по касательной к траектории в сторону движения. Следовательно, угол между вектором и радиусом-вектором, проведенным в данную точку траектории, всегда равен 90°. Если тело движется с постоянной линейной скоростью, то модуль вектора изменяться не будет, тогда как его направление все время меняется в зависимости от формы траектории. В случае, изображенном на рис.1.5, движение осуществляется с переменной линейной скоростью, поэтому у вектора изменяется модуль. Но, поскольку при криволинейном движении направление вектора изменяется всегда, то отсюда следует очень важный вывод:

при криволинейном движении всегда есть ускорение ! (Даже если движение осуществляется с постоянной линейной скоростью.) Причем, ускорение, о котором идет речь в данном случае, в дальнейшем мы будем называть линейным ускорением.

3 . Линейное ускорение . Напомню, что ускорение возникает тогда, когда изменяется скорость. Соответственно, линейное ускорение появляется в случае изменения линейной скорости. А линейная скорость при криволинейном движении может изменяться кок по модулю, так и по направлению. Таким образом, полное линейное ускорение раскладывается на две составляющие, одна из которых влияет на направление вектора , а вторая на его модуль. Рассмотрим эти ускорения (рис. 1.6). На этом рисунке

рис. 1.6

О

изображено тело, движущееся по круговой траектории с центром поворота в точке О.

Ускорение, которое изменяет направление вектора , называется нормальным и обозначается . Нормальным оно называется потому, что направлено перпендикулярно (нормально) к касательной, т.е. вдоль радиуса к центру поворота . Его еще называют центростремительным ускорением.

Ускорение, которое изменяет модуль вектора , называется тангенциальным и обозначается . Оно лежит на касательной и может быть направлено как в сторону направления вектора , так и противоположно ему :

Если линейная скорость увеличивается, то > 0 и их вектора сонаправлены;

Если линейная скорость уменьшается, то < 0 и их вектора противоположно

направлены.

Таким образом, эти два ускорения всегда образуют между собой прямой угол (90º) и являются составляющими полного линейного ускорения , т.е. полное линейное ускорение есть векторная сумма нормального и тангенциального ускорения:

Замечу, что в данном случае речь идет именно о векторной сумме, но ни в коем случае не о скалярной. Чтобы найти численное значение , зная и , необходимо воспользоваться теоремой Пифагора (квадрат гипотенузы треугольника численно равен сумме квадратов катетов этого треугольника):

(1.8).

Отсюда следует:

(1.9).

По каким формулам рассчитывать и рассмотрим чуть позже.

УГЛОВЫЕ ВЕЛИЧИНЫ.

1 . Угол поворота φ . При криволинейном движении тело не только проходит какой-то путь и совершает какое-то перемещение, но и поворачивается на определенный угол (см. рис. 1.7(а)). Поэтому для описания такого движения вводится величина, которая называется углом поворота, обозначается греческой буквой φ (читается «фи»). В системе СИ угол поворота измеряется в радианах (обозначается «рад»). Напомню, что один полный оборот равен 2π радианам, а число π есть константа: π ≈ 3,14. на рис. 1.7(а) изображена траектория движения тела по окружности радиуса r с цетром в точке О. Сам угол поворота – это угол между радиус-векторами тела в некоторые моменты времени.

2 . Угловая скорость ω это величина, показывающая, как изменяется угол поворота за единицу времени. (ω – греческая буква, читается «омега».) На рис. 1.7(б) изображено положение материальной точки, движущейся по круговой траектории с центром в точке О, через промежутки времени Δt . Если углы, на которые поворачивается тело в течение этих промежутков, одинаковы, то угловая скорость постоянна, и это движение можно считать равномерным. А если углы поворота разные – то движение неравномерное. И, поскольку угловая скорость показывает, на сколько радиан

повернулось тело за одну секунду, то ее единица измерения – радиан в секунду

(обозначается «рад/с »).

рис. 1.7

а). б). Δt

Δt

Δt

О φ О Δt

3 . Угловое ускорение ε – это величина, показывающая, как изменяется за единицу времени. И, поскольку угловое ускорение ε появляется тогда, когда изменяется, угловая скорость ω , то можно сделать вывод, что угловое ускорение имеет место только в случае неравномерного криволинейного движения. Единица измерения углового ускорения – «рад/с 2 » (радиан за секунду в квадрате).

Таким образом, таблицу 1.1 можно дополнить еще тремя величинами:

Табл.1.2

физическая величина определение величины обозначение величины единица измерения
1. путь это расстояние, которое преодолевает тело в процессе своего движения S м (метр)
2. скорость это расстояние, которое проходит тело за единицу времени (например, за 1 секунду) υ м/с (метр в секунду)
3. ускорение это величина, на которую изменяется скорость тела за единицу времени a м/с 2 (метр за секунду в квадрате)
4. время t с (секунда)
5. угол поворота это угол, на который поворачивается тело в процессе криволинейного движения φ рад (радиан)
6. угловая скорость это угол, на который поворачивается тело за единицу времени (например, за 1 сек.) ω рад/с (радиан в секунду)
7. угловое ускорение это величина, на которую изменяется угловая скорость за единицу времени ε рад/с 2 (радиан за секунду в квадрате)

Теперь можно перейти непосредственно к рассмотрению всех видов криволинейного движения, а их всего лишь три.

При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Понятия скорости и ускорения естественным образом обобщаются на случай движения материальной точки по криволинейной траектории . Положение движущейся точки на траектории задается радиус-вектором r , проведенным в эту точку из какой-либо неподвижной точки О , например, начала координат (рис. 1.2). Пусть в момент времени t материальная точка находится в положении М с радиус-вектором r = r (t ). Спустя короткое время Dt , она переместится в положение М 1 с радиусом – вектором r 1 = r (t + Dt ). Радиус – вектор материальной точки получит приращение, определяемое геометрической разностью Dr = r 1 - r . Средней скоростью движения за время Dt называется величина

Направление средней скорости V ср совпадает с направлением вектора Dr .

Предел средней скорости при Dt ® 0, т. е. производная радиуса – вектора r по времени

(1.9)

называется истинной или мгновенной скоростью материальной точки. Вектор V направлен по касательной к траектории движущейся точки.

Ускорением а называется вектор, равный первой производной вектора скорости V или второй производной радиуса – вектора r по времени:

(1.10)

(1.11)

Отметим следующую формальную аналогию между скоростью и ускорением. Из произвольной неподвижной точки О 1 будем откладывать вектор скорости V движущейся точки во всевозможные моменты времени (рис. 1.3).

Конец вектора V называется скоростной точкой . Геометрическое место скоростных точек есть кривая, называемая годографом скорости. Когда материальная точка описывает траекторию, соответствующая ей скоростная точка движется по годографу.

Рис. 1.2 отличается от рис. 1.3 только обозначениями. Радиус – вектор r заменен на вектор скорости V , материальная точка – на скоростную точку, траектория – на годограф. Математические операции над вектором r при нахождении скорости и над вектором V при нахождении ускорения совершенно тождественны.

Скорость V направлена по касательной траектории. Поэтому ускорение a будет направлено по касательной к годографу скорости. Можно сказать, что ускорение есть скорость движения скоростной точки по годографу . Следовательно,

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.