Биографии Характеристики Анализ

Между двумя электродами фильтра возникает искровой заряд. Старт в науке

Молния - это искровой разряд электростатического заряда кучевого облака, сопровождающийся ослепительной вспышкой и резким звуком (громом). Таким образом, следует рассмотреть подробно классификацию разрядов и понять, почему же сверкает молния.

Виды разрядов

темный (таунсендовский);

коронный;

искровой.

Искровой разряд

Этот разряд характеризуется прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. Внешне искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга. Эти полоски называют искровыми каналами. Они начинаются как от положительных, так и от отрицательных, а также от любой точки между ними. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательных - диффузные края и более мелкое ветвление.

Т.к. искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. (Для сухого воздуха, например, при давлении 1 атм. и расстоянии между электродами 10 мм, пробивное напряжение 30 кВ.) Но после того как разрядный промежуток "искровым" каналом, сопротивление промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное сопротивление. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает расти до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния. Например, для воздуха при нормальных условиях Ек3*106 В/м.

Величина Ек увеличивается с увеличением давления. Отношение критической напряженности поле к давлению газа р для данного газа остается приблизительным в широкой области изменения давления: Ек/рconst.

Время нарастания напряжения тем больше, чем больше емкость С между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последующими искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При большой емкости С канал искры ярко светится и имеет вид широких полос. То же самое происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или о конденсированной искре. Максимальная сила тока в импульсе, при искровом разряде, меняется в широких пределах, в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника, искровой разряд переходит в дуговой разряд.

В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе - образование цилиндрической ударной волны, температура на фронте которой ~104 К. Происходит быстрое расширение канала искры, со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновение ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты в случае молний.

В момент существования канала, особенно при высоких давлениях, наблюдается более яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала имеет максимум в его центре.

Рассмотрим механизм искрового разряда.

В настоящее время общепринятой считается так называемая стримерная теория искрового разряда, подтвержденная прямыми опытами. Качественно она объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной. Если вблизи катода зародилась электронная лавина, то на ее пути проходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скорость света, сами производят ионизацию газа, и дают начало первым электронным лавинам. Таким путем во всем объеме газа появляются слабо святящиеся скопления ионизированного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояний от катода к аноду. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении.

Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целые лавины быстрых электронов, образующие у самого "дна" тучи, плазменные "нити" - стример.

Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому в последствии пройдет импульс основного тока. Этот развивающийся от "дна" тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером. Дело в том, что канал формируется не плавно, а скачками - "ступенями".

Почему в движении лидера наступают паузы и притом относительно регулярные - точно неизвестно. Существует несколько теорий ступенчатых лидеров.

В 1938 году Шонланд выдвинул два возможных объяснения задержки, которая вызывает ступенчатый характер лидера. Согласно одному из них, должно происходить движение электронов вниз по каналу ведущего стримера (пилота). Однако часть электронов захватывается атомами и положительно заряженными ионами, так что требуется некоторое время для поступления новых продвигающихся электронов, прежде чем возникнет градиент потенциала, достаточный для того, чтобы ток продолжался. Согласно другой точке зрения, время требуется для того, чтобы положительно заряженные ионы скопились под головкой канала лидера и, таким образом, создали на ней достаточный градиент потенциала. В 1944 году Брюс предложил иное объяснение, в основе которого лежит перерастание тлеющего разряда в дуговой. Он рассмотрел "коронный разряд", аналогичный разряду острия, существующий вокруг канала лидера не только на головке канала, но и по всей его длине. Он дал объяснение тому, что условия для существования дугового разряда будут устанавливаться на некоторое время после того, как канал разовьется на определенное расстояние и, следовательно, возникнут ступени. Это явление еще до конца не изучено и конкретной теории пока нет. А вот физические процессы, происходящие вблизи головки лидера, вполне понятны. Напряженность поля под тучей достаточно велика - она составляет B/м; в области пространства непосредственно перед головкой лидера она еще больше. Увеличение напряженности поля в этой области хорошо объясняет рис.4, где штриховыми кривыми показаны сечения эквипотенциальных поверхностей, а сплошными кривыми - лини напряженности поля. В сильном электрическом поле вблизи головки лидера происходит интенсивная ионизация атомов и молекул воздуха. Она происходит за счет, во-первых, бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (так называемая ударная ионизация), и, во-вторых, поглощение атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация). Вследствие интенсивной ионизации встречающихся на пути лидера атомов и молекул воздуха плазменный канал растет, лидер движется к поверхности земли.

С учетом остановок по пути лидеру, чтобы достигнуть земли, потребовалось 10...20 мс при расстоянии 1 км между тучей и земной поверхностью. Теперь тучу соединяет с землей плазменный канал, прекрасно проводящий ток. Канал ионизированного газа как бы замкнул тучу с землей накоротко. На этом первая стадия развития начального импульса заканчивается.

Вторая стадия протекает быстро и мощно. По проложенному лидером пути устремляется основной ток. Импульс тока длится примерно 0,1мс. Сила тока достигает значений порядка А. Выделяется значительное количество энергии (до Дж). Температура газа в канале достигает. Именно в этот момент рождается тот необычайно яркий свет, который мы наблюдаем при разряде молнии, и возникает гром, вызванный внезапным расширением внезапно нагретого газа.

Существенно, что и свечение, и разогрев плазменного канала развиваются в направлении от земли к туче, т.е. снизу вверх. Для объяснения этого явления разобьем условно весь канал на несколько частей. Как только канал образовался (головка лидера достигла земли), вниз соскакивают прежде всего электроны, которые находились в самой нижней его части; поэтому нижняя часть канала первой начинает светиться и разогреваться. Затем к земле устремляются электроны из следующей (более высоко находящейся части канала); начинаются свечение и разогрев этой части. И так постепенно - от низа до верха - в движение к земле включаются все новые и новые электроны; в результате свечение и разогрев канала распространяются в направлении снизу вверх.

После того, как прошел импульс основного тока, наступает пауза длительностью от 10 до 50мс. За это время канал практически гаснет, его температура падает, степень ионизации канала существенно уменьшается.

Однако в туче еще сохранился большой заряд, поэтому новый лидер устремляется из тучи к земле, готовя дорогу для нового импульса тока. Лидеры второго и последующих ударов являются не ступенчатыми, а стреловидными. Стреловидные лидеры аналогичны ступеням ступенчатого лидера. Однако поскольку ионизированный канал уже существует, необходимость в пилоте и ступенях отпадает. Так как ионизация в канале стреловидного лидера "старше", чем у ступенчатого лидера, рекомбинация и диффузия у носителей носителей заряда происходят интенсивнее, а поэтому и степень ионизации в канале стреловидного лидера ниже. В результате скорость стреловидного лидера меньше скорости отдельных ступеней ступенчатого лидера, но больше скорости пилота. Значения скорости стреловидного лидера составляют от до м/с.

Если между последующими ударами молнии пройдет больше времени, чем обычно, то степень ионизации может быть настолько низкой, особенно в нижней части канала, что возникает необходимость в новом пилоте для повторной ионизации воздуха. Это объясняет отдельные случаи образования ступеней на нижних концах лидеров, предшествующих не первому, а последующим главным ударам молнии.

Как говорилось выше, новый лидер идет по пути, который был проторен начальным лидером. Он без остановки (1мс) пробегает весь путь сверху до низу. И снова следует мощный импульс основного тока. После очередной паузы все повторяется. В итоге высвечиваются несколько мощных импульсов, которые мы естественно, воспринимаем как единый разряд молнии, как единую яркую вспышку.

Электрическая искра имеет вид тонкой, прихотливо изогнутой и ярко светящейся полоски, которая обычно сильно разветвлена (рис. 174). Этот светящийся канал искры никогда, однако, не бывает хоть сколько-нибудь похож на те остроугольные зигзаги, посредством которых принято условно изображать молнию.

Рис. 174. Характерный вид искры.

Полоска искры с огромной быстротой пронизывает разрядный промежуток, гаснет и вновь возникает. Фотографирование искры посредством камеры с быстро движущимся объективом (камеры Бейса) или с быстро движущейся пленкой показывает, что по одному и тому же каналу искры, который иногда деформируется, пробегает несколько разрядов. Для исследования отдельных стадий развития искры применяют фотозатворы, управляемые высокочастотным током и основанные на применении явления Керра (§ 95). Одно из первых исследований строения искры было выполнено проф. Рожанским в 1911 г. Рожанский производил фотографирование искры, отклоняя искру действием магнитного поля.

Пробой газа, завершающийся искровым разрядом, происходит при определенной напряженности поля, которая должна быть тем больше, чем больше плотность газа и чем меньше его начальная ионизация.

Ниже приведены числовые данные, характеризующие величину искрового промежутка в комнатном воздухе. Напряженность электрического поля близ электродов сильно зависит от кривизны

поверхности электрода, поэтому минимальные напряжения, при которых для данного расстояния между электродами начинается лавинный разряд, неодинаковы для электродов различной формы; между остриями искровой разряд начинается при более низком напряжении, чем между шарами или плрскими электродами.

Величина искрового промежутка в комнатном воздухе

(см. скан)

В комнатном воздухе обычно содержится лишь очень незначительное число ионов, примерно несколько тысяч в кубическом сантиметре (при нормальном электрическом состоянии атмосферы у поверхности земли - в среднем около 700 пар ионов в 1 см

Рис. 175. Схема развития отрицательного стримера

Когда к электродам приложено достаточно высокое напряжение, то начинается рост электронных лавин, но благодаря малому начальному числу ионов требуется время, чтобы начавшийся процесс завершился образованием искры. Если соединить электроды с источником тока высокого напряжения на чрезвычайно короткое время, то развитие электронных лабин не успеет завершиться искровым разрядом. Измерение времени, в течение которого в газе благодаря развитию лавин образуются каналы повышенной электропроводности, показало, что в данном случае большую роль играет фотонная ионизация.

На рис. 175 представлена схема, поясняющая, почему рост электропроводящего канала, или, как говорят, распространение

стримера, происходит быстрее, чем продвижение электронной лавины. На этом рисунке лавины условно показаны в виде заштрихованных конусов, а волнистыми линиями изображены пути фотонов. Нужно представить себе, что внутри каждого конуса, изображающего развивающуюся лавину, газ ионизируется ударами электронов; новоотщепленные электроны, разгоняемые полем, ионизируют встречаемые ими частицы газа, и таким образом лавинно нарастает число электронов, движущихся к аноду, и число положительных ионов, дрейфующих к катоду. Левые концы волнистых линий показывают атомы, которые были «возбуждены» ударом электрона и вслед за тем испустили фотон. Двигаясь со скоростью фотоны обгоняют лавину и в каком-то месте, которое изображено концом волнистой линии, ионизируют частицу газа. Отщепленный здесь электрон, устремляясь к аноду, порождает новую лавину далеко впереди первой лавины. Таким образом, пока первая лавина вырастает, скажем, на величину малой стрелки показанной на рис. 175, намечающийся канал повышенной электропроводности газа, т. е. стример, распространяется на величину большой стрелки показанной на том же рисунке. В следующей стадии отдельные лавины в отрицательном стримере, нагоняя друг друга, сливаются, образуя целостный канал ионизированного газа (на рисунке первая лавина уже нагнала вторую, а четвертая нагнала пятую).

Физико-математические условия, при соблюдении которых может происходить развитие стримеров, были теоретически изучены Миком и Лебом 1940 г.). Как уже было пояснено выше, отрицательный стример представляет собой, в сущности, ускоренное действием фотоионизации продвижение электронных лавин и их слияние в общий электропроводящий канал.

Совершенно иное строение и существенно иные свойства имеет положительный стример. Общей чертой его с отрицательным стримером является только фотоионизация, которая в обоих случаях играет главенствующую роль.

Положительный стример представляет собой канал газоразрядной плазмы, стремительно вырастающий от анода к катоду. На рис. 176 схематически пояснено, как происходит развитие такого канала. Возникновению положительного стримера предшествует пробег электронных лавин по газоразрядному промежутку. Они оставляют на своем пути большое число новообразованных положительных ионов, концентрация которых особенно велика там, где лавины получили свое наибольшее развитие, т. е. около анода (рис. 176, наверху слева). Если концентрация положительных ионов здесь достигает определенной величины (близкой к ионам в ), то, во-первых, обнаруживается интенсивная фотоионизация, во-вторых, электроны, освобождаемые частицами газа, поглотившими фотоны, притягиваются положительным пространственным зарядом в головную часть положительного стримера, и, в-третьих, вследствие фотоионизации концентрация положительных ионов на пути стримера к катоду возрастает. На рис. 176 пути фотонов показаны волнистыми линиями; фотоны выбрасываются в разные стороны из области положительного пространственного заряда (короткие стрелки указывают направление движения отщепленных электронов); видно, что многие электроны вовлекаются в область наибольисей концентрации положительных ионов в головную часть положительного стримера. Насыщение электронами пространства, заполненного положительными зарядами, превращает эту область в газоразрядную плазму.

(кликните для просмотра скана)

Так формируется в газе канал, обладающий высокой электропроводностью. Формирование этого канала с газоразрядной плазмой и является развитием положительного стримера (рис. 176). Если на пути прорастания этого канала в направлении к катоду в головной части стримера имеется достаточная концентрация положительных ионов, то стример продвигается с громадной скоростью. В противном случае он обрывается.

Поясненные выше схемы развития стримеров дают только приблизительное представление о подготовительной стадии искрового разряда. Действительная картина развития стримера более сложна, так как образующиеся пространственные заряды резко искажают электрическое поле, вызвавшее возникновение стримера.

В длинных газоразрядных промежутках неравномерности поля и недостаточная фотоионизация по направлению кратчайшего расстояния от головной части стримера к электроду приводят к искривлениям канала и возникновению многочисленных ответвлений.

Развитие положительных стримеров начинается у положительного электрода в местах наибольшей напряженности поля: около острых выступов, острых кромок и других неровностей поверхности анода. Поэтому при разряде между острием и диском часто наблюдаются искры, соединяющие положительное острие с центром отрицательного диска, и искры, соединяющие кромки положительно заряженного диска с отрицательным острием (рис. 177); в первом случае пробой происходит при меньшем напряжении.

Рис. 177. Характерный вид искрового разряда между острием и диском при большом разрядном промежутке.

Рис. 178. Фотография искры на движущейся пленке.

Деформации поля зарядами, образующимися в стримере, и сочетание сложных процессов, происходящих в стримере, приводят к тому, что искровой разряд часто развивается толчками. При этом

новый стример пробегает путь, проложенный предыдущим угасшим стримером. На рис. 178 представлена фотография единичного искрового разряда на. быстро движущейся фотопленке. Здесь видно толчкообразное развитие искры и видно, что отрицательный и положительный стримеры растут навстречу друг другу. Когда головки стримеров встречаются, образуется проводящий канал, по которому и происходит разряд.

Аналогичная, но еще более сложная картина обнаруживается при развитии молнии. Начальной стадией является развитие пилотирующего стримера молнии, свечение которого почти неуловимо. Обычно пилотирующий стример распространяется от отрицательно заряженного облака. По еще узкому каналу повышенной ионизации, образованному пилотирующим стримером молнии, устремляются со скоростью порядка тысяч километров в секунду мощные электронные лавины, создающие довольно яркое свечение. Электропроводность канала при этом чрезвычайно возрастает и сечение канала расширяется. Эту стадию называют развитием лидера молнии. При малой начальной ионизации воздуха развитие лидера происходит скачкообразно - с остановками на десятки миллисекунд через каждые его распространения (такие лидеры называют «ступенчатыми» в отличие от так называемых «стрельчатых», которые распространяются с непрерывной стремительностью).

Рис. 179. Фотография молнии на движущейся пленке. Здесь паузы между первыми ударами последняя пауза в чечетыре раза длиннее.

При приближении лидера к земле в земле индуцируются заряды противоположного знака, и от высоких зданий, молниеотводов, деревьев вырастает встречный лидер. В момент его слияния с лидером, опускающимся от облака, т. е. когда разрядный промежуток между облаком и землей оказывается замкнутым электропроводящим каналом, по этому каналу пробегает главный разряд молнии со скоростью порядка десятков тысяч километров в секунду. Если канал имел разветвления (а так обычно и бывает), то главный разряд распространяется по всем ответвлениям Диаметр основного канала

молнии обычно имеет величину 10-20 см и наиболее яркое свечение в нижней части. В канале создается повышенное давление, которое после удара молнии вызывает разрыв канала, что и порождает явление грома. Заряд, переносимый молнией, обычно составляет несколько кулонов и часто несколько десятков кулонов. Мгновенное значение величины тока молнии часто составляет десятки, а иногда и сотни тысяч амперов.

Молниевой разряд уносит заряды обычно только из некоторой части облака. К этому месту устремляются заряды из других частей облака. Поэтому чаще всего вслед за первым ударом молнии через сотые доли секунды по тому же, но иногда несколько деформированному или иначе разветвленному каналу происходят повторные удары молнии (два, три и больше); каждому из них предшествует лидер, восстанавливающий электропроводность канала.

Рис. 180. Схема грозового (кучевс-дождевого) облака.

Рис. 179 воспроизводит картину пяти ударов молнии по одному каналу, снятых на движущуюся пленку. В некоторых случаях сильный ветер так смещает канал молнии, что даже при фотографировании обычным аппаратом можно различить отдельные удары разрядов.

На рис. 180 показана схема наиболее часто встречающегося распределения зарядов в грозовом облаке. На переднем крае облака и по нижней части его обычно распределены отрицательные заряды. Здесь же имеется область положительных зарядов; положительно заряжена также вся верхняя часть облака. Направление ветра, (на рисунке оно указано стрелками), уносящего облако, обычно противоположно наземному ветру. Вначале сильный дождь уносит из облака положительный заряд, позже идет умеренный отрицательно заряженный дождь.

В отсутствие грозы электрическое поле в атмосфере направлено сверху вниз, так как земля заряжена отрицательно, а положительный заряд рассеян в атмосфере.

Когда отсутствуют возмущающие влияния, создаваемые, в частности, грозовыми облаками, напряженность электрического поля в атмосфере уменьшается с высотой. У земли напряженность электрического поля имеет порядок На высоте она равна а на высоте примерно Напряженность поля на высоте 20 км в 100 раз меньше, чем у земли.

Это быстрое уменьшение напряженности электрического поля с высотой показывает, что в сравнении с однородным полем электрическое поле в атмосфере весьма усложнено зарядами, распределенными в атмосферном воздухе.

При грозах напряженность поля в атмосфере может в 100 и 1000 раз превышать нормальную.

Под грозовым облаком направление поля чаще всего меняется на обратное, от земли к отрицательно заряженному нижнему краю облака, а напряженность поля вблизи земли перед молниевым разрядом может достигать 200-300 тысяч вольт на метр. Разность потенциалов между облаком и землей перед ударом молнии часто составляет сотни миллионов, а иногда и миллиарды вольт. Большинство ударов молний происходит от отрицательно заряженных облаков. Молнии нередко имеют в длину несколько километров. Часто молниевые разряды происходят между отдельными тучами. Наблюдались грозы, при которых насчитывалось 4-7 тысяч ударов молний за час. На земном шаре в среднем за сутки происходит около 44 тысяч гроз (единовременно в среднем около 1800 гроз) и ежеминутно происходит несколько тысяч ударов молний.

Рис. 181. Фотография шаровой молнии

В редких случаях наблюдаются молниевые разряды совершенно иного типа. На рис. 181 воспроизведена одна из фотографий шаровой молнии. По описанию наблюдателей шаровые молнии обычно имеют вид светящихся шаров диаметром около 10-20 см, а иногда и нескольких метров. Шаровые молнии передвигаются плавно, с небольшой скоростью и в некоторых случаях скачкообразно. Отмечены случаи, когда шаровые молнии, касаясь земли или каких-либо предметов, взрывались и причиняли сильные разрушения.

Многочисленные попытки лабораторного воспроизведения такого типа разряда не дали удовлетворительных результатов, несмотря на то, что некоторым исследователям (Плантэ в Гезехусу в 1900 г., Кэвуду и др.)

удавалось получать разряды шарового типа. На рис. 182 пояснен опыт Плантэ. Если, применяя высоковольтный источник постоянного напряжения, анод погрузить в электролит и подносить к поверхности электролита катод, то зажигается дуговой разряд. Но когда в электролит погружен катод и к поверхности электролита подносится анод, дуга не может образоваться, так как исключается возможность накала и термоэлектронной эмиссии из датода. Плантэ обнаружил, что в этом случае при соблюдении определенных условий между анодом и поверхностью электролита образуется светящийся и быстро вращающийся шарик, который через некоторое время проскальзывает по поверхности электролита к катоду.

Рис. 182. Схема опыта Плантэ.

Рис. 183. Фотография четочной молнии.

Одна из многочисленных гипотез, предложенных для объяснения шаровой молнии (гипотеза Мейснера), трактует этот тип разряда как завихрение газоразрядной плазмы, происходящее в изгибе линейной молнии. По другой гипотезе (Матиаса) предполагается, что в шаровой молнии химически аккумулируется энергия разряда, причем образуются неустойчивые, способные разлагаться со взрывом высшие соединения азота с кислородом.

Иногда молния оказывается состоящей из нескольких десятков небольших светящихся шаров (диаметром меньше 10 см), удаленных один от другого на расстояние менее метра. Этот вид разряда называют неточной молнией (рис. 183). Приемлемой, достаточно обоснованной теории шаровых и четочных молний еще не имеется.

Если при использовании высокого постоянного напряжения между электродами поставлена пластина из твердого диэлектрика (стекла, эбонита и т. п.) и пластина эта имеет такую толщину, что искра ее не пробивает, а ширину не слишком большую, то наблюдается скользящий искровой разряд, который проходит по поверхности пластины и огибает ее. Для исследования этого разряда его создают на фотографической пластинке и потом проявляют ее (рис. 184). Получаемые таким путем изображения разряда называют фигурами Лихтенберга. Их радиус пропорционален напряжению разрядного импульса. Этим пользуются (применяя особые приборы для фотографирования скользящего разряда - клидонографы) при массовом, статистическом исследовании молний»

В СССР ведется систематическое изучение молний и методов грозозащиты. Ведущая роль в этой области принадлежит высоковольтной лаборатории Энергетического института Академии наук СССР.

Когда напряжение недостаточно велико для пробоя газоразрядного промежутка, на электродах наблюдается особый тип разряда-корона.

Рис. 184. Скользящий разрядит положительного электрода.

Коронный разряд на высоковольтных сетях вызывает утечки электроэнергии.

Исследование короны показало, что на положительном электроде коронный разряд при относительно невысоких напряжениях состоит из ряда электронно-лавинных импульсов, длящихся каждый десятитысячные доли секунды. При более высоком напряжении прерывистость явлений менее сказывается и основную роль играют стримеры, обрывающиеся там, где напряженность поля слишком мала для их распространения. Строение и характер свечения коронного разряда на отрицательном электроде в некоторой мере сходны с околокатодной зоной тлеющего разряда.

В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

  • тлеющий разряд;
  • искровой разряд;
  • дуговой разряд;
  • коронный разряд.
  • 1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

    Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

    При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

    Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала .

    В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

    Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

    Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

    Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

    Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

    2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами .

    Т газа = 10 000 К

    ~ 40 см I = 100 кА t = 10 –4 c l ~ 10 км

    После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

    В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 10 4 – 10 5 А, длиной 20 км (рис. 8.7).

    3. Дуговой разряд . Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

    ~ 10 3 А
    Рис. 8.8

    При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

    4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

    Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙10 6 В/м, вокруг него возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

Искровой разряд, искра, одна из форм электрического разряда в газах; возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом - «треском» искры. В природных условиях И. р. наиболее часто наблюдается в виде молнии . И. р. в собственном смысле этого термина происходит, если мощность питающего его источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда . В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько мксек до нескольких сотен мксек ) падает ниже напряжения погасания И. р., что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания И. р. и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для И. р., но они являются лишь переходным процессом, ведущим к установлению разряда другого типа - чаще всего дугового.

И. р. представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок - искровых каналов. Эти каналы заполнены плазмой, в состав которой в мощном И. р. входят не только ионы исходного газа, но и ионы вещества электродов, интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения И. р.) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определённых условиях образуются стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Стримеры, удлиняясь, перекрывают разрядный промежуток и соединяют электроды непрерывными проводящими нитями. Происходящее затем превращение стримеров в искровые каналы сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна . Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры (в случае молнии - гром).

Величины, характеризующие И. р. (напряжение зажигания, напряжение погасания, максимальная сила тока, длительность), могут меняться в широких пределах в зависимости от параметров разрядной цепи, величины разрядного промежутка, геометрии электродов, давления газа и т. д. Напряжение зажигания И. р., как правило, достаточно велико. Градиент напряжения в искре понижается от нескольких десятков кв /см в момент пробоя до 100 в /см спустя несколько микросекунд. Максимальная сила тока в мощном И. р. может достигать значений порядка нескольких сотен ка .

Особый вид И. р. - скользящий И. р., возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами. Области скользящего И. р., в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика (см. Лихтенберга фигуры ). Процессы, близкие к происходящим при И. р., свойственны также кистевому разряду .

И. р. нашёл разнообразные применения в технике. С его помощью инициируют взрывы и процессы горения, измеряют высокие напряжения; его используют в спектроскопическом анализе, в переключателях электрических цепей, для высокоточной обработки металлов (см. Электроискровая обработка ) и т. п.

Лит. см. при ст. Электрический разряд в газах .

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Такой разряд возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом - «треском» искры. Температура в главном канале искрового разряда может достигать 10 000 . В природе искровые разряды часто возникают в виде молний . Расстояние, «пробиваемое» искрой в воздухе, зависит от напряженности электрического поля у поверхности электродов и их формы. Для сфер, радиус которых много больше разрядного промежутка, она считается равной 30 кВ на сантиметр, для иголок - 10 кВ на сантиметр.

Условия [ | ]

Искровой разряд обычно происходит, если мощность источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда . В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от нескольких микросекунд до нескольких сотен микросекунд) падает ниже напряжения погасания искрового разряда, что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растёт, достигает напряжения зажигания, и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для этого разряда, но они являются лишь переходным процессом, ведущим к установлению разряда другого типа - чаще всего дугового .

Природа [ | ]

Искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок - . Эти каналы заполнены плазмой , в состав которой в мощном искровом разряде входят не только ионы исходного газа, но и ионы вещества электродов , интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения искрового разряда) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определённых условиях образуются стри́меры - тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Среди них можно выделить так называемый лидер - слабо светящийся разряд, «прокладывающий» путь для основного разряда. Он, двигаясь от одного электрода к другому, перекрывает разрядный промежуток и соединяет электроды непрерывным проводящим каналом. Затем в обратном направлении по проложенному пути проходит главный разряд, сопровождаемый резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук , воспринимаемый как «треск» искры (в случае молнии - гром).

Напряжение зажигания искрового разряда, как правило, достаточно велико. Напряжённость электрического поля в искре понижается от нескольких десятков киловольт на сантиметр (кВ/см) в момент пробоя до порядка 100 В/см спустя несколько микросекунд. Максимальная сила тока в мощном искровом разряде может достигать значений порядка нескольких сотен килоампер.

Особый вид искрового разряда - скользящий искровой разряд , возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами, при условии превышения напряженностью поля пробивной прочности воздуха. Области скользящего искрового разряда, в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика, образуя при этом так называемые фигуры Лихтенберга .

Процессы, близкие к происходящим при искровом разряде, свойственны также кистевому разряду, который является переходной стадией между