Биографии Характеристики Анализ

Презентация на тему комбинаторика. Презентация на тему:Элементы Комбинаторики!!! Применение теории графов

1 слайд

Не нужно нам владеть клинком, Не ищем славы громкой. Тот побеждает, кто знаком С искусством мыслить, тонким. Английский поэт Уордсворт

2 слайд

Введение Цель работы Задачи работы Что же такое «Комбинаторика»? История возникновения Правила решения комбинаторных задач Правило суммы Правило произведения Комбинации С повторениями Без повторений Тезаурус Список используемой литературы и web-ресурсов Заключение Страница автора

3 слайд

Создать справочное пособие для учащихся 10-11 классов, обучающихся на базовом уровне, образовательных учреждений. Подготовить первую часть большого проекта «Теория вероятности как самое встречаемое в нашей жизни явление».

4 слайд

1.1 Подобрать литературу и web – ресурсы по теме «Комбинаторика». 1.2 Исследовать все возможные методы решения комбинаторных задач на основе реальной жизни. 1.3 Проследить историю выделения самостоятельной области математики – комбинаторики. 2.1 Обосновать изучение курса комбинаторики в старшей школе как реальную необходимость при осуществлении курса принципа непрерывности образования «Школа – вуз». 2.2 Наметить возможные варианты введения курса комбинаторики в школьное образовательное пространство. 2.3 Подобрать материал для создания справочника.

5 слайд

Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов расположения некоторых предметов или число всех возможных способов осуществления некоторого действия. Разные пути или варианты, которые приходится выбирать человеку, складываются в самые разнообразные комбинации. Такие задачи приходиться рассматривать при определении наиболее выгодных коммуникаций внутри города, при организации автоматической системы управления, значит и в теории вероятностей, и в математической статистике со всеми их многочисленными приложениями. И целый раздел математики, называемый комбинаторикой, занят поиском ответов на вопросы: сколько всего есть комбинаций в том или другом случае.

6 слайд

Комбинаторика – это раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составленной по заданным правилам.

7 слайд

Комбинаторика как наука стала развиваться в XIII в. параллельно с возникновением теории вероятностей. Первые научные исследования по этой теме принадлежат итальянским ученым Дж. Кардано, Н. Чарталье (1499-1557), Г. Галилею (1564-1642) и французским ученым Б.Пискамо (1623-1662) и П. Ферма. Комбинаторику, как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666г. Он также впервые ввел термин «Комбинаторика».

8 слайд

9 слайд

Задача: На столе лежат 3 черных и 5 красных карандашей. Сколькими способами можно выбрать карандаш любого цвета? Решение: Выбрать карандаш любого цвета можно 5+3=8 способами. Правило суммы в комбинаторике: Если элемент а можно выбрать m способами, а элемент в - n способами, причем любой выбор элемента а отличен от любого выбора элементов в, то выбор «а или в» можно сделать m+n способами. Примеры задач

10 слайд

Задача: В классе 10 учащихся занимаются спортом, остальные 6 учащихся посещают танцевальный кружок. 1)Сколько пар учащихся можно выбрать так, чтобы один из пары был спортсменом, другой танцором? 2)Сколько возможностей выбора одного ученика? Решение: 1)Возможность выбора спортсменов 10, а на каждого из 10 спортсменов выборов танцора 6. Значит, возможность выбора пар танцора и спортсмена 10·6=60. 2) Возможность выбора одного ученика 10+6=16.

11 слайд

Задача: Из города А в город В ведут 3 дороги. А из города В в город С ведут 4 дороги. Сколько путей, проходящих через В, ведут из А в С? Решение: Можно рассуждать таким образом: для каждой из трех путей из А в В имеется четыре способа выбора дороги из В в С. Всего различных путей из А в С равно произведению 3·4, т.е. 12. Правило произведения: Пусть нужно выбрать к элементов. Если первый элемент можно выбрать n1 способами, второй – n2 способами и т. д., то число способов к элементов, равно произведению n1· n2·… nк. Примеры задач

12 слайд

Задача: В школьной столовой имеются 2 первых, 5 вторых и 4 третьих блюд. Сколькими способами ученик может выбрать обед, состоящий из первых, вторых и третьих блюд? Решение: Первое блюдо можно выбрать 2 способами. Для каждого выбора первого блюда существует 5 вторых блюд. Первые два блюда можно выбрать 2·5=10 способами. И, наконец, для каждой 10 этих выборов имеются четыре возможности выбора третьего блюда, т. е. Существует 2·5·4 способов составления обеда из трех блюд. Итак, обед может быть составлен 40 способами.

13 слайд

14 слайд

15 слайд

Размещением из n элементов по к (к≤n) называется любое множество, состоящее из любых к элементов, взятых в определенном порядке из данных n элементов. Количество всех размещений из n элементов по m обозначают: Примеры задач n! – факториал числа n

16 слайд

Задача: Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец? Решение: Два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому: Возможно 360 вариантов.

17 слайд

Перестановкой из n элементов называется каждое расположение этих элементов в определенном порядке. Количество всех перестановок из n элементов обозначают Pn Pn=n! Примеры задач

18 слайд

Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть… Решение

20 слайд

Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения. Таким образом, количество вариантов при сочетании будет меньше количества размещений. Число сочетаний из n элементов по m обозначается: Примеры задач

21 слайд

Задача: Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр. Решение: Так как кнопки нажимаются одновременно, то выбор этих трех кнопок – сочетание. Отсюда возможно:

22 слайд

Часто в задачах по комбинаторике встречаются множества, в которых какие-либо компоненты повторяются. Например: в задачах на числа – цифры. Для таких задач используются формулы: где n-количество всех элементов, n1,n2,…,nr-количество одинаковых элементов. Примеры задач Примеры задач Примеры задач

23 слайд

Задача: Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5? Решение: Так как порядок цифр в числе существенен, цифры могут повторяться, то это будут размещения с повторениями из пяти элементов по три, а их число равно:

24 слайд

Задача: В кондитерском магазине продавались 4 сорта пирожных: эклеры, песочные, наполеоны и слоеные. Сколькими способами можно купить 7 пирожных. Решение: Покупка не зависит от того, в каком порядке укладывают купленные пирожные в коробку. Покупки будут различными, если они отличаются количеством купленных пирожных хотя бы одного сорта. Следовательно, количество различных покупок равно числу сочетаний четырех видов пирожных по семь -

27 слайд

Мы считаем, что работа достигла своих целей. Мы составили справочное учебное пособие, которое нацелено оживить школьную математику введением в неё интересных задач, посильных для учащихся теоретических вопросов. Работа предназначена для учащихся 10-11 классов, обучающихся на базовом уровне, образовательных учреждений для углубления знаний по математике Отличительной способностью данного пособия являются: посильная для учащихся III ступени теоретическая часть; подбор и составление задач на основе жизненного материала, сказочных сюжетов. Мы надеемся, что наша работа заинтересует учащихся, поможет развитию их кругозора и мышления, будет способствовать более качественной подготовке к сдаче единого государственного экзамена.

28 слайд

Ученик: Захаров Дмитрий Класс: 10 Руководитель: Торопова Нина Анатольевна МОУ «Средняя образовательная школа с углубленным изучением отдельных предметов №5» г. Красноярска

  • Комбинаторика – раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.
  • Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять».
  • Термин "комбинаторика" был введён знаменитым Готфридом Вильгельмом Лейбницем, - всемирно известным немецким учёным.
  • Комбинаторика - важный раздел математики,
  • знание которого необходимо представителям самых разных специальностей. С комбинаторными задачами приходится иметь дело физикам, химикам, биологам, лингвистам, специалистам по кодам и др.
  • Комбинаторные методы лежат в основе решения многих задач теории
  • вероятностей и
  • ее приложений.
  • В Древней Греции
  • подсчитывали число различных комбинаций длинных и коротких слогов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей и т.д.
  • Со временем появились различные игры
  • (нарды, карты, шашки, шахматы и т. д.)
  • В каждой из этих игр приходилось рассматривать различные сочетания фигур, и выигрывал тот, кто их лучше изучал, знал выигрышные комбинации и умел избегать проигрышных.
  • Готфрид Вильгельм Лейбниц (1.07.1646 - 14.11.1716)
  • Комбинаторику, как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666г. Он также впервые ввел термин «Комбинаторика».
  • Леонард Эйлер(1707-1783)
  • рассматривал задачи о разбиении чисел, о паросочетаниях, циклических расстановках, о построении магических и латинских квадратов, положил начало совершенно новой области исследований, выросшей впоследствии в большую и важную науку-топологию, которая изучает общие свойства пространства и фигур.
Если некоторый объект A можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор «либо А, либо В» можно осуществить (m+n) способами.
  • Если некоторый объект A можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор «либо А, либо В» можно осуществить (m+n) способами.
  • При использовании правила суммы надо следить, чтобы ни один из способов выбора объекта А не совпадал с каким-либо способом выбора объекта В.
  • Если такие совпадения есть, правило суммы утрачивает силу, и мы получаем лишь (m + n - k) способов выбора, где k-число совпадений.
В коробке находится 10 шаров: 3 белых, 2 черных, 1 синий и 4 красных. Сколькими способами можно взять из ящика цветной шар?
  • В коробке находится 10 шаров: 3 белых, 2 черных, 1 синий и 4 красных. Сколькими способами можно взять из ящика цветной шар?
  • Решение:
  • Цветной шар – это синий или красный, поэтому применим правило суммы:
Если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары (А,В) в указанном порядке можно осуществить mn способами.
  • Если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары (А,В) в указанном порядке можно осуществить mn способами.
  • При этом число способов выбора второго элемента не зависит от того, как именно выбран первый элемент.
Сколько может быть различных комбинаций выпавших
  • Сколько может быть различных комбинаций выпавших
  • граней при бросании двух игральных костей?
  • Решение:
  • На первой кости может быть: 1,2,3,4,5 и 6 очков, т.е. 6 вариантов.
  • На второй – 6 вариантов.
  • Всего: 6*6=36 вариантов.
  • Правила суммы и произведения верны для любого количества объектов.
№1. Из города А а город В ведут 6 дорог, а из города В в город С – 3 дороги. Сколькими способами можно проехать из города А в город С?
  • №1. Из города А а город В ведут 6 дорог, а из города В в город С – 3 дороги. Сколькими способами можно проехать из города А в город С?
  • №2. На книжной полке стоят 3 книги по алгебре, 7 по геометрии и 2 по литературе. Сколькими способами можно взять с полки одну книгу по математике?
  • №3. В меню имеется 4 первых блюда, 3 – вторых, 2 – десерта. Сколько различных обедов можно из них составить?
  • « Эн факториал»-n!.
  • Определение.
  • Произведение подряд идущих первых n
  • натуральных чисел обозначают n! и называют
  • «эн факториал»: n!=1 2 3 … (n-1) n.
  • 1 2 3=
  • 1 2 3 4=
  • 1 2 3 4 5=
  • 1 2 3 4 5 6=
  • 1 2 3 4 5 6 7=
  • n!=(n-1)! n
  • Удобная формула!!!
Комбинации из n-элементов, отличающиеся друг от друга только порядком следования элементов, называются перестановками.
  • Комбинации из n-элементов, отличающиеся друг от друга только порядком следования элементов, называются перестановками.
  • Обозначаются Рn
  • Перестановки
  • Из чисел 1, 5, 9 составить трёхзначное
  • число без повторяющихся цифр.
  • 2 комбинации
  • 2 комбинации
  • 2 комбинации
  • Всего 2 3=6 комбинаций.
Комбинации из n-элементов по k, отличающиеся друг от друга составом и порядком, называются размещениями.
  • Комбинации из n-элементов по k, отличающиеся друг от друга составом и порядком, называются размещениями.
  • Размещения
Комбинации из n-элементов по к к .
  • Комбинации из n-элементов по к , отличающиеся только составом элементов, называются сочетаниями из n -элементов по к .
  • Сочетания
Из 20 учащихся надо выбрать двух дежурных.
  • Из 20 учащихся надо выбрать двух дежурных.
  • Сколькими способами это можно сделать?
  • Решение:
  • Надо выбрать двух человек из 20.
  • Ясно, что от порядка выбора ничего не зависит, то есть
  • Иванов - Петров или Петров - Иванов - это одна
  • и та же пара дежурных. Следовательно, это будут сочетания из 20 по 2.
1. Сколько слов можно образовать из букв слова фрагмент, если слова должны состоять: из 8 букв; из 7 букв; из 3 букв?
  • 1. Сколько слов можно образовать из букв слова фрагмент, если слова должны состоять: из 8 букв; из 7 букв; из 3 букв?
  • 2. Студенту необходимо сдать 4 экзамена в течение десяти дней. Сколькими способами можно составить ему расписание экзаменов?
  • 3. Сколькими способами из восьми человек можно избрать комиссию, состоящую из пяти членов?
  • 4. Сколько существует различных автомобильных номеров, которые состоят из 5 цифр, если первая из них не равна нулю? Если номер состоит из одной буквы, за которой следуют четыре цифры, отличные от нуля?
  • 5. Подрядчику нужны 4 плотника, а к нему с предложением своих услуг обратились 10. Сколькими способами он может выбрать среди них четверых?
  • 6. Сколькими способами можно расставить на полке семь книг
  • 7. Сколько 5-буквенных слов можно образовать, используя для этого 10 различных букв.
  • 8. Сколькими способами можно отобрать несколько фруктов из семи яблок, четырех лимонов и девяти апельсинов? (Фрукты одного вида считаем неразличимыми.)

Петров Владимир,учащийся 12 группы ГБОУ СО НПО "Профессиональное училище №22" г. Саратова

В презентации рассмотрены премеры решения задач на нахождение перестановок, размещений, сочетаний.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Элементы комбинаторики: перестановки, сочетания и размещения Презентацию подготовил студент 12 группы ГБОУ СО НПО Петров Владимир.

Комбинаторика – раздел математики, который занят поисками ответов на вопросы: сколько всего есть комбинаций в том или ином случае, как из всех этих комбинаций выбрать наилучшую. Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять». Термин "комбинаторика" был введён знаменитым Готфридом Вильгельмом Лейбницем, - всемирно известным немецким учёным.

Комбинаторные задачи делятся на несколько групп: Задачи на перестановки Задачи на размещение Задачи на сочетание

Задачи на перестановки Сколькими способами можно расставить 3 различные книги на книжной полке? Это задача на перестановки

Запись n ! читается так:«эн факториал» Факториал - это произведение всех натуральных чисел от 1 до n Например, 4! = 1*2*3*4 = 24 n! = 1 · 2 · 3 · ... · n.

n 1 2 3 4 5 6 7 8 9 10 n! 1 4 6 24 120 720 5040 40320 362880 3628800 Факториалы растут удивительно быстро:

Задача. Сколькими способами можно расставить 8 участниц финального забега на восьми беговых дорожках? P8 = 8!= 1 ∙2∙ 3 ∙4∙ 5 ∙6∙ 7 ∙8 = 40320

Перестановкой из n элементов называется каждое расположение этих элементов в определённом порядке. P n = 1 · 2 · 3 · ... · n. P n =n !

Задача. Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть… Сколькими способами можно рассадить четырех музыкантов? P = 4! = 1 * 2 * 3 * 4 = 24

Задачи на размещения

Задача: У нас имеется 5 книг, что у нас всего одна полка, и что на ней вмещается лишь 3 книги. Сколькими способами можно расставить на полке 3 книги? Выбираем одну из 5-ти книг и ставим на первое место на полке. Это мы можем сделать 5-ю способами. Теперь на полке осталось два места и у нас осталось 4 книги. Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых. Таких пар может быть 5·4. Осталось 3 книги и одно место. Одну книгу из 3-ёх можно выбрать 3-мя способами и поставить рядом с одной из возможных 5·4 пар. Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60. Это задача на размещения.

Размещением из n элементов по k (k≤n) называется любое множество, состоящее из k элементов, взятых в определённом порядке из данных n элементов.

Задача. Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета? A 4 9 = = 6∙ 7∙ 8∙ 9 = 3024

Решите самостоятельно: В классе 27 учащихся. Нужно отправить одного учащегося за мелом, второго дежурить в столовую, а третьего вызвать к доске. Сколькими способами можно это сделать?

Задачи на сочетания: Задача. Сколькими способами можно расставить 3 тома на книжной полке, если выбирать их из имеющихся в наличии внешне неразличимых 5 книг? Книги внешне неразличимы. Но они различаются, и существенно! Эти книги разные по содержанию. Возникает ситуация, когда важен состав элементов выборки, но несущественен порядок их расположения. 123 124 125 134 135 145 234 235 245 345 ответ: 10 Это задача на сочетания

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов.

Задача. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде? C 7 2 = = 21

Решите самостоятельно: В классе 7 учащихся успешно занимаются по математике. Сколькими способами можно выбрать двоих из них, чтобы направить для участия в математической олимпиаде?

Особая примета комбинаторных задач – вопрос, который можно сформулировать так, чтобы он начинался словами «Сколькими способами…» или «Сколько вариантов…»

Перестановки Размещения Сочетания n элементов n клеток n элементов k клеток n элементов k клеток Порядок имеет значение Порядок имеет значение Порядок не имеет значения Составим таблицу:

Решите самостоятельно задачи: 1.В коробке находится 10 белых и 6 черных шаров. Сколькими способами из коробки можно вынуть один шар любого цвета? 2.Ольга помнит, что телефон подруги оканчивается тремя цифрами 5, 7, 8 но забыла, в каком порядке эти цифры расположены. Укажите наибольшее число вариантов, которые ей придется перебрать, чтобы дозвониться подруге. 3. В магазине “Филателия” продается 8 разных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Элементы комбинаторики 9 -11 классы, МБОУ Кочневская СОШ учитель Грязнова А.К Основные вопросы:

      • Что такое комбинаторика?
      • Какие задачи считают комбинаторными?
      • Перестановки
      • Размещения
      • Сочетания
Не будем спорить - будем вычислять. Г. Л е й б н и ц
  • Комбинаторика – радел математики, в котором рассматриваются задачи о подсчёте числа комбинаций составленных по определённым правилам.
II. Какие задачи считают комбинаторными? Комбинаторные задачи Задачи подсчёта числа комбинаций из конечного числа элементов
  • Комбинаторика от латинского слова combinare, что означает «соединять, сочетать».
  • Методы комбинаторики находят широкое применение в физике, химии, биологии, экономики и др. областях знания.
  • Комбинаторику можно рассматривать как часть теории множеств – любую комбинаторную задачу можно свести к задаче о конечных множествах и их отображениях.
I. Уровни решения комбинаторных задач 1. Начальный уровень . Задачи поиска хотя бы одного решения, хотя бы одного расположения объектов, обладающих заданным свойствами - отыскание такого расположения десяти точек на пяти отрезках, при котором на каждом отрезке лежит по четыре точки; - такого расположения восьми ферзей на шахматной доске, при котором они не бьют друг друга. Иногда удаётся доказать, что данная задача не имеет решения (например, нельзя расположить 10 шаров в 9 урнах так, что бы в каждой урне было не более одного шара – хотя бы в одной урне окажется не менее двух шаров). 2. Второй уровень . 2. Второй уровень . Если комбинаторная задача имеет несколько решений, то возникает вопрос о подсчете числа таких решений, описании всех решений данной задачи.
  • 3. Третий уровень .
  • Решения данной комбинаторной задачи отличаются друг от друга некоторыми параметрами. В этом случае возникает вопрос отыскания оптимального варианта решения такой задачи. Например: Путешественник хочет выехать из города А, посетить города В, С, и D. После чего вернуться в город А.

На рис. изображена схема путей, связывающих эти города. Различные варианты путешествий отличаются друг от друга порядком посещения городов В, С, и.D. Существует шесть вариантов путешествия. В таблице указаны варианты и длин каждого пути:

  • Комбинаторные задачи на оптимизацию приходится решать мастеру, стремящемуся к быстрейшему выполнению задания, агроному, стремящемуся к наивысшей урожайности на данных полях, и т.д.
Мы будем рассматривать лишь задачи о подсчёте числа решений комбинаторной задачи.
  • Мы будем рассматривать лишь задачи о подсчёте числа решений комбинаторной задачи.
  • Этот раздел комбинаторики, называемый теорией перечислений , тесно связан с теорией вероятностей.
Правила суммы и произведения
  • 1. Сколько различных коктейлей можно составить из четырёх напитков, смешивая их в равных количествах по два?
  • AB, AC, AD, BC, BD, CD – всего 6 коктейлей
  • Первой цифрой двузначного числа может одна из цифр 1, 2, 3 (цифра 0 не может быть первой). Если первая цифра выбрана, то вторая может быть любая из цифр 0, 1, 2, 3. Т.к. каждой выбранной первой соответствует четыре способа выбора второй, то всего имеется 4 + 4 + 4 = 4·3 = 12 различных двузначных чисел.

2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ?

  • 2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ?
  • 4 + 4 + 4 = 4·3 = 12 различных двузначных чисел.
  • Первая цифра вторая цифра
Правило произведения:
  • Если элемент А можно выбрать из множества элементов п способами и для каждого такого выбора элемент В можно выбрать т способами, то два элемента (пару) А и В можно выбрать п·т способами.
«Примеры решения комбинаторных задач: перебор вариантов, правило суммы, правило умножения».
  • Сколькими способами могут быть расставлены 4 участниц финального забега на четырёх беговых дорожках?
  • Рп = 4· 3 ·2 ·1= 24 способа (перестановки из 4-х элементов)

2 3 4 1 3 4 1 2 4 1 2 3

1 дорожка

II. Перестановки (1) К в а р т е т Проказница Мартышка, Осёл, Козёл Да косолапый Мишка Затеяли сыграть Квартет. ……………………………………………………. Ударили в смычки, дерут, а толку нет. «Стой, братцы, стой! - кричит Мартышка. – Погодите! Как музыке идти? Ведь вы не так сидите»

4·3·2·1 = 4! способов

II. Перестановки (2)
  • Перестановкой из п - элементов называется комбинации, отличающиеся друг от друга лишь порядком следования элементов
  • Рп- число перестановок (Р первая буква французского слова permutation- перестановка)
  • Рп= n ·(n- 1)·(n- 2)·(n- 3)·(n- 4)·. . .·3 ·2 ·1= n! Рп = n!
Размещения (1)
  • Четыре попутчик решили обменяться визитными карточками. Сколько всего карточек при этом было использовано?
  • получилось 12 карточек. Каждый из четырёх попутчиков вручил визитку каждому из трёх попутчиков 4 · 3 = 12

Комбинации, составленные из k элементов, взятых из n элементов, и отличающиеся друг от друга либо составом, либо порядком расположения элементов, называются размещениями из n элементов по k (0< k ≤n ).

Размещение из n элементов по k элементов. А первая буква

французского слова arrangement : «размещение»,

«приведение в порядок»

Размещения (2)
  • Пуст имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c, d. В пустые ячейки можно по разному разместить три шара из этого набора.
  • Выбирая по-разному первый, второй и третий шары, будем получать различные упорядоченные тройки шаров
  • Каждая упорядоченная тройка, которую можно составить из четырёх элементов называется размещением из четырёх элементов по три
Размещения (3)
  • Сколько же размещений можно составить из 4-х элементов (abcd ) по три?
  • abc abd acb acd adb adc
  • bac bad bca bcd bda bdc
  • cab cad cba cbd cda cdb
  • dab dac dba dbc dca dcb

Р е ш е н о п е р е б о р о м в а р и а н т о в

Размещения (4)
  • Можно решить и не выписывая самих размещений:
  • первый элемент можно выбрать четырьмя способами, так им может быть любой элемент из четырёх;
  • для каждого первого второй можно выбрать тремя способами;
  • для каждых первых двух можно двумя способами выбрать третий элемент из двух оставшихся.
  • Получаем

Решено с использованием п р а в и л а у м н о ж е ни я

Сочетания
  • Сочетанием из п элементов по k называют любое множество, составленное из k элементов, выбранных из п элементов

В отличии от размещений в сочетаниях не имеет значение порядок элементов . Два сочетания отличаются друг от друга хотя бы одним элементом

Р е ш и з а д а ч и: 1. На плоскости отмечено 5 точек. Сколько получится отрезков, если соединить точки попарно?

2. На окружности отмечено п точек. Сколько существует треугольников с вершинами в этих точках?

Источники информации

  • В.Ф.Бутузов, Ю.М.Колягин, Г.Л. Луканкин, Э.Г.Позняк и др. «Математика» учебное пособие для 11кл общеобразовательных учреждений /рекомендовано Министерством образования РФ/ М., Просвещение, 1996.
  • Е.А. Бунимович, В.А. Булычёв: «Вероятность и статистика», пособие для общеобразовательных учебных заведений 5 – 9 классы / допущено Министерством образования Российской Федерации // Дрофа Москва 2002
  • Ю.Н. Макарычев, Н.Г.Миндюк «Алгебра: элементы статистики и теории вероятностей 7 – 9 классы» Под редакцией С.А.Теляковского М: Просвещение, 2006 г
  • Треугольнички http://works.doklad.ru/images/_E3ZV-_wFwU/md87b96f.gif
  • Остальные рисунки созданы Грязновой А.К.

Элементы
комбинаторики.
Электронное учебно-методическое пособие
для учащихся 9-11 классов.
Автор-составитель:
Каторова О.Г.,
учитель математики
МБОУ «Гимназия №2»
г.Саров

Комбинаторика

Комбинаторика – это раздел
математики, в котором изучаются
вопросы выбора или расположения
элементов множества в соответствии
с заданными правилами.
«Комбинаторика» происходит от латинского
слова «combina», что в переводе на русский
означает – «сочетать», «соединять».

ИСТОРИЧЕСКАЯ СПРАВКА
Термин "комбинаторика" был
введён в математический обиход
всемирно
известным
немецким
учёным Г.В.Лейбницем, который в
1666 году опубликовал "Рассуждения
о комбинаторном искусстве".
Г.В.Лейбниц
В XVIII веке к решению комбинаторных задач обращались
и другие выдающиеся математики. Так, Леонард Эйлер
рассматривал задачи о разбиении чисел, о паросочетаниях, о
циклических расстановках, о построении магических и
латинских квадратов.

Комбинаторика занимается
различного рода соединениями
(перестановки, размещения,
сочетания), которые можно
образовать из элементов
некоторого конечного множества.

Комбинаторные соединения

Перестановки
1.
2.
Перестановки без повторений
Перестановки с повторениями
Размещения
1.
2.
Размещения без повторений
Размещения с повторениями
Сочетания
1.
2.
Сочетания без повторений
Сочетания с повторениями

Перестановки – соединения,
которые можно составить из n
элементов, меняя всеми
возможными способами их порядок.
Формула:

Историческая справка

В 1713 году было опубликовано
сочинение Я. Бернулли "Искусство
предположений", в котором с
достаточной полнотой были изложены
известные к тому времени
комбинаторные факты.
"Искусство
предположений" не было завершено
автором и появилось после его смерти.
Сочинение состояло из 4 частей,
комбинаторике была посвящена
вторая часть, в которой содержится
формула для числа перестановок из n
элементов.

Пример

Сколькими способами могут 8 человек встать в
очередь к театральной кассе?
Решение задачи:
Существует 8 мест, которые должны занять 8 человек.
На первое место может встать любой из 8 человек, т.е. способов
занять первое место – 8.
После того, как один человек встал на первое место, осталось 7
мест и 7 человек, которые могут быть на них размещены, т.е.
способов занять второе место – 7. Аналогично для третьего,
четвертого и т.д. места.
Используя принцип умножения, получаем произведение. Такое
произведение обозначается как 8! (читается 8 факториал) и
называется перестановкой P8.
Ответ: P8 = 8!

Проверь себя

1) Сколькими способами можно поставить
рядом на полке четыре различные
книги?
РЕШЕНИЕ

Проверь себя

2) Сколькими способами можно положить
10 различных открыток в 10 имеющихся
конвертов (по одной открытке в конверт)?
РЕШЕНИЕ

Проверь себя

3) Сколькими способами можно рассадить
восьмерых детей на восьми стульях в столовой
детского сада?
РЕШЕНИЕ

Проверь себя

4) Сколько различных слов можно составить,
переставляя местами буквы в слове
«треугольник» (считая и само это слово)?
РЕШЕНИЕ

Проверь себя

5) Сколькими способами можно установить
дежурство по одному человеку в день среди семи
учащихся группы в течение 7 дней (каждый
должен отдежурить один раз)?
РЕШЕНИЕ

Проверь себя

Перестановки с
повторениями
Всякое размещение с повторениями, в
котором элемент а1 повторяется k1 раз, элемент
a2 повторяется k2 раз и т.д. элемент an
повторяется kn раз, где k1, k2, ..., kn - данные
числа, называется перестановкой с
повторениями порядка
m = k1 + k2 + … + kn, в которой данные
элементы a1, a2, …, an повторяются
соответственно k1, k2, .., kn раз.

Проверь себя

Перестановки с
повторениями
Теорема. Число различных перестановок с
повторениями из элементов {a1, …, an}, в
которых элементы a1, …, an повторяются
соответственно k1, ..., kn раз, равно
(k1+k2+…+kn)!
m!
P
k1! k2! … kn!
k1! k2! … kn!

Проверь себя

Пример
Слова и фразы с переставленными буквами
называют анаграммами. Сколько анаграмм можно
составить из слова «макака»?
Решение.
Всего в слове «МАКАКА» 6 букв (m=6).
Определим сколько раз в слове используется каждая буква:
«М» - 1 раз (k1=1)
«А» - 3 раза (k2=3)
«К» - 2 раза (k3=2)
m!
Р=
k1! k2! …kn!
6!
4*5*6
Р1,3,2 =
= 2 = 60.
1! 3! 2!

Проверь себя

1) Сколько различных слов можно получить,
переставляя буквы слова "математика" ?
РЕШЕНИЕ

Проверь себя

2) Сколькими способами можно расставить на
первой горизонтали шахматной доски комплект
белых фигур (король, ферзь, две ладьи, два
слона и два коня)?
РЕШЕНИЕ

Проверь себя
3) У мамы 2 яблока, 3 груши и 4 апельсина.
Каждый день в течение девяти дней подряд она
дает сыну один из оставшихся фруктов.
Сколькими способами это может быть сделано?
РЕШЕНИЕ

Историческая справка
Комбинаторные мотивы можно
заметить еще в символике китайской «Книги
перемен» (V век до н. э.).
В XII в. индийский математик Бхаскара в
своём основном труде «Лилавати» подробно
исследовал задачи с перестановками и
сочетаниями, включая перестановки с
повторениями.

Пример

Размещения
Размещением из n элементов по k
(k n) называется любое множество,
состоящее из любых k элементов, взятых в
определенном порядке из n элементов.
Два размещения из n элементов считаются
различными, если они отличаются самими
элементами или порядком их расположения.
А n(n 1)(n 2) ... (n (k 1))
k
n

Проверь себя

Пример
Сколькими способами из 40 учеников класса
можно выделить актив в следующем составе:
староста, физорг и редактор стенгазеты?
Решение:
Требуется выделить упорядоченные трехэлементные
подмножества множества, содержащего 40
элементов, т.е. найти число размещений без
повторений из 40 элементов по 3.
40!
A=
=38*39*40=59280
37!
3
40

Проверь себя

1. Из семи различных книг выбирают
четыре. Сколькими способами это можно
сделать?
РЕШЕНИЕ

Проверь себя

2. В чемпионате по футболу участвуют
десять команд. Сколько существует
различных возможностей занять
командам первые три места?
РЕШЕНИЕ

Проверь себя

3. В классе изучаются 7 предметов. В среду 4
урока, причем все разные. Сколькими
способами можно составить расписание на
среду?
РЕШЕНИЕ

Проверь себя

Размещения с
повторениями
Размещения с повторениями –
соединения, содержащие n элементов,
выбираемых из элементов m различных
видов (n m) и отличающиеся одно от
другого либо составом, либо порядком
элементов.
Их количество в предположении
неограниченности количества элементов
каждого вида равно

Проверь себя

Пример использования
В библиотеку, в которой есть много
одинаковых учебников по десяти
предметам, пришло 5 школьников,
каждый из которых хочет взять учебник.
Библиотекарь записывает в журнал по
порядку названия (без номера) взятых
учебников без имен учеников, которые их
взяли. Сколько разных списков в журнале
могло появиться?

Историческая справка

Решение задачи
Так как учебники по каждому
предмету одинаковые, и библиотекарь
записывает лишь название (без
номера),то список – размещение с
повторением, число элементов
исходного множества равно 10, а
количество позиций – 5.
Тогда количество разных списков равно
= 100000.
Ответ: 100000

Размещения

Проверь себя!
1. Телефонный номер состоит из 7 цифр.
Какое наибольшее число звонков
неудачник-Петя может совершить
прежде, чем угадает правильный номер.
РЕШЕНИЕ
РЕШЕНИЕ

Пример

Проверь себя!
2. Сколькими способами можно
написать слово, составленное из
четырех букв английского алфавита?
РЕШЕНИЕ

Проверь себя

Проверь себя!
3. В магазине, где есть 4 вида мячей,
решили поставить в ряд 8 мячей. Сколькими
способами можно это сделать, если их
расположение имеет значение?
РЕШЕНИЕ

Проверь себя

Проверь себя!
4. Сколькими способами можно пришить на
костюм клоуна в линию шесть пуговиц
одного из четырех цветов, чтобы получить
узор?
РЕШЕНИЕ

Проверь себя

Сочетания
Сочетания – соединения, содержащие по
m предметов из n, различающихся друг от
друга по крайней мере одним предметом.
Сочетания – конечные множества, в
которых порядок не имеет значения.

Проверь себя

Сочетания
Формула нахождения количества
сочетаний без повторений:

Проверь себя

Историческая справка
В 1666 году Лейбниц опубликовал "Рассуждения
о комбинаторном искусстве". В своём сочинении
Лейбниц, вводя специальные символы, термины для
подмножеств и операций над ними, находит все k сочетания из n элементов, выводит свойства
сочетаний:
,
,

Проверь себя

Пример использования:
Сколькими способами можно выбрать двух
дежурных из класса, в котором 25 учеников?
Решение:
m = 2 (необходимое количество дежурных)
n = 25 (всего учеников в классе)

Размещения с повторениями

Проверь себя!
1) Сколькими способами можно
делегировать троих студентов на
межвузовскую конференцию из 9 членов
научного общества?
РЕШЕНИЕ

Пример использования

Проверь себя!
2) Десять участников конференции
обменялись рукопожатиями, пожав руку
каждому. Сколько всего рукопожатий было
сделано?
РЕШЕНИЕ

Решение задачи

Проверь себя!
3) В школьном хоре 6 девочек и 4 мальчика.
Сколькими способами можно выбрать из
состава школьного хора 2 девочек и 1 мальчика
для участия в выступлении окружного хора?
РЕШЕНИЕ

Проверь себя!

4) Сколькими способами можно выбрать 3
спортсменов из группы в 20 человек для
участия в соревнованиях?
РЕШЕНИЕ

Проверь себя!

5) В классе 10 учебных предметов и 5 разных
уроков в день. Сколькими способами могут
быть распределены уроки в один день?
РЕШЕНИЕ

Проверь себя!

Сочетания с повторениями
Определение
Сочетаниями с повторениями из m по
n называют соединения, состоящие из n
элементов, выбранных из элементов m
разных видов, и отличающиеся одно от
другого хотя бы одним элементом.
Число сочетаний из m по n
обозначают

Проверь себя!

Сочетания с повторениями
Если из множества, содержащего n элементов, выбирается
поочередно m элементов, причём выбранный элемент
каждый раз возвращается обратно, то количество способов
произвести неупорядоченную выборку – число сочетаний с
повторениями – составляет

Проверь себя!

Историческая справка
Крупнейший индийский математик
Бхаскара Акария (1114–1185) также
изучал различные виды комбинаторных
соединений. Ему принадлежит трактат
"Сидханта–Широмани" ("Венец учения"),
переписанный в XIII в. на полосках
пальмовых листьев. В нём автор дал
словесные правила для нахождения
и
,указав их применения и поместив
многочисленные примеры

Проверь себя!

Пример использования
Задача №1
Сколько наборов из 7 пирожных
можно составить, если в распоряжении
имеются 4 сорта пирожных?
Решение:

Проверь себя!

Пример использования
Задача №2
Сколько костей находится в обычной
игре "домино"?
Решение: Кости домино можно рассматривать как
сочетания с повторениями по две из семи цифр
множества (0,1,2,3,4,5,6).
Число всех таких
сочетаний равно

Проверь себя!

Проверь себя
Задача 1.
В буфете Гимназии продаются 5 сортов
пирожков: с яблоками, с капустой,
картошкой, мясом и грибами. Скольким
числом способов можно сделать покупку из
10 пирожков?
РЕШЕНИЕ

Сочетания

Проверь себя
Задача 2.
В коробке лежат шары трех цветов-
красного, синего и зеленого. Сколькими
способами можно составить набор из двух
шаров?
РЕШЕНИЕ

Сочетания

Проверь себя
Задача 3.
Сколькими способами можно выбрать 4
монеты из четырех пятикопеечных монет и из
четырех двухкопеечных монет?
РЕШЕНИЕ

Проверь себя
Задача 4.
Сколько будет костей домино,
если в их
образовании использовать все цифры?
РЕШЕНИЕ

Проверь себя
Задача 5.
Палитра юного импрессиониста состоит из 8
различных красок. Художник берет кистью
наугад любую из красок и ставит цветное
пятно на ватмане. Затем берет следующую
кисть, окунает её в любую из красок и делает
второе пятно по соседству. Сколько
различных комбинаций существует для
шести пятен?
РЕШЕНИЕ

Используемая литература
Алгебра и начала математического
анализа.11 класс/ Ю.М.Колягин, М.В.Ткачева,
Н.Е.Федорова, М.И.Шабунин. –
М.:Просвещение, 2011.
Виленкин Н.Я. Комбинаторика. – М., 1969
Виленкин Н.Я. Комбинаторика. – МЦМНО,
2010
ru.wikipedia.org›wiki/История комбинаторики