Биографии Характеристики Анализ

Реакция нейтрализации: определение, примеры, применение.

Урок посвящен изучению реакции между противоположными по свойствам веществами - кислотами и основаниями. Такие реакции называют реакциями нейтрализации. В ходе урока вы научитесь по формуле соли составлять ее название, и по названию соли записывать ее формулу.

Тема: Классы неорганических веществ

Урок: Реакция нейтрализации

Если смешать одинаковые количества соляной кислоты и гидроксида натрия, то образуется раствор, в котором среда будет нейтральной, т.е. в нем не будет присутствовать ни кислота, ни щелочь. Запишем уравнение реакции между соляной кислотой и гидроксидом натрия, если в результате образуются хлорид натрия и вода.

При взаимодействии 1 моль хлороводорода (HCl) и 1 моль гидроксида натрия (NaOH) образуется 1 моль хлорида натрия (NaCl) и 1 моль воды (Н 2 О). Обратите внимание, в процессе данной реакции два сложных вещества обмениваются своими составными частями и образуются два новых сложных вещества:

NaOH+HCl=NaCl+H 2 O

Реакции, в ходе которых два сложных вещества обмениваются своими составными частями, называют реакциями обмена .

Частный случай реакции обмена – реакция нейтрализации.

Реакция нейтрализации - это взаимодействие кислоты с основанием.

Схема реакции нейтрализации: ОСНОВАНИЕ + КИСЛОТА = СОЛЬ + ВОДА

Нерастворимые в воде основания тоже могут растворяться в растворах кислот. В результате этих реакций образуются соли и вода. Уравнение реакции взаимодействия гидроксида меди (II) с серной кислотой:

Cu(OH) 2 +H 2 SO 4 = CuSO 4 + 2H 2 O

Вещество с химической формулой CuSO 4 относится к классу солей. Формулу этой соли мы составили, зная, что валентность меди в данном процессе равна II, и валентность SO 4 тоже равна II. А вот как назвать это вещество?

Название соли состоит из двух слов: первое слово – название кислотного остатка (эти названия приведены в таблице в учебнике, их надо выучить), а второе слово – название металла. Если валентность металла переменная, то она указывается в скобках.

Итак, вещество с химической формулой CuSO 4 называется сульфат меди(II).

NaNO 3 – нитрат натрия;

K 3 PO 4 – фосфат (ортофосфат) калия.

А теперь, выполним обратное задание: составим формулу соли по ее названию. Составим формулы следующих солей: сульфата натрия; карбоната магния; нитрата кальция.

Чтобы правильно составить формулу соли, сначала запишем символ металла и формулу кислотного остатка, сверху укажем их валентности. Найдем НОК значений валентностей. Разделив НОК на каждое из значений валентности, найдем число атомов металла и число кислотных остатков.

Обратите внимание, что если кислотный остаток состоит из группы атомов, то при написании формулы соли формула кислотного остатка записывается в скобках, а число кислотных остатков обозначается за скобкой соответствующим индексом.

1. Сборник задач и упражнений по химии: 8-й кл.: к учеб. П.А. Оржековского и др. «Химия. 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006. (с.106)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.107-108)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.:Астрель, 2013. (§33)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§39)

5. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§§31,32)

6. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

2. Индикаторы в реакциях нейтрализации. Титрование ().

Домашнее задание

1) с. 107-108 №№ 4,5,7 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

2) с.188 №№ 1,4 из учебника П.А. Оржековского, Л.М. Мещеряковой, М.М. Шалашовой «Химия: 8кл.», 2013 г.

Реакция между кислотой и основанием, в результате которой образуется соль и вода, называется реакцией нейтрализации.

Мы изучили реакции взаимодействия кислот с металлами и окислами металлов. При этих реакциях образуется соль соответствующего металла. Основания также содержат металлы. Можно предположить, что кислоты будут взаимодействовать с основаниями тоже с образованием солей. Прильем к раствору гидроокиси натрия NaOH раствор соляной кислоты HCl.

Раствор остается бесцветным и прозрачным, но на ощупь можно установить, что при этом выделяется теплота. Выделение теплоты показывает, что между щелочью и кислотой произошла химическая реакция .

Чтобы выяснить сущность этой реакции, проделаем такой опыт. В раствор щелочи поместим бумажку, окрашенную фиолетовым лакмусом. Она, конечно, посинеет. Теперь из бюретки начнем приливать к раствору щелочи малыми порциями раствор кислоты, пока окраска лакмуса опять изменится из синей в фиолетовую. Если лакмус из синего стал фиолетовым, то это означает, что в растворе не стало щелочи. Не стало в растворе и кислоты, так как в ее присутствии лакмус должен был бы окраситься в красный цвет. Раствор сделался нейтральным. Выпарив раствор, мы получили соль – хлористый натрий NaCl.

Образование хлористого натрия при взаимодействии гидроокиси натрия с соляной кислотой выражается уравнением:

NaOH + HCl = NaCl + H 2 O + Q

Сущность этой реакции заключается в том, что атомы натрия и водорода обмениваются местами. В результате водородный атом кислоты соединяется с гидроксильной группой щелочи в молекулу воды, а атом металла натрия соединяется с остатком кислоты – Cl, образуя молекулу соли. Эта реакция относится к знакомому нам типу реакций обмена .

Вступают ли в реакции с кислотами нерастворимые основания ? Насыплем в стакан голубую гидроокись меди. Прибавим воды. Гидроокись меди не растворится. Теперь прильем к ней раствор азотной кислоты. Гидроокись меди растворится и получится прозрачный раствор азотнокислой меди голубого цвета. Реакция выражается уравнением:

Cu(OH) 2 + 2HNO 3 = Cu(NO 3) 2 + 2H 2 O

Нерастворимые в воде основания, как и щелочи, взаимодействуют с кислотами с образованием соли и воды.

С помощью реакции нейтрализации определяют опытным путем нерастворимые кислоты и основания. Гидраты окислов, вступающие в реакцию нейтрализации со щелочами, относятся к кислотам. Убедившись на опыте, что данный гидрат окисла нейтрализуется щелочами, мы пишем его формулу, как формулу кислоты, записывая химический знак водорода на первое место: HNO3, H 2 SO 4 .

Кислоты друг с другом с образованием солей не взаимодействуют.

Гидраты окислов, вступающие з реакцию нейтрализации с m лотами, относятся к основаниям. Убедившись на опыте, что данный гидрат окисла нейтрализуется кислотами, мы пишем его формулу в виде Ме(ОН) n , т. е. подчеркиваем присутствие в нем гидроксильных групп.

Основания друг с другом с образованием солей не взаимодействуют.

Cтраница 2


Реакции нейтрализации, в которых участвует слабая кислота или слабое основание, протекают не полностью, только до установления равновесия.  

Реакции нейтрализации являются экзотермическими процессами (Н ОН-Н2О 57 3 кДж), следовательно, гидролиз солей эн-дотермичен.  

Реакции нейтрализации являются экзотермическими процессами (Н ОН - Н2О 57 3 кДж), следовательно, гидролиз солей эндотермичен.  

Реакция нейтрализации - это химическая реакция между веществом, имеющим свойства кислоты, и веществом, имеющим свойства основания, которая приводит к потере характерных свойств обоих соединений. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидратированными ионами водорода и ионами гидро-ксила, содержащимися соответственно в сильных кислотах и основаниях: Н ОН-Н2О.  

Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием.  

Реакция нейтрализации сопровождается выделением теплоты; поэтому термометр Бекмана предварительно устанавливают таким образом, чтобы в начале опыта ртуть в капилляре термометра была в нижней части шкалы. После того как будет собран калориметр, определяют его постоянную (см. предыдущую работу), вставив в крышку калориметра пустую ампулу.  

Реакции нейтрализации протекают с выделением тепла. Однако количество тепла, высвобождаемого при смешении разбавленных кислот и щелочей, трудно оценить на ощупь. Концентрированные же кислоты и основания ни в коем случае не следует смешивать друг с другом. Такая смесь становится настолько горячей, что начинает кипеть и сильно расплескиваться.  

Реакции нейтрализации играют решающую роль при формовании, так как они предопределяют кинетику осаждения и структуру образующейся нити. Кроме того, в результате реакции нейтрализации ряд продуктов переходит в неустойчивую форму и разлагается.  

Реакция нейтрализации щелочью нафтеновых кислот и фенолов имеет обратимый характер. Нафтенаты и феноляты в присутствии воды гидролизуются, образуя исходные продукты. Степень гидролиза зависит от условий процесса. Она увеличивается с повышением температуры и понижается с ростом концентрации раствора щелочи. Щелочную очистку целесообразно проводить при невысоких температурах, используя концентрированные растворы.  

Реакции нейтрализации, протекающие в водных растворах, аналогичны реакциям, происходящим в неводных средах.  

Реакция нейтрализации представляет собой ионообменную реакцию и проходит моментально. В отличие от нее реакция этерификации не является ионообменной и протекает медленнее. И реакция образования этилатов, и реакция этерификации обратимы, а следовательно, ограничены состоянием равновесия.  

Видов реакции нейтрализации. Сама реакция подразумевает под собой гашение очагов (микробов, кислот и токсинов).

Реакция нейтрализации в медицине

В реакция нейтрализации используется в микробиологии. Основано это на том, что некоторые соединения способны связать возбудители различных заболеваний, или их метаболизмы. В итоге микроорганизмы лишаются возможности использовать свои биологические свойства. Сюда же можно отнести реакции торможения вирусов.

Нейтрализация токсинов происходит по подобному принципу. В качестве основного компонента используют различные антитоксины, которые блокируют действие токсинов, не давая проявить им свои свойства.

Реакция нейтрализации в неорганической химии

Реакции нейтрализации - одна из основ неорганической . Нейтрализация относится к типу реакции обмена. На выходе реакции получается соль и вода. Для реакции используют кислоты и основания. Реакции нейтрализации обратимые и необратимые.

Необратимые реакции

Обратимость реакции зависит от степени диссоциации составляющих. Если используются два сильных соединения, то реакция нейтрализации не сможет вернуться до исходных веществ. Это можно увидеть, например, при реакции гидроксида калия с азотной кислотой:
КОН + HNO3 – KNO3 + Н2O;

Реакция нейтрализации в конкретном случае переходит в реакцию гидролиза соли.

В ионном виде реакция выглядит так:
Н(+) + OН(-) > Н2O;

Отсюда можно сделать вывод, что при реакции сильной кислоты с сильным основанием обратимости быть не может.

Обратимые реакции

Если реакция происходит между слабым основанием и сильной кислотой, либо слабой кислотой и сильным основанием, либо между слабой кислотой и слабым основанием, то процесс этот обратим.

Обратимость происходит в результате смещения вправо в системе равновесия. Обратимость реакции можно увидеть при использовании в качестве исходных веществ, например, или синильной кислоты, а также аммиака.

Слабая кислота и сильное основание:
HCN+KOH=KCN+H2O;

В ионном виде:
HCN+OH(-)=CN(-)+H2O.

Слабое основание и

Реакция нейтрализации считается одной из важнейших для кислот и оснований. Именно это взаимодействие предполагает образование воды в качестве одного из продуктов реакции.

Механизм

Проанализируем уравнение реакции нейтрализации на примере взаимодействия гидроксида натрия с соляной (хлороводородной) кислотой. Катионы водорода, образующиеся в результате диссоциации кислоты, связываются с гидроксид-ионами, которые образуются при распаде щелочи (гидроксида натрия). В итоге между ними протекает реакция нейтрализации

H+ + OH- → H 2 O

Характеристика химического эквивалента

Кислотно-основное титрование взаимосвязано с нейтрализацией. Что такое титрование? Это способ вычисления имеющейся массы основания либо кислоты. Он предполагает измерение количества щелочи либо кислоты с известной концентрацией, которое необходимо брать для полной нейтрализации второго реагента. Любая реакция нейтрализации предполагает применение такого термина как «химический эквивалент».

Для щелочи это то количество основания, которое в случае полной нейтрализации образует один моль гидроксид ионов. Для кислоты химический эквивалент определяется количеством, выделяемым при нейтрализации 1 моль катионов водорода.

Реакция нейтрализации протекает в полном объеме в том случае, если в исходной смеси находится равное количество химических эквивалентов основания и кислоты.

Грамм-эквивалентом считается масса основания (кислоты) в граммах, которые способны образовывать один моль гидроксид-ионов (катионов водорода). Для одноосновной кислоты (азотной, соляной), которые при распаде молекулы на ионы высвобождают по одному катиону водорода, химический эквивалент аналогичен количеству вещества, а 1 грамм-эквивалент соответствует молекулярной массе вещества. Для двухосновной серной кислоты, образующей в процессе электролитической диссоциации два катиона водорода, один моль соответствует двум эквивалентам. Поэтому в кислотно-основном взаимодействии ее грамм-эквивалент равен половине относительной молекулярной массы. Для трехосновной фосфорной кислоты при полной диссоциации, образующей три катиона водорода, один грамм-эквивалент будет равен трети относительной молекулярной массы.

Для оснований принцип определения аналогичен: грамм-эквивалент зависит от валентности металла. Так, для щелочных металлов: натрия, лития, калия - искомая величина совпадает с относительной молекулярной массой. В случае расчета грамм-эквивалента гидроксида кальция, данная величина будет равна половине относительной молекулярной массы гашеной извести.

Пояснение механизма

Попробуем понять, что представляет собой реакция нейтрализации. Примеры такого взаимодействия можно взять разные, остановимся на нейтрализации азотной кислоты гидроксидом бария. Попробуем определить массу кислоты, в которой нуждается реакция нейтрализации. Примеры расчетов приведем ниже. Относительная молекулярная масса азотной кислоты составляет 63, а гидроксида бария 86. Определяем число грамм-эквивалентов основания, содержащегося в 100 граммах. 100 г делим на 86 г/экв и получаем 1 эквивалент Ba(OH) 2 . Если рассматривать данную проблему через химическое уравнение, то можно составить взаимодействие следующим образом:

2HNO 3 + Ba(OH) 2 → Ba(NO 3) 2 + 2H 2 O

По уравнению отчетливо видна вся химия. Реакция нейтрализации здесь протекает полностью в том случае, когда два моль кислоты вступают в реакцию с одним моль основания.

Особенности нормальной концентрации

Ведя речь о нейтрализации, часто используют нормальную концентрацию основания или щелочи. Что представляет собой данная величина? Нормальность раствора демонстрирует то количество эквивалентов искомого вещества, которое существует в одном литре его раствора. С ее помощью проводят количественные вычисления в аналитической химии.

Например, если нужно определить нормальность и молярность 0,5 литра раствора, полученного после растворения 4 граммов гидроксида натрия в воде, сначала необходимо определить относительную молекулярную массу гидроксида натрия. Она составит 40, молярная масса будет 40 г/моль. Далее определяем количественное содержание в 4 граммах вещества, для этого делим массу на молярную, то есть, 4 г:40 г/моль, получаем 0,1 моль. Поскольку молярная концентрация определяется отношением количества моль вещества к общему объему раствора, можно вычислить молярность щелочи. Для этого 0,1 моль делим на 0,5 литра, в итоге получаем 0,2 моль/л, то есть, 0,2 М щелочи. Так как основание является однокислотным, его молярность численно равна нормальности, то есть соответствует 0,2 н.

Заключение

В неорганической и органической химии реакция нейтрализации, протекающая между кислотой и основанием, имеет особое значение. Благодаря полной нейтрализации исходных компонентов происходит реакция ионного обмена, полноту которой можно проверить с помощью индикаторов на кислую и щелочную среду.