Биографии Характеристики Анализ

Ядра процессора, их влияния и функции в пк. Ядро клетки: функции и структура

В которой сосредоточена основная масса генетического материала.

В ядре протекают два важнейших процесса. Первый из них — это синтез самого генетического материала, в ходе которого количество ДНК в ядре удваивается (о ДНК и РНК см. ). Этот процесс необходим для того, чтобы при последующем делении () в двух дочерних оказалось одинаковое количество генетического материала. Второй процесс — — производство всех типов молекул РНК, которые, мигрируя в цитоплазму, обеспечивают синтез , необходимый для жизнедеятельности .

Ядро отличается от окружающей его цитоплазмы по показателю преломления света. Именно поэтому его можно увидеть в живой , но обычно для выявления и изучения ядра пользуются специальными красителями. Русское название «ядро» отражает наиболее характерную для этого органоида шарообразную форму. Такие ядра можно видеть в печени, нервных , но в гладкомышечных и эпителиальных ядра овальные. Есть ядра и более причудливой формы.

Самые непохожие по форме ядра состоят из одних и тех же компонентов, т. е. имеют общий план строения. В ядре различают: ядерную оболочку, хроматин (хромосомный материал), ядрышко и ядерный сок (см. фото). У каждого ядерного компонента своя структура, состав и функции.

Ядерная оболочка включает в себя две мембраны, располагающиеся на некотором расстоянии друг от друга. Пространство между мембранами ядерной оболочки называется перинуклеарным. В ядерной оболочке есть отверстия — поры. Но они не сквозные, а заполнены специальными белковыми структурами, которые называются комплексом ядерной поры. Через поры из ядра в цитоплазму выходят молекулы РНК, а навстречу им в ядро передвигаются . Сами же мембраны ядерной оболочки обеспечивают диффузию низкомолекулярных соединений в обоих направлениях.

Хроматин (от греческого слова chroma — цвет, краска) — это вещество , которые в интерфазном ядре значительно менее компактны, чем во время . При окрашивании они красятся ярче других структур.

В ядрах живых хорошо заметно ядрышко. Оно имеет вид тельца округлой или неправильной формы и отчетливо выделяется на фоне довольно однородного ядра. Ядрышко — это образование, возникающее в ядре на тех , которые участвуют в синтезе РНК рибосом. Район , формирующий ядрышко, называют ядрышковым организатором. В ядрышке протекает не только синтез РНК, но и сборка субчастиц рибосом. Число ядрышек и их размеры могут быть различными. Продукты деятельности хроматина и ядрышка поступают первоначально в ядерный сок (кариоплазму).

Для и ядро совершенно необходимо. Если экспериментальным путем отделить от ядра основную часть цитоплазмы, то этот цитоплазматический комочек (цитопласт) может просуществовать без ядра лишь несколько суток. Ядро же, окруженное самым узким ободком цитоплазмы (кариопластом), полностью сохраняет свою жизнеспособность, постепенно обеспечивая восстановление органоидов и нормального объема цитоплазмы. Тем не менее некоторые специализированные

В наши дни минимально допустимой нормой комплектации более менее серьёзной вычислительной техники считается наличие двухъядерного процессора. Причём, данный параметр актуален даже для мобильных компьютерных устройств, планшетных ПК и солидных смартфонов-коммуникаторов . Поэтому будем разбираться, что же это за ядра такие и почему о них важно знать любому пользователю.

Суть простыми словами

Первый двухъядерный чип, предназначенный именно для массового потребления, появился в мае 2005-го. Изделие называлось Pentium D (формально относилось к серии Pentium 4). До этого подобные структурные решения применялись на серверах и для специфических целей, в персональные компьютеры не вставлялись.

Вообще, сам по себе процессор (микропроцессор, CPU, Central Processing Unit, центральное процессорное устройство, ЦПУ) - это кристалл, на который с помощью нанотехнологий наносятся миллиарды микроскопических транзисторов, резисторов и проводников. Потом напыляются золотые контакты, «камушек» монтируется в корпусе микросхемы, а затем всё это интегрируется в чипсет .

Теперь представьте себе, что внутри микросхемы установили два таких кристалла. На одной подложке, взаимосвязанные и действующие как единое устройство. Это и есть двухъядерный предмет обсуждения.

Конечно, два «камушка» - не предел. В момент написания статьи мощным считается ПК, оборудованный чипом с четырьмя ядрами, не считая вычислительных ресурсов видеокарты. Ну а на серверах стараниями фирмы AMD уже используется аж шестнадцать.

Нюансы терминологии

У каждого из кристаллов обычно имеется своя собственная кэш-память первого уровня. Однако если оная второго уровня у них общая, то это всё равно один микропроцессор, а не два (или больше) самостоятельных.

Полноценным отдельным процессором ядро можно назвать только в том случае, если таковое обладает собственным кэшем обоих уровней. Но это нужно лишь для применения на очень мощных серверах и всяческих суперкомпьютерах (любимых игрушках учёных).

Впрочем, «Менеджер задач» в ОС Windows или «Системный монитор» в GNU/Linux может показывать ядра как CPU. В смысле, CPU 1 (ЦП 1), CPU 2 (ЦП 2) и так далее. Пусть это не вводит вас в заблуждение, ведь обязанность программы - не разбираться в инженерно-архитектурных нюансах, а всего лишь интерактивно отображать загрузку каждого из кристаллов.

Значит, плавно переходим к этой самой загрузке и вообще к вопросам целесообразности явления как такового.

Зачем это нужно

Количество ядер, отличающееся от единицы, задумано в первую очередь для распараллеливания выполняемых задач.

Предположим, вы включили ноутбук и читаете сайты во всемирной паутине . Скрипты, коими современные веб-страницы перегружены просто до неприличия (кроме мобильных версий), будут обрабатываться только одним ядром. На него и обрушится стопроцентная нагрузка, если что-то нехорошее сведёт браузер с ума.

Второй кристалл продолжит работать в нормальном режиме и позволит справиться с ситуацией - как минимум, открыть «Системный монитор» (или эмулятор терминала) и принудительно завершить спятившую программу.

Кстати, именно в «Системном мониторе» вы сможете собственными глазами увидеть, какой именно софт внезапно слетел с катушек и который из «камушков» заставляет кулер отчаянно завывать.

Некоторые программы изначально оптимизированы под многоядерную архитектуру процессоров и сразу же отправляют разные потоки данных в разные кристаллы. Ну а обычные приложения обрабатываются по принципу «один поток - одно ядро».

То бишь, прирост производительности станет ощутимым, если одновременно действует более одного потока. Ну а поскольку почти все ОС являются многозадачными, позитивный эффект от распараллеливания будет проявляться практически постоянно.

Как с этим жить

Касаемо вычислительной техники массового потребления, чипы с одним ядром нынче - это, в основном, ARM-процессоры в простеньких телефонах и миниатюрных медиаплеерах. Выдающейся производительности от таких приборов не требуется. Максимум - браузер Opera Mini запустить, клиент ICQ, несложную игру, прочие непритязательные приложения на Java.

Всё остальное, начиная даже с самых дешёвых планшетов, должно иметь в чипе минимум два кристалла, как сказано в преамбуле. Такие вещи и приобретайте. Исходя хотя бы из тех соображений, что практически весь пользовательский софт стремительно толстеет, потребляет всё больше системных ресурсов, поэтому запас мощности ничуть не помешает.

Предыдущие публикации:

Биология клеток живых организмов изучает прокариотов, не имеющих ядра (nucleus, core). Для каких организмов характерно наличие ядра? Нуклеус - это центральный органоид .

Вконтакте

Важно! Основной функцией клеточного ядра является хранение и передача наследственной информации.

Структура

Что такое ядро? Из каких частей состоит ядро? Нижеперечисленные компоненты входят в состав нуклеуса:

  • Ядерная оболочка;
  • Нуклеоплазма;
  • Кариоматрикс;
  • Хроматин;
  • Нуклеолы.

Ядерная оболочка

Кариолемма состоит из двух прослоек - наружной и внутренней, разделенных перинуклеарной полостью. Внешняя мембрана сообщается с шероховатыми эндоплазматическими канальцами. Ко внутренней оболочке прикрепляются фибриллярные протеины основы ядерного вещества. Между мембранами находится перинуклеарная полость, сформированная взаимным отталкиванием ионизированных органических молекул с аналогичными зарядами.

Кариолемма пронизана системой отверстий - пор, образованных белковыми молекулами. Через них рибосомы- структуры, в которых происходит синтез протеинов, а также оповестительные РНК проникают в цитоплазматическую сеть.

Межмембранные поры являются канальцами, заполненными . Их стенки сформированы специфическими белками - нуклеопоринами. Диаметр отверстия позволяет цитоплазме и содержимому ядра обмениваться мелкими молекулами. Нуклеиновые кислоты, а также высокомолекулярные белки не способны самостоятельно перетекать из одной части клетки в другую. Для этого существуют специальные транспортные протеины, активизация которых протекает с энергетическими затратами.

Высокомолекулярные соединения перемещаются через поры при помощи кариоферинов. Те, что транспортируют вещества из цитоплазмы в ядро, называются импортинами. Передвижение в обратном направлении осуществляют экспортины. В какой части ядра находится молекула РНК? Она путешествует по всей клетке.

Важно! Высокомолекулярные вещества не могут самостоятельно проникать через поры из ядра в и обратно.

Нуклеоплазма

Представлена кариоплазмой - гелеобразной массой, находящейся внутри двухслойной оболочки. В отличие от цитоплазмы, где ph >7, внутри ядра среда кислая. Основными веществами, которые входят в состав нуклеоплазмы являются нуклеотиды, белки, катионы, РНК, H2O.

Кариоматрикс

Какие компоненты входят в основу ядра? Она сформирована фибриллярными белками трехмерной структуры - ламинами. Играет роль скелета, препятствуя деформации органоида при механических воздействиях.

Хроматин

Это главное вещество , представленное совокупностью хромосом, часть из которых находится в активированном состоянии. Остальные упакованы в уплотненные глыбки. Их раскрытие происходит во время деления. В какой части ядра находится молекула, известная нам, как ДНК? состоят из генов, представляющих собой части молекулы ДНК. В них закреплена информация, передающая новым генерациям клеток наследственные признаки. Следовательно, в этой части ядра находится молекула ДНК.

В биологии выделяют следующие типы хроматина:

  • Эухроматин. Представляется нитевидными, деспирализированными, неокрашиваемыми образованиями. Существует в покоящемся ядре в период интерфазы между циклами деления клетки.
  • Гетерохроматин. Не активизированные спирализованные, легко окрашивающиеся участки хромосом.

Нуклеолы

Ядрышко - наиболее уплотненная структура из входящих в состав нуклеуса. Оно обладает, преимущественно округлыми формами, однако, имеются сегментированные, как у лейкоцитов. Ядро клетки некоторых организмов нуклеол не имеют. В других нуклеусах их может быть несколько. Вещество ядрышек представлено гранулами, являющимися субъединицами рибосом, а также фибриллами, представляющими собой молекулы РНК.

Ядрышко: строение и функции

Нуклеолы представлены нижеперечисленными структурными типами:

  • Ретикулярный. Типичный для большинства клеток. Отличается высокой концентрацией уплотненных фибрилл и гранул.
  • Компактный. Характеризуется множественностью фибриллярных скоплений. Встречается в делящихся клетках.
  • Кольцеобразный. Характерен для лимфоцитов и соединительнотканных целл.
  • Остаточный. Преобладает в клетках, где процесс деления не происходит.
  • Обособленный. Все составляющие нуклеолы разделены, пластические действия невозможны.

Функции

Какую функцию выполняет ядро? Нуклеусу характерны следующие обязанности:

  • Передача наследственных признаков;
  • Размножение;
  • Запрограммированная гибель.

Хранение генетической информации

Генетические коды хранятся в хромосомах. Они отличаются формой и размерами. Особи разного вида имеют неодинаковое количество хромосом. Комплекс признаков, характерный для хранилищ наследственной информации данного вида называют кариотипом.

Важно! Кариотип - это комплекс признаков, характерный для хромосомного состава организмов данного вида.

Различают гаплоидную, диплоидную, полиплоидную совокупность хромосом.

Клетки тела человека содержат 23 разновидности хромосом. В яйцеклетке и спермии содержится гаплоидный, то есть, одинарный их набор. При оплодотворении хранилища обоих клеток объединяются, образуя двойной - диплоидный комплект. Клеткам культурных растений присущ триплоидный или тетраплоидный кариотип.

Хранение генетической информации

Передача наследственных признаков

Какие процессы жизнедеятельности происходят в ядре? Генная кодировка передается в процессе считывания информации, результатом которой является образование матричной (информационной) РНК. Экспортины выводят рибонуклеиновую кислоту через нуклеарные поры в цитоплазму. Рибосомы используют генетические коды для синтеза необходимых организму белков.

Важно! Синтез белков происходит в цитоплазматических рибосомах на основании закодированной генетической информации, доставленной информационной РНК.

Размножение

Прокариоты размножаются просто. Бактерии обладают единственной молекулой ДНК. В процессе деления она копирует саму себя, прикрепляясь ко клеточной оболочке. Мембрана врастает между двумя соединениями и образуются два новых организма.

У эукариотов различают амитоз, митоз и мейоз:

  • Амитоз. Деление ядра происходит без дробления клетки. Образуются двухъядерные целлы. При следующем делении возможно возникновение полинуклеарных образований. Для каких организмов характерно такое размножение? Ему подвержены стареющие, нежизнеспособные, а также опухолевые клетки. В некоторых ситуациях амитотическое деление с образованием нормальных клеток происходит в роговице, печени, хрящевых текстурах, а также тканях некоторых растений.
  • Митоз. В этом случае деление ядра начинается его разрушением. Образуется веретено дробления, при помощи которого парные хромосомы разводятся по разным концам клетки. Происходит репликация носителей наследственности, после чего формируются два ядра. После этого веретено деления демонтируется, формируется ядерная оболочка, которая разделяет одну клетку на две.
  • Мейоз. Сложный процесс, при котором деление ядра происходит без удвоения разошедшихся хромосом. Характерен для образования половых клеток - гамет, имеющих гаплоидный набор носителей наследственности.

Запрограммированная гибель

Генетическая информация предусматривает продолжительность жизни клетки, и по истечении отведенного времени запускает процесс апоптоза (греч. - листопад). Хроматин конденсируется, ядерная мембрана разрушается. Целла распадается на фрагменты, ограничивающиеся плазматической оболочкой. Апоптотические тельца, минуя стадию воспаления, поглощаются макрофагами, либо соседними клетками.

Для наглядности строение ядра и функции, выполняемые его частями представлены таблицей

Элемент ядра Особенности строения Выполняемые функции
Оболочка Двухслойная мембрана Разграничение содержимого нуклеуса и цитоплазмы
Поры Отверстия в оболочке Экспорт - импорт РНК
Нуклеоплазма Гелеобразная консистенция Среда для биохимических превращений
Кариоматрикс Фибриллярные белки Поддержка структуры, защита от деформирования
Хроматин Эухроматин, гетерохроматин Хранение генетической информации
Нуклеола Фибриллы и гранулы Выработка рибосом

Внешний вид

Форма определяется конфигурацией мембраны. Отмечают нижеперечисленные виды ядер:

  • Круглая. Наиболее часто встречаемая. Например, большую часть лимфоцита занимает нуклеус.
  • Вытянутая. Подковообразное nucleus находят у несозревшего нейтрофила.
  • Сегментированная. В оболочке формируются перегородки. Образуются привязанные друг к другу сегменты, такие как у зрелого нейтрофила.
  • Разветвленная. Обнаруживается в ядрах клеток членистоногих.

Количество ядер

В зависимости от выполняемых функций, целлы могут обладать одним или несколькими ядрами либо не иметь их вообще. Различают следующие виды клеток:

  • Безъядерные. Форменные компоненты крови высших животных - эритроциты, тромбоциты являются переносчиками важных веществ. Чтобы освободить место для гемоглобина или фибриногена костный мозг вырабатывает эти элементы безъядерными. Они не способны делиться и по прохождении запрограммированного времени отмирают.
  • Одноядерные. Таково большинство клеток живых организмов.
  • Бинуклеарные. Печёночные гепатоциты выполняют двойную функцию - детоксикационную и производственную. Синтезируется гем, необходимый для выработки гемоглобина. Для этих целей необходимы два ядра.
  • Многоядерные. Миоциты мышц выполняют колоссальный объем работы, для ее выполнения необходимы дополнительные ядра. По этой же причине полинуклеарностью отличаются клетки покрытосеменных растений.

Хромосомные патологии

Многие болезни являются следствием нарушения связаны с нарушениями хромосомного состава. Наиболее известны нижеперечисленные симптомокомплексы:

  • Дауна. Вызван наличием лишней двадцать первой хромосомой (трисомия).
  • Эдвардса. Присутствует лишняя восемнадцатая хромосома.
  • Патау. Трисомия 13.
  • Тернера. Не достает хромосомы Х.
  • Клайнфелтера. Характеризуется лишними X либо Y-хромосомами.

Недуги, вызванные разладом в функционировании составных частей ядра не всегда связаны с хромосомными аномалиями. Мутации, которые влияют на отдельные белки ядра вызывают следующие заболевания:

  • Ламинопатия. Проявляется преждевременным старением.
  • Аутоиммунные заболевания. Красная волчанка - диффузное поражение соединительнотканных текстур, рассеянный склероз - разрушение миелиновых оболочек нервов.

Важно! Хромосомные аномалии приводят к тяжелым заболеваниям.

Строение ядра

Биология в картинках: Строение и функции ядра

Вывод

Клеточное ядро отличается сложным строением и выполняет жизненно важные функции.Оно является хранилищем и передатчиком наследственной информации, руководит синтезом белков и процессами деления клеток. Хромосомные аномалии являются причинами тяжелых заболеваний.

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Слово “ядро” означает сердцевину чего-либо, имеющую форму шара. Однако значения у данного понятия могут быть разными, в зависимости от области, в которой оно применяется. Так, в математике, биологии, информатике и других сферах ядро может характеризовать разные вещи. В этой статье мы поговорим о том, что такое ядро и как используется данное понятие в разных областях.

Ядро в биологии

В биологии понятие “ядро” также может иметь разные значения. Во-первых, еще из курса ботаники нам должно быть известно, что так называют сердцевину семян или плодов, которая помещена в оболочку. Кроме того, ядром именуют также внутреннюю часть ствола дерева, хотя чаще всего в данном случае используется понятие “ядровая древесина”.

В нейрофизиологии данный термин характеризует скопление серого вещества в конкретном участке центральной нервной системы, которое отвечает за осуществление определенных функций.

Следует сказать и про такое понятие, как клеточное ядро, представляющее собой составляющую клетки, которая содержит генетическую информацию, то есть молекулы ДНК. Она осуществляет важнейшие функции хранения и передачи наследственной информации. Именно в клеточном ядре также происходит функционирование и воспроизведение данного материала.

Ядро в информатике

Другие значения

В ядерной физике существует понятие “атомное ядро”, определяющее центральную часть атома. Именно в данной части сосредоточена основная его масса. Атомное ядро состоит из нейтральных нейтронов и положительно заряженных протонов, связанных мощным взаимодействием. Такие ядра часто называют нуклидами.

Другой термин - ядро Земли, подразумевает центральную часть нашей планеты, которую можно назвать и геосферой. Ядро Земли принято подразделять на внутреннее и внешнее. Внутреннее ядро часто называют твердым, а внешнее - жидким.

Ядром кометы называется ее твердая часть. У него относительно маленький размер. Состоит такое ядро из космической пыли, льда и летучих соединений в виде метана, углерода и других. Некоторые исследования говорят в пользу того, что ядро кометы может состоять из железа, камня либо их смеси.

Также существует понятие “спортивное ядро”, под которым подразумевается спортивный снаряд в форме металлического шара, предназначенный для толкания.

Пушечное ядро же является древним артиллерийским снарядом, представляющим собой шарообразное тело. Пушечные ядра выступают одними из первых снарядов, которые были использованы в огнестрельном оружии. Их применяли для разрушения деревянных сооружений и поражения живой вражеской силы.