Биографии Характеристики Анализ

Закон энтропии. Энтропия – мера необратимости или хаоса

Закон возрастания энтропии

Замкнутые термодинамические системы, предоставленные самим себе, релаксируют к равновесному состоянию. При равновесии системы выполняется условие (¶r/¶t ) = 0. В этом случае функция распределения является интегралом движения, также как и гамильтониан. Функция распределения замкнутой системы может быть записана в виде

где W –число микросостояний, отвечающих данному макросостоянию. Энтропия в этом случае выражается формулой

Состояние статистического равновесия достигается замкнутой системой самопроизвольно, как результат движения и взаимодействия её составляющих частиц. Процесс перехода системы в равновесное состояние можно рассмотреть как последовательность ряда неравновесных макроскопических состояний с одинаковой энергией. При этом система последовательно переходит из менее вероятных в более вероятные состояния, т.е. последовательно возрастают статистический вес и энтропия системы. В равновесии энтропия системы достигает своего максимального значения. При этом внутреннее движение не прекращается, хотя макроскопическое состояние системы остаётся неизменным.

Итак, энтропия замкнутой системы не убывает – она возрастает или в предельном случае полного равновесия остается постоянной : .

Это утверждение называется законом возрастания энтропии . Смысл энтропии состоит в том, что она показывает степень неравновесности системы: отклонение от равновесия тем больше, чем меньше энтропия. Закон возрастания энтропии замкнутой системы задает направление времени или по определению Эддингтона «стрелу времени» в макропроцессах.

Закон возрастания энтропии соответствует второму закону термодинамики

Здесь Q – количество теплоты, полученной системой (для замкнутой системы Q = 0). С учетом первого закона термодинамики Q = DU + A получаем

где A – работа, совершаемая системой. Если процесс равновесный, т.е. система проходит через равновесные состояния в этом соотношении берется знак равенства.

Закон возрастания энтропии как одна из формулировок второго начала термодинамики

Рассмотрим замкнутую систему, которая переходит из состояния 1 в состояние 2 (рис.1) по пути $L_1$. Из состояния 2 в состояние 1 вернем систему с помощью обратимого процесса по пути $L_2$, но при этом мы понимаем, что система уже не является изолированной.

Так, мы получили цикл, к которому применимо неравенство Клаузиуса:

При переходе по пути $L_1$ система была изолированной, следовательно:

Переход 2-1 обратимый, следовательно, можно считать, что в этом процессе:

Иначе неравенство (4) запишем как:

Неравенство (5) означает, что при переходе замкнутой системы из состояния 1 в состояние 2 энтропия либо увеличивается, либо не изменяется. Закон возрастания энтропии (5) также относят к одной из формулировок второго начала термодинамики.

Возрастание и убывание энтропии

В процессах, которые протекают в изолированных системах, энтропия не убывает. В этом утверждении существенно то, что система должна быть изолирована. В неизолированных системах энтропия может и возрастать, и убывать и не изменяться. Энтропия не изменяется только в обратимых процессах. В необратимых процессах энтропия возрастает. Так как на практике процессы в системе, которая предоставлена самой себе, обычно необратимы, это значит, что энтропия изолированной системы обычно растет. Рост энтропии в изолированной системе означает, что система стремится к равновесному состоянию, которое является наиболее вероятным. Закон убывания энтропии в изолированной системе не запрещает полностью рост энтропии. Возможны отклонения, когда на каком-то отрезке времени система движется в направлении наименее вероятных состояний, то есть энтропия убывает или не меняется. И чем меньше система, тем роль таких флуктуаций больше. Однако для макросистем закон не убывания энтропии абсолютен.

Пример 1

Задание: Пусть имеется теплоизолированный сосуд, разделенный на две части перегородкой. Объемы частей $V_1$ и $V_2.$ В первой части находится ${\nu }_1$ молей идеального газа, во второй ${\nu }_2$ молей идеального газа. Температура в обеих частях сосуда одинакова и равна T. Перегородку убирают. Вычислите, как изменится энтропия газа ($\triangle S$) после установления равновесия.

Так как система считается теплоизолированной, газы идеальные, то внутренняя энергия таких газов зависит только от температуры и при смешении газов не изменяется. Заменим имеющийся в условиях задачи неравновесный процесс, равновесным в котором, каждая часть газа, расширяясь, занимает объем $V_1+V_2$. В таком случае для сконструированного нами обратимого процесса можно записать:

\[\triangle S=\int\limits^{(2)}_{(1)}{dS}=\int\limits^{V_1+V_2}_{V_1}{\frac{pdV}{T}}+\int\limits^{V_1+V_2}_{V_2}{\frac{pdV}{T}\left(1.1\right),}\]

Используем уравнение Менделеева -- Клайперона для идеального газа, выразим $\frac{p}{T}$, имеем:

\[\ pV=\nu RT\to \frac{\ p}{T}=\nu \frac{R}{V}\ \left(1.2\right),\]

Подставим (1.2) в (1.1), получим:

\[\triangle S=\int\limits^{V_1+V_2}_{V_1}{\frac{pdV}{T}}+\int\limits^{V_1+V_2}_{V_2}{\frac{pdV}{T}={\nu }_1R\int\limits^{V_1+V_2}_{V_1}{\frac{dV}{V}}+{\nu }_2R\int\limits^{V_1+V_2}_{V_2}{\frac{dV}{V}}={\nu }_1Rln\frac{V_1+V_2}{V_1}+{\nu }_2Rln\frac{V_1+V_2}{V_2}\left(1.3\right).}\]

Пример 2

Задание: Процесс расширения одноатомного идеального газа в количестве $\nu $ молей происходит так, что давление растет прямо пропорционально объему. Найти приращение энтропии газа, если объем в процессе увеличивается в а -- раз.

Процесс происходит с идеальным газом, следовательно, можем считать его обратимым и записать:

\[\triangle S=\int\limits^{\left(2\right)}_{\left(1\right)}{\frac{\delta Q}{T}\ \left(2.1\right).}\]

Из первого начала термодинамики мы знаем, что:

\[\delta Q=dU+pdV=\frac{i}{2}\nu RdT+pdV\left(2.2\right).\]

Подставим (2.2) в (2.1), получим:

\[\triangle S=\frac{i}{2}\nu R\int\limits^{T_2}_{T_1}{\frac{dT}{T}+\int\limits^{\left(2\right)}_{\left(1\right)}{\frac{pdV}{T}\left(2.3\right).}}\]

Запишем уравнение Менделеева -- Клайперона для того, чтобы выразить $\frac{p}{T},$ имеем:

Подставим (2.4) в (2.3), получим:

\[\triangle S=\frac{i}{2}\nu Rln\frac{T_2}{T_1}+\nu R\int\limits^{V_2}_{V_1}{\frac{dV}{V}=\frac{i}{2}нRln\frac{T_2}{T_1}+нRln\frac{V_2}{V_1}\left(2.5\right).}\]

Отношение объемов нам известно из условий задачи: $\frac{V_2}{V_1}=a.$ Выразим отношение температур. Используем для этого уравнение Менделеева - Клайперона и заданное в условиях задачи уравнение процесса ($p=bV$), где $b=const$:

\ \

Разделим (2.7) на (2.6) и используем уравнение процесса:

\[\frac{T_2}{T_1}=\frac{p_2V_2}{p_1V_1}\to \frac{T_2}{T_1}=\frac{b{V_2}^2}{b{V_1}^2}={\left(\frac{V_2}{V_1}\right)}^2\left(2.8\right).\]

Подставим (2.8) в (2.5), получим искомое изменение энтропии:

\[\triangle S=\frac{i}{2}\nu Rln{\left(\frac{V_2}{V_1}\right)}^2+\nu Rln\frac{V_2}{V_1}=i\nu Rln\left(a\right)+\nu Rln\left(a\right)=\nu Rln\left(a\right)\left(i+1\right)\left(2.7\right).\]

Ответ: Изменение энтропии в заданном процессе $\triangle S=\nu Rln\left(a\right)\left(i+1\right)$.

Пусть при необратимом процессе 1- a -2 система является адиабатически изолированной. Так как адиабатический процесс осуществляется без теплообмена с окружающей средой , то приведенная теплота процесса1- a -2 равна нулю
. С учетом этого условия неравенства
и
можно записать:

и
. (14.12)

Полученные неравенства выражают закон возрастания энтропии :в любом процессе , который осуществляется в адиабатически изолированной системе , энтропия либо возрастает , либо остаётся постоянной.

Для равновесных обратимых адиабатических процессов
и
, т.е. энтропия остается постоянной (S = const).

Если все процессы в системе, в конце концов, завершились, и система перешла из одного равновесного состояния в другое равновесное состояние, её энтропия имеет максимальное значение.

Итак, в произвольном (обратимом или необратимом) процессе любой термодинамической системы приращение энтропии больше или равно приведенной теплоте процесса:

;
. (14.13)

Знак равенства имеет место для равновесных (обратимых) процессов. В произвольном (обратимом или необратимом) процессе с адиабатически изолированной системой приращение энтропии больше или равно нулю (энтропия возрастает):
;
, знак равенства имеет место для обратимых процессов.

Тема 15 энтропия и вероятность. Термодинамическая вероятность

15.1. Энтропия

Итак, мы ввели понятие энтропии. Энтропия – функция состояния системы. Если тело (или система тел) при переходе из одного состояния в другое на бесконечно малом участке этого перехода получает бесконечно малое количество теплоты
, то отношениеявляется дифференциалом некоторой функцииS . Эта функция– энтропия:

. (15.1)

При обратимом процессе изменение энтропии:

, (15.2)

при этом изменение энтропии S не зависит от пути перехода из состояния 1 в состояние 2 .

Теплоизолированная (или замкнутая ) система – это система, не получающая и не отдающая тепла. Теоретически доказано, что в замкнутой системе все необратимые процессы протекают в сторону возрастания энтропии, т.е. S  0. В частном случае, когда все процессы системы обратимы, то изменение энтропии равно нулю, т.е. S = 0. Кратко выше сказанное можно записать так:

S  0, (15.3)

(знак равенства относится к обратимым процессам, знак неравенства – к необратимым). Выражение S  0 тоже является одной из формулировок второго начала термодинамики, энтропия – критерий обратимости и необратимости процессов. По тому, как изменяется S , можно узнать: обратим процесс или нет. Энтропия, так же как и внутренняя энергия, является важнейшей функцией, определяющей термодинамический процесс, поскольку именно энтропия определяет направление протекания процесса.

Согласно второму началу термодинамики все процессы в замкнутой системе происходят в направлении возрастания энтропии. Если система в конечном состоянии находится в равновесном состоянии, то энтропия достигает максимума, и все процессы в системе прекращаются. Этот вывод противоречит основным положениям молекулярно-кинетической теории. Рассмотрим, например (рис. 15.1), закрытый сосуд, разделённый перегородкойАВ на две одинаковые части 1 и 2. Пусть сначала в части 1 сосуда находится N молекул идеального газа, а в части 2 – вакуум. В момент t = 0 мгновенно уберем перегородку АВ . Газ начинает расширяться. Молекулы из части 1 переходят в часть 2. Спустя некоторое время возникнет обратный поток частиц из части 2 в часть 1, после чего начнется, и будет продолжаться обмен молекулами между частями 1 и 2.

Когда число молекул N 1 и N 2 в обеих частях сосуда, а также потоки туда и обратно станут одинаковыми, наступит состояние равновесия. Это состояние будет динамическое, а не статическое равновесие. В состоянии динамического равновесия
почти никогда не выполняется, потому что молекулы движутся хаотично, аN 1 и N 2 мгновенные значения числа молекул в обеих частях сосуда. Однако среднее число частиц за достаточно большой промежуток времени в обоих частях сосуда будет одинаковым и тогда можно записать:
. Самопроизвольные отклонения числа частицN 1 и N 2 от средних значений обусловленные тепловым движением молекул, называются флуктуациями.

В рассматриваемом примере возможна такая ситуация, когда все молекулы газа, первоначально распределенные равномерно по всему объёму сосуда, самопроизвольно соберутся в одной из частей сосуда – в части 1 или в части 2. С точки зрения молекулярно-кинетической теории такая ситуация возможна, но при большом числе частиц маловероятна.

Энтропия – это функция состояния термодинамической системы, приращение которой равно приведенной теплоте равновесного перехода системы из начального состояния в конечное. Такое определение основывается на началах термодинамики. Рассмотрим молекулярно-кинетический смысл энтропии.

Следствием второго начала термодинамики является закон возрастания энтропии в адиабатически изолированной системе. Все процессы в адиабатически изолированной системе происходят в направлении возрастания энтропии: , где
и
– энтропия в конечном и начальном состояниях. Если в термодинамической адиабатически изолированной системе все макропроцессы, которые могли сопровождаться только увеличением энтропии, завершены и система пришла в состояние равновесия, то энтропия такой системы имеет максимальное значение. Таким образом,в состоянии равновесия энтропия адиабатически изолированной системы максимальна.

Обратный переход такой системы из состояния с большей энтропией в состояние с меньшей энтропией невозможен , т.к. его осуществление противоречит второму началу термодинамики.

В молекулярно-кинетической теории для описания свойств термодинамических систем и процессов применяется понятие вероятности состояния. Тогда, используя понятие вероятности состояния, следствия второго начала термодинамики можно сформулировать так: всякий процесс в адиабатически изолированной системе представляет собой переход из состояния с меньшей вероятностью в состояние с большей вероятностью. Вероятность равновесного состояния максимальна. А переход системы из состояния с большей вероятностью в состояние с меньшей вероятностью невозможен.

Отсюда следует, что понятие энтропии и вероятности состояния должны быть тесно связаны между собой. Найдем эту взаимосвязь.

Возьмем какой-либо обратимый цикл (рис.8.13) и выделим в нем

Для рассматриваемого цикла

Если изменить направление перехода, то в силу обратимости процесса, каждое слагаемое суммы должно изменить знак. Так, если при направлении процесса от состояния (1) к состоянию (2) система получает от какого-то тела с температурой Т количество тепла Q, то при направлении процесса (2-1) на том же участке система должна отдавать этому же телу с температурой Т такое же количество Q, т.е. получить -Q.

Таким образом,

Исходя из неравенств (8.15) и (8.16), можно получить следующее соотношение:

Отсюда следует, что

т.е. сумма приведенных количеств тепла, полученных системой при обратимом переходе от одного состояния (начальное) в другое (конечное), не зависит от пути, по которому совершается переход и, следовательно, зависит только от начального и конечного состояний. Величины, изменения которых при переходе из одного состояния в другие не зависят от пути перехода, называются функциями состояния. Независимость суммы от пути, по которому совершается обратимый переход из состояния (1) в состояние (2) дает основание утверждать, что при обратимом процессе представляет собой приращение некоторой функции состояния. Эта функция была названа энтропией и обозначается буквой S.

Таким образом,

Согласно этому равенству, приращение энтропии равно элементарному количеству тепла, получаемому обратимо системой извне, отнесенному к температуре, при которой это тепло получается. Поскольку энтропия - функция состояния, сумма приращений энтропии должна быть равна разности значений энтропии в конечном и начальном состояниях:

Более того, суммы должны быть заменены интегралом

Итак, при обратимом процессе сумма приведенных количеств тепла равна приращению энтропии.

Выясним, в каком соотношении находятся сумма приведенных количеств тепла и приращение энтропии при необратимом процессе. Для этого рассмотрим цикл, состоящий из обратимой и необратимой ветвей

Разобьем эту сумму на две части, отнесенные к разным ветвям:

Вторая из этих сумм равна разности энтропий в состояниях 1 и 2 (8.17). Поэтому соотношение (8.18) можно записать в виде

Т.е. приращение энтропии больше или равна сумме приведенных количеств тепла.

Знак равенства соответствует любому обратимому переходу 12. Знак неравенства - любому необратимому переходу из состояния (1) в состояние (2). Температура Т означает температуру того тела, от которого система получает тепло Q.

При обратимом процессе эта температура совпадает с температурой системы. Если система изолирована, т.е. не обменивается теплом, то все Q будут равны нулю, вследствие чего

или, соответственно,

Таким образом, энтропия изолированной системы может только возрастать (если в системе протекает необратимый процесс), либо оставаться постоянной (если в системе протекает обратимый процесс). Убывать энтропия изолированной системы не может.

Если система обменивается теплом с внешней средой, ее энтропия может вести себя любым образом. В частности, если система отдает тепло внешним телам, энтропия системы уменьшается. Если неизолированная система совершает цикл, то ее энтропия возрастая на одних участках цикла и убывая на других, в конце цикла принимает первоначальное значение.

Энтропия - аддитивная величина. Это означает, что энтропия системы равна сумме энтропий отдельных ее частей.