السير الذاتية صفات تحليل

ما هي المصطلحات المتشابهة؟ تخفيض المصطلحات المماثلة (Wolfson G.I.)

المضاعف هو رقم يقبل القسمة عليه رقم معيندون أن يترك أثرا. المضاعف المشترك الأصغر (LCM) لمجموعة أرقام هو أصغر رقم يقبل القسمة على كل رقم في المجموعة دون ترك باقي. للعثور على المضاعف المشترك الأصغر، عليك إيجاد العوامل الأولية لأرقام معينة. يمكن أيضًا حساب LCM باستخدام عدد من الطرق الأخرى التي تنطبق على مجموعات مكونة من رقمين أو أكثر.

خطوات

سلسلة من المضاعفات

    انظر إلى هذه الأرقام.من الأفضل استخدام الطريقة الموضحة هنا عند إعطاء رقمين، كل منهما أقل من 10. إذا تم إعطاؤه أعداد كبيرة، استخدم طريقة أخرى.

    • على سبيل المثال، ابحث عن المضاعف المشترك الأصغر للرقمين 5 و8. هذه أرقام صغيرة، لذا يمكنك استخدام هذه الطريقة.
  1. المضاعف هو رقم يقبل القسمة على رقم معين دون باقي. يمكن العثور على المضاعفات في جدول الضرب.

    • على سبيل المثال، الأعداد التي تكون من مضاعفات العدد 5 هي: 5، 10، 15، 20، 25، 30، 35، 40.
  2. اكتب سلسلة من الأرقام التي هي مضاعفات الرقم الأول.قم بذلك ضمن مضاعفات الرقم الأول لمقارنة مجموعتين من الأرقام.

    • على سبيل المثال، الأرقام التي تكون من مضاعفات الرقم 8 هي: 8، 16، 24، 32، 40، 48، 56، و64.
  3. أوجد أصغر عدد موجود في مجموعتي المضاعفات.قد تضطر إلى كتابة سلسلة طويلة من المضاعفات للعثور عليها الرقم الإجمالي. أصغر رقم موجود في مجموعتي المضاعفات هو المضاعف المشترك الأصغر.

    • على سبيل المثال، أصغر عدد، الموجود في سلسلة مضاعفات العددين 5 و 8، هو الرقم 40. لذلك، 40 هو المضاعف المشترك الأصغر للعددين 5 و 8.

    التخصيم الأولي

    1. انظر إلى هذه الأرقام.من الأفضل استخدام الطريقة الموضحة هنا عند إعطاء رقمين، كل منهما أكبر من 10. إذا تم إعطاؤه أعداد أصغر، استخدم طريقة أخرى.

      • على سبيل المثال، ابحث عن المضاعف المشترك الأصغر للرقمين 20 و84. كل رقم أكبر من 10، لذا يمكنك استخدام هذه الطريقة.
    2. قم بتحليل العدد الأول إلى عوامل أولية.وهذا هو، تحتاج إلى العثور على مثل هذه الأعداد الأولية التي، عند ضربها، ستؤدي إلى رقم معين. بمجرد العثور على العوامل الأولية، اكتبها في صورة مساواة.

      • على سبيل المثال، 2 × 10 = 20 (\displaystyle (\mathbf (2)) \مرات 10=20)و 2 × 5 = 10 (\displaystyle (\mathbf (2)) \times (\mathbf (5) )=10). وبالتالي، فإن العوامل الأولية للعدد 20 هي الأرقام 2 و 2 و 5. اكتبها كتعبير: .
    3. قم بتحليل العدد الثاني إلى عوامل أولية.قم بذلك بنفس الطريقة التي قمت بها بتحليل الرقم الأول، أي العثور على الأعداد الأولية التي، عند ضربها، ستحصل على الرقم المحدد.

      • على سبيل المثال، 2 × 42 = 84 (\displaystyle (\mathbf (2)) \مرات 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7)) \مرات 6=42)و 3 × 2 = 6 (\displaystyle (\mathbf (3)) \times (\mathbf (2) )=6). وبالتالي، فإن العوامل الأولية للرقم 84 هي الأرقام 2 و 7 و 3 و 2. اكتبها كتعبير: .
    4. اكتب العوامل المشتركة بين الرقمين.اكتب عوامل مثل عملية الضرب. أثناء كتابة كل عامل، قم بشطبه في كلا التعبيرين (التعبيرات التي تصف تحليل الأعداد إلى عوامل أولية).

      • على سبيل المثال، كلا الرقمين لهما عامل مشترك وهو 2، لذا اكتب 2 × (\displaystyle 2\times )وشطب الرقم 2 في كلا التعبيرين.
      • القاسم المشترك بين الرقمين هو عامل آخر وهو 2، لذا اكتب 2 × 2 (\displaystyle 2\times 2)وشطب الرقم 2 الثاني في كلا التعبيرين.
    5. أضف العوامل المتبقية إلى عملية الضرب.هذه هي العوامل التي لم يتم شطبها في كلا التعبيرين، أي العوامل غير المشتركة بين كلا الرقمين.

      • على سبيل المثال، في التعبير 20 = 2 × 2 × 5 (\displaystyle 20=2\مرات 2\مرات 5)تم شطب الاثنين (2) لأنهما عاملان مشتركان. لم يتم شطب العامل 5، لذا اكتب عملية الضرب هكذا: 2 × 2 × 5 (\displaystyle 2\times 2\times 5)
      • في التعبير 84 = 2 × 7 × 3 × 2 (\displaystyle 84=2\مرات 7\مرات 3\مرات 2)تم شطب كلا الاثنين (2) أيضًا. العاملان 7 و 3 لم يتم شطبهما، لذا اكتب عملية الضرب هكذا: 2 × 2 × 5 × 7 × 3 (\displaystyle 2\times 2\times 5\times 7\times 3).
    6. احسب المضاعف المشترك الأصغر.للقيام بذلك، قم بضرب الأرقام في عملية الضرب المكتوبة.

      • على سبيل المثال، 2 × 2 × 5 × 7 × 3 = 420 (\displaystyle 2\times 2\times 5\times 7\times 3=420). إذن المضاعف المشترك الأصغر للعددين 20 و84 هو 420.

    إيجاد العوامل المشتركة

    1. ارسم شبكة مثل لعبة تيك تاك تو.تتكون هذه الشبكة من خطين متوازيين يتقاطعان (بزوايا قائمة) مع خطين متوازيين آخرين. سيعطيك هذا ثلاثة صفوف وثلاثة أعمدة (الشبكة تشبه إلى حد كبير الرمز #). اكتب الرقم الأول في السطر الأول والعمود الثاني. اكتب الرقم الثاني في الصف الأول والعمود الثالث.

      • على سبيل المثال، ابحث عن المضاعف المشترك الأصغر بين الرقمين 18 و30. اكتب الرقم 18 في الصف الأول والعمود الثاني، واكتب الرقم 30 في الصف الأول والعمود الثالث.
    2. أوجد القاسم المشترك لكلا الرقمين.اكتبه في الصف الأول والعمود الأول. ومن الأفضل البحث عن العوامل الأولية، ولكن هذا ليس شرطا.

      • على سبيل المثال، 18 و30 أرقام زوجية، لذا فهما القاسم المشتركسيكون الرقم 2. لذا اكتب 2 في الصف الأول والعمود الأول.
    3. اقسم كل رقم على المقسوم عليه الأول.اكتب كل حاصل تحت الرقم المناسب. الحاصل هو نتيجة قسمة رقمين.

      • على سبيل المثال، 18 ÷ 2 = 9 (\displaystyle 18\div 2=9)، فاكتب 9 تحت 18.
      • 30 ÷ 2 = 15 (\displaystyle 30\div 2=15)، لذا اكتب 15 تحت 30.
    4. أوجد القاسم المشترك لكلا الناتجين.إذا لم يكن هناك مثل هذا المقسوم عليه، تجاوز الخطوتين التاليتين. بخلاف ذلك، اكتب المقسوم عليه في الصف الثاني والعمود الأول.

      • على سبيل المثال، 9 و15 يقبلان القسمة على 3، لذا اكتب 3 في الصف الثاني والعمود الأول.
    5. اقسم كل حاصل على المقسوم عليه الثاني.اكتب نتيجة كل قسمة تحت الحاصل المقابل لها.

      • على سبيل المثال، 9 ÷ 3 = 3 (\displaystyle 9\div 3=3)، فاكتب 3 تحت 9.
      • 15 ÷ 3 = 5 (\displaystyle 15\div 3=5)، فاكتب 5 تحت 15.
    6. إذا لزم الأمر، قم بإضافة خلايا إضافية إلى الشبكة.كرر الخطوات الموضحة حتى يكون للقسمة قاسم مشترك.

    7. ضع دائرة حول الأرقام الموجودة في العمود الأول والصف الأخير من الشبكة.ثم اكتب الأرقام المحددة كعملية ضرب.

      • على سبيل المثال، الرقمان 2 و 3 موجودان في العمود الأول، والرقمان 3 و 5 موجودان في الصف الأخير، لذا اكتب عملية الضرب هكذا: 2 × 3 × 3 × 5 (\displaystyle 2\times 3\times 3\times 5).
    8. العثور على نتيجة ضرب الأرقام.سيؤدي هذا إلى حساب المضاعف المشترك الأصغر لعددين محددين.

      • على سبيل المثال، 2 × 3 × 3 × 5 = 90 (\displaystyle 2\times 3\times 3\times 5=90). إذن المضاعف المشترك الأصغر للعددين 18 و30 هو 90.

    خوارزمية إقليدس

    1. تذكر المصطلحات المرتبطة بعملية القسمة.المقسوم هو الرقم الذي يتم تقسيمه. المقسوم عليه هو الرقم الذي يتم القسمة عليه. الحاصل هو نتيجة قسمة رقمين. الباقي هو الرقم المتبقي عند قسمة رقمين.

      • على سبيل المثال، في التعبير 15 ÷ 6 = 2 (\displaystyle 15\div 6=2) ost. 3:
        15 هو الأرباح
        6 هو المقسوم عليه
        2 هو حاصل
        3 هو الباقي.

دعونا نواصل الحديث عن المضاعف المشترك الأصغر، والذي بدأناه في قسم "المضاعف المشترك الأصغر - التعريف والأمثلة". في هذا الموضوع، سنتطرق إلى طرق إيجاد المضاعف المشترك الأصغر لثلاثة أرقام أو أكثر، كما سنتناول مسألة كيفية إيجاد المضاعف المشترك الأصغر لعدد سالب.

Yandex.RTB RA-A-339285-1

حساب المضاعف المشترك الأصغر (LCM) عبر GCD

لقد أنشأنا بالفعل العلاقة بين المضاعف المشترك الأصغر والمقسوم المشترك الأكبر. الآن دعونا نتعلم كيفية تحديد LCM من خلال GCD. أولاً، دعونا نتعرف على كيفية القيام بذلك أرقام إيجابية.

التعريف 1

يمكنك إيجاد المضاعف المشترك الأصغر من خلال القاسم المشترك الأكبر باستخدام الصيغة LCM (a, b) = a · b: GCD (a, b).

مثال 1

أنت بحاجة إلى إيجاد المضاعف المشترك الأصغر للرقمين 126 و70.

حل

لنأخذ أ = 126، ب = 70. دعونا نستبدل القيم في صيغة حساب المضاعف المشترك الأصغر من خلال القاسم المشترك الأكبر LCM (a, b) = a · b: GCD (a, b) .

يجد GCD للأرقام 70 و 126. لهذا نحتاج إلى الخوارزمية الإقليدية: 126 = 70 1 + 56، 70 = 56 1 + 14، 56 = 14 4، وبالتالي GCD (126 , 70) = 14 .

دعونا نحسب LCM: LCD (126، 70) = 126 70: GCD (126، 70) = 126 70: 14 = 630.

إجابة:م م(126، 70) = 630.

مثال 2

أوجد الرقم 68 و 34.

حل

جي سي دي في في هذه الحالةوهذا ليس بالأمر الصعب، لأن 68 يقبل القسمة على 34. دعونا نحسب المضاعف المشترك الأصغر باستخدام الصيغة: LCM (68, 34) = 68 34: GCD (68, 34) = 68 34: 34 = 68.

إجابة:م م م (68، 34) = 68.

في هذا المثال، استخدمنا قاعدة إيجاد المضاعف المشترك الأصغر للأعداد الصحيحة الموجبة a وb: إذا كان الرقم الأول قابلاً للقسمة على الثاني، فإن المضاعف المشترك الأصغر لهذه الأرقام سيكون مساويًا للرقم الأول.

إيجاد المضاعف المشترك الأصغر عن طريق تحليل الأعداد إلى عوامل أولية

الآن دعونا نلقي نظرة على طريقة إيجاد المضاعف المشترك الأصغر، والتي تعتمد على تحليل الأعداد إلى عوامل أولية.

التعريف 2

للعثور على المضاعف المشترك الأصغر، نحتاج إلى تنفيذ عدد من الخطوات البسيطة:

  • نحن نؤلف نتاج الكل العوامل الأوليةالأرقام التي نحتاج إلى إيجاد المضاعف المشترك الأصغر لها؛
  • نحن نستبعد جميع العوامل الأولية من منتجاتها الناتجة؛
  • سيكون المنتج الذي تم الحصول عليه بعد حذف العوامل الأولية المشتركة مساوياً لـ LCM للأرقام المحددة.

تعتمد هذه الطريقة لإيجاد المضاعف المشترك الأصغر على المساواة LCM (a, b) = a · b: GCD (a, b). إذا نظرت إلى الصيغة، فسوف يصبح واضحا: منتج الأرقام أ و ب يساوي منتج جميع العوامل التي تشارك في تحلل هذين الرقمين. في هذه الحالة، GCD من رقمين يساوي المنتججميع العوامل الأولية الموجودة في وقت واحد في عوامل عددين محددين.

مثال 3

لدينا رقمان 75 و210. يمكننا تحليلها على النحو التالي: 75 = 3 5 5و 210 = 2 3 5 7. إذا قمت بتكوين منتج جميع عوامل العددين الأصليين، فستحصل على: 2 3 3 5 5 5 7.

إذا استبعدنا العاملين 3 و5 المشتركين بين الرقمين، فسنحصل على حاصل الضرب النوع التالي: 2 3 5 5 7 = 1050. سيكون هذا المنتج هو المضاعف المشترك الأصغر الخاص بنا للرقمين 75 و210.

مثال 4

أوجد المضاعف المشترك الأصغر للأرقام 441 و 700 ، تحليل كلا الرقمين إلى عوامل أولية.

حل

لنجد جميع العوامل الأولية للأعداد الواردة في الشرط:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

نحصل على سلسلتين من الأرقام: 441 = 3 3 7 7 و 700 = 2 2 5 5 7.

سيكون منتج جميع العوامل التي شاركت في تحليل هذه الأرقام على الشكل التالي: 2 2 3 3 5 5 7 7 7. دعونا نجد العوامل المشتركة. هذا هو الرقم 7. فلنستبعده من إجمالي المنتج: 2 2 3 3 5 5 7 7. وتبين أن المؤسسة الوطنية للنفط (441، 700) = 2 2 3 3 5 5 7 7 = 44 100.

إجابة: LOC(441, 700) = 44,100.

دعونا نعطي صيغة أخرى لطريقة إيجاد المضاعف المشترك الأصغر عن طريق تحليل الأرقام إلى عوامل أولية.

التعريف 3

في السابق، استبعدنا من العدد الإجمالي العوامل المشتركة بين الرقمين. الآن سنفعل ذلك بشكل مختلف:

  • دعونا نحول كلا الرقمين إلى عوامل أولية:
  • أضف إلى حاصل ضرب العوامل الأولية للرقم الأول العوامل المفقودة للرقم الثاني؛
  • نحصل على المنتج، والذي سيكون LCM المطلوب من رقمين.

مثال 5

لنعد إلى الرقمين 75 و210، اللذين بحثنا عنهما بالفعل في أحد الأمثلة السابقة. دعونا نقسمها إلى عوامل بسيطة: 75 = 3 5 5و 210 = 2 3 5 7. إلى منتج العوامل 3 و 5 و 5 الأرقام 75 تضيف العوامل المفقودة 2 و 7 الأرقام 210. نحن نحصل: 2 · 3 · 5 · 5 · 7 .هذا هو المضاعف المشترك الأصغر للرقمين 75 و210.

مثال 6

من الضروري حساب LCM للأرقام 84 و 648.

حل

دعونا نحلل الأرقام من الشرط إلى عوامل بسيطة: 84 = 2 2 3 7و 648 = 2 2 2 3 3 3 3. دعونا نضيف إلى المنتج العوامل 2، 2، 3 و 7 الأرقام 84 العوامل المفقودة 2 و 3 و 3 و
3 الأرقام 648. نحصل على المنتج 2 2 2 3 3 3 3 7 = 4536.هذا هو المضاعف المشترك الأصغر للعددين 84 و648.

إجابة:م م م(84, 648) = 4,536.

إيجاد المضاعف المشترك الأصغر لثلاثة أرقام أو أكثر

بغض النظر عن عدد الأرقام التي نتعامل معها، ستكون خوارزمية أفعالنا هي نفسها دائمًا: سنجد المضاعف المشترك الأصغر لرقمين بالتتابع. هناك نظرية لهذه الحالة.

النظرية 1

لنفترض أن لدينا أعداد صحيحة أ1، أ2،…، أ. شهادة عدم الممانعة م كتم العثور على هذه الأرقام عن طريق الحساب التسلسلي m 2 = LCM (أ 1، أ 2)، م 3 = م م 2، أ 3)، ...، م ك = م م م (م ك − 1، أ ك).

الآن دعونا نلقي نظرة على كيفية تطبيق النظرية لحل مشاكل محددة.

مثال 7

تحتاج إلى حساب المضاعف المشترك الأصغر لأربعة أرقام 140، 9، 54 و 250 .

حل

دعونا نقدم الترميز: أ 1 = 140، أ 2 = 9، أ 3 = 54، أ 4 = 250.

لنبدأ بحساب m 2 = المضاعف المشترك الأصغر (أ 1 ، أ 2) = المضاعف المشترك الأصغر (140، 9). دعونا نطبق الخوارزمية الإقليدية لحساب GCD للأرقام 140 و9: 140 = 9 15 + 5، 9 = 5 1 + 4، 5 = 4 1 + 1، 4 = 1 4. نحصل على: GCD (140، 9) = 1، GCD (140، 9) = 140 9: GCD (140، 9) = 140 9: 1 = 1260. وبالتالي م2 = 1,260.

الآن دعونا نحسب باستخدام نفس الخوارزمية m 3 = LCM (m 2 , a 3) = LCM (1 260, 54). خلال الحسابات نحصل على م 3 = 3 780.

كل ما علينا فعله هو حساب m 4 = LCM (m 3 , a 4) = LCM (3 780, 250). نحن نتبع نفس الخوارزمية. نحصل على م 4 = 94500.

LCM للأرقام الأربعة من حالة المثال هو 94500.

إجابة:شهادة عدم الممانعة (140، 9، 54، 250) = 94,500.

كما ترون، الحسابات بسيطة، ولكنها كثيفة العمالة للغاية. لتوفير الوقت، يمكنك الذهاب بطريقة أخرى.

التعريف 4

نحن نقدم لك خوارزمية الإجراءات التالية:

  • نحن نحلل جميع الأرقام إلى عوامل أولية؛
  • إلى حاصل ضرب عوامل الرقم الأول نضيف العوامل المفقودة من حاصل ضرب العدد الثاني؛
  • نضيف إلى المنتج الذي تم الحصول عليه في المرحلة السابقة العوامل المفقودة للرقم الثالث، وما إلى ذلك؛
  • سيكون المنتج الناتج هو المضاعف المشترك الأصغر لجميع الأرقام من الشرط.

مثال 8

أنت بحاجة إلى إيجاد المضاعف المشترك الأصغر لخمسة أرقام 84، 6، 48، 7، 143.

حل

دعونا نحلل جميع الأعداد الخمسة إلى عوامل أولية: 84 = 2 2 3 7، 6 = 2 3، 48 = 2 2 2 2 3، 7، 143 = 11 13. الأعداد الأولية، وهي العدد 7، لا يمكن تحليلها إلى عوامل أولية. تتزامن هذه الأرقام مع تحللها إلى عوامل أولية.

الآن لنأخذ حاصل ضرب العوامل الأولية 2 و 2 و 3 و 7 للرقم 84 ونضيف إليها العوامل الناقصة للرقم الثاني. قمنا بتحليل الرقم 6 إلى 2 و 3. هذه العوامل موجودة بالفعل في حاصل ضرب الرقم الأول. ولذلك، فإننا نتجاهلهم.

نواصل إضافة المضاعفات المفقودة. لننتقل إلى الرقم 48، الذي نأخذ من حاصل ضرب عوامله الأولية 2 و2. ثم نضيف العامل الأولي 7 من الرقم الرابع والعاملين 11 و 13 من الرقم الخامس. نحصل على: 2 2 2 3 7 11 13 = 48,048. هذا هو المضاعف المشترك الأصغر للأرقام الخمسة الأصلية.

إجابة:م م م(84، 6، 48، 7، 143) = 48,048.

إيجاد المضاعف المشترك الأصغر للأعداد السالبة

للعثور على المضاعف المشترك الأصغر أرقام سلبية، يجب أولاً استبدال هذه الأرقام بأرقام ذات علامة المعاكس، ثم قم بإجراء العمليات الحسابية باستخدام الخوارزميات المذكورة أعلاه.

مثال 9

المضاعف المشترك الأصغر (54، − 34) = المضاعف المشترك الأصغر (54، 34) والمضاعف المشترك الأصغر (− 622، − 46، − 54، − 888) = المضاعف المشترك الأصغر (622، 46، 54، 888).

ومثل هذه التصرفات جائزة لأننا إذا قبلنا ذلك أو - أ- أرقام متضادة،
ثم مجموعة مضاعفات الرقم أيطابق مجموعة مضاعفات الرقم - أ.

مثال 10

من الضروري حساب LCM للأرقام السالبة − 145 و − 45 .

حل

دعونا نستبدل الأرقام − 145 و − 45 إلى أعدادهم المقابلة 145 و 45 . الآن، باستخدام الخوارزمية، نحسب LCM (145، 45) = 145 · 45: GCD (145، 45) = 145 · 45: 5 = 1،305، بعد أن تم تحديد GCD مسبقًا باستخدام الخوارزمية الإقليدية.

لقد حصلنا على أن المضاعف المشترك الأصغر للأرقام هو -145 و − 45 يساوي 1 305 .

إجابة:م م م (− 145, − 45) = 1,305.

إذا لاحظت وجود خطأ في النص، فيرجى تحديده والضغط على Ctrl+Enter

تعريف.يسمى أكبر عدد طبيعي يتم من خلاله قسمة العددين a وb بدون باقي القاسم المشترك الأكبر (GCD)هذه الارقام.

دعونا نجد القاسم المشترك الأكبر للرقمين 24 و 35.
قواسم العدد 24 هي الأرقام 1، 2، 3، 4، 6، 8، 12، 24، وقاسمات 35 هي الأرقام 1، 5، 7، 35.
نرى أن الرقمين 24 و 35 لهما قاسم مشترك واحد فقط - الرقم 1. تسمى هذه الأرقام رئيسي متبادل.

تعريف.يتم استدعاء الأعداد الطبيعية رئيسي متبادلإذا كان القاسم المشترك الأكبر (GCD) هو 1.

القاسم المشترك الأكبر (GCD)يمكن إيجادها دون كتابة جميع قواسم الأعداد المعطاة.

بتحليل العددين 48 و 36 نحصل على:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
من العوامل المتضمنة في مفك الأول من هذه الأعداد، نقوم بشطب تلك التي لم تدخل في مفك الرقم الثاني (أي اثنين).
العوامل المتبقية هي 2 * 2 * 3. حاصل ضربهم يساوي 12. هذا الرقم هو القاسم المشترك الأكبر للرقمين 48 و 36. كما تم العثور على القاسم المشترك الأكبر لثلاثة أرقام أو أكثر.

لايجاد القاسم المشترك الأكبر

2) من العوامل المدرجة في توسيع أحد هذه الأرقام، شطب تلك التي لم يتم تضمينها في توسيع الأرقام الأخرى؛
3) أوجد حاصل ضرب العوامل المتبقية.

إذا كانت جميع الأعداد المعطاة قابلة للقسمة على واحد منها، فإن هذا الرقم يكون كذلك القاسم المشترك الأكبرأرقام معينة.
على سبيل المثال، القاسم المشترك الأكبر للأرقام 15 و45 و75 و180 هو الرقم 15، حيث أن جميع الأرقام الأخرى قابلة للقسمة عليه: 45 و75 و180.

المضاعف المشترك الأصغر (LCM)

تعريف. المضاعف المشترك الأصغر (LCM) الأعداد الطبيعية a وb هما أصغر عدد طبيعي مضاعف لكل من a وb. يمكن العثور على المضاعف المشترك الأصغر (LCM) للرقمين 75 و60 دون كتابة مضاعفات هذه الأرقام على التوالي. للقيام بذلك، دعونا نحلل 75 و60 إلى عوامل أولية: 75 = 3 * 5 * 5، و60 = 2 * 2 * 3 * 5.
لنكتب العوامل المتضمنة في مفك الرقم الأول من هذه الأرقام، ونضيف إليها العوامل المفقودة 2 و2 من مفك الرقم الثاني (أي نجمع العاملين).
نحصل على خمسة عوامل 2 * 2 * 3 * 5 * 5، وحاصل ضربها هو 300. وهذا الرقم هو المضاعف المشترك الأصغر للرقمين 75 و 60.

ويجدون أيضًا المضاعف المشترك الأصغر لثلاثة أرقام أو أكثر.

ل العثور على المضاعف المشترك الأصغرعدة أعداد طبيعية، تحتاج إلى:
1) تحليلها إلى عوامل أولية؛
2) اكتب العوامل المتضمنة في توسيع أحد الأرقام؛
3) أضف إليها العوامل المفقودة من مفكوكات الأعداد المتبقية؛
4) أوجد حاصل ضرب العوامل الناتجة.

لاحظ أنه إذا كان أحد هذه الأرقام يقبل القسمة على جميع الأرقام الأخرى، فإن هذا الرقم هو المضاعف المشترك الأصغر لهذه الأرقام.
على سبيل المثال، المضاعف المشترك الأصغر للأرقام 12 و15 و20 و60 هو 60 لأنه يقبل القسمة على كل هذه الأرقام.

درس فيثاغورس (القرن السادس قبل الميلاد) وطلابه مسألة قابلية قسمة الأعداد. رقم، يساوي المبلغلقد أطلقوا على جميع قواسمه (بدون الرقم نفسه) عددًا مثاليًا. على سبيل المثال، الأرقام 6 (6 = 1 + 2 + 3)، 28 (28 = 1 + 2 + 4 + 7 + 14) مثالية. الأعداد المثالية التالية هي 496، 8128، 33550336. كان الفيثاغوريون يعرفون الأعداد الثلاثة الأولى فقط. الرابع - 8128 - أصبح معروفا في القرن الأول. ن. ه. الخامس - 33.550.336 - تم العثور عليه في القرن الخامس عشر. بحلول عام 1983، كان هناك 27 رقمًا مثاليًا معروفًا بالفعل. لكن العلماء ما زالوا لا يعرفون ما إذا كان هناك أرقام مثالية فردية أو ما إذا كان هناك عدد مثالي أكبر.
ينبع اهتمام علماء الرياضيات القدماء بالأعداد الأولية من حقيقة أن أي عدد إما أن يكون أوليًا أو يمكن تمثيله كحاصل ضرب الأعداد الأوليةأي أن الأعداد الأولية تشبه الطوب الذي تبنى منه بقية الأعداد الطبيعية.
ربما لاحظت أن الأعداد الأولية في سلسلة الأعداد الطبيعية تحدث بشكل غير متساو - في بعض أجزاء السلسلة يوجد عدد أكبر منها، وفي أجزاء أخرى - أقل. ولكن كلما تقدمنا ​​في الطريق سلسلة أرقام، الأعداد الأولية الأقل شيوعًا هي. السؤال الذي يطرح نفسه: هل هناك عدد أولي أخير (أكبر)؟ أثبت عالم الرياضيات اليوناني القديم إقليدس (القرن الثالث قبل الميلاد) في كتابه "العناصر"، الذي كان الكتاب الرئيسي في الرياضيات لمدة ألفي عام، أن هناك عددًا لا نهائيًا من الأعداد الأولية، أي أن وراء كل عدد أولي هناك عدد أولي أكبر رقم.
للعثور على الأعداد الأولية، توصل عالم رياضيات يوناني آخر في نفس الوقت، إراتوستينس، إلى هذه الطريقة. لقد كتب جميع الأرقام من 1 إلى رقم ما، ثم شطب واحدًا، وهو ليس عددًا أوليًا ولا مركبًا، ثم شطب من خلال واحد جميع الأرقام التي تأتي بعد 2 (الأعداد التي هي مضاعفات 2، أي 4، 6، 8، الخ). أول رقم متبقي بعد 2 كان 3. ثم، بعد اثنين، تم شطب جميع الأرقام التي تأتي بعد 3 (الأرقام التي كانت من مضاعفات 3، أي 6، 9، 12، وما إلى ذلك). في النهاية بقيت الأعداد الأولية فقط غير متقاطعة.