Биографии Характеристики Анализ

Изучение свойств дисперсных систем лабораторная работа. Тема: «Смеси и примеси

Параллельно–поточный метод организации работ применяется с целью сокращения сроков строительства и заключается в том, что отдельные виды работ выполняются несколькими однотипными бригадами.

Этот метод требует тщательного обоснования так как:

    является экстенсивным путем сокращения сроков строительства;

    в ряде случаев привлечение дополнительных бригад особенно маломощных может привести не к сокращению, а к увеличению общей продолжительности работ.

Параллельно–поточный метод организации работ формируется на основании и после расчета неритмичного потока МКР, при этом решается два задачи:

1. определить на какие виды работ или работы и сколько привлечь дополнительных бригад;

2. как распределять работы между однотипными бригадами(т.е. дать расписание работы этих бригад, время загрузки этих бригад).

А. В. Афанасьев предложил два пути решения задачи:

    назначать дополнительные однотипные бригады на наиболее продолжительные виды работ в количестве, обеспечивающем уменьшение их продолжительности до необходимой величины;

    распределять работы между однотипными бригадами в ходе расчета потока с критическим работами, выявленными с учетом ресурсных и фронтальных связей; распределять работы в соответствии с исходной очередностью с первоочередной загрузкой (при равных возможностях) наиболее мощных бригад, а при равной мощности бригад – тех из них, которые имеют наименьший порядковый номер.

Мощности бригад:;

Б 2 = Б 1 ;

Б 3 = 2 Б 2 ;

В 2 = В 1 .

Расчет показал, что по сравнению с календарным планом по МКР привлечение дополнительных бригад позволило сократить срок возведения объекта на 7 дней. При этом выяснилось, что необходимость привлечения бригады Б 3 отпала.

В общем случае ППМОР требует рассмотрения нескольких вариантов как в определении количества дополнительных бригад, тик и в составлении расписания их загрузки.

Лекция 8

Оценка вариантов календарных планов на возведение объекта.

Оценка вариантов организации работ может быть произведена по тем или иным показателям (критериям).

При оценке вариантов организации работ могут использоваться различные индивидуальные критерии (с учетом их приоритетов) и дифференциальные, объединенные (с учетом их значимости) в интегральный.

Индивидуальные критерии представляются, как правило, в абсолютных величинах (в показателях стоимости, времени, затрат труда и других натуральных показателях):

    Продолжительность выполнения работ.

    Показатели графика движения рабочих.

    Количество видов работ.

    Коэффициент неравномарности

    Трудоемкость работ.

Дифференциальные критерии представляются всегда в относительных величинах, ограниченных определенным пределом (от 0 – очень плохо до 1 – очень хорошо). Они объединяются с учетом коэффициентов значимости в интегральный. При этом коэффициенты значимости задаются (принимаются) разработчиками или вышестоящим уровнем руководства с учетом конкретных условий производства и более общей по отношению к рассматриваемой задачи.

Поточный метод является прогрессивным методом организации строительного производства. Сущность поточного метода заключается в организации последовательного, непрерывного и ритмичного производства строительных работ, что дает возможность эффективно использовать материальные и трудовые ресурсы. Поток предполагает в равные промежутки времени выпускать определенные объемы строительной продукции, повышать рентабельность строительства. Опыт показывает, что при переходе на "поток " продолжительность строительства сокращается в среднем до 20%, производительность труда возрастает на 8-10%.

При поточном методе организации строительства процесс строительного производства расчленяется на отдельные составные части и операции, выполнение которых поручается отдельным комплексным бригадам или специализированным звеньям . Эти бригады или звенья равномерно перемещаются с одного участка захватки на другой вдоль всего фронта работ, причем на каждом участке последовательно выполняются строительные процессы в строгом соответствии с их технологическим порядком. Каждая бригада, заканчивая работы на отведенной ей захватке, подготавливает участок для выполнения нового цикла работ следующей бригадой.

На каждой захватке циклы работ следуют в установленном порядке, что позволяет максимально совмещать работы во времени, выполняя их в темпе, предусмотренном графиком производства строительно-монтажных работ.

Равномерное движение рабочих с одной захватки на другую возможно только в том случае, если количество рабочих в бригадах и звеньях остается постоянным, а захватки равны по трудоемкости выполняемым работам.

При организации строительства поточным методом возведение здания обычно разделяется на следующие циклы: подготовительный, нулевой, возведение надземной части, производство отделочных работ.

Поточный метод дополняется индустриализацией строительства , т. е. непрерывным превращением строительного процесса в механизированный процесс поточной сборки зданий и сооружений из конструкций заводского изготовления.

В строительной практике для планирования и управления строительными потоками строительные процессы моделируют, применяя графическое их изображение: разрабатывают линейные графики, сетевые графики.

В соответствии с Инструкцией по разработке проектов организации строительства и производства работ для строительства сложных объектов составляются укрупненные сетевые графики. Такая необходимость объясняется наличием сложных взаимосвязей между отдельными звеньями и обслуживающими его хозяйствами.

Сетевые графики представляют собой графическое отражение технологии строительного производства. Отличительной чертой сетевого графика является четкая взаимосвязь между работами при строгой технологической последовательности их выполнения.

Каждый сетевой график имеет начальное событие (начало работ), промежуточные события (факт окончания одной или нескольких работ), и конечное событие. Каждое "событие" происходит в определенный момент времени и на графике обозначается кружками и порядковым номером. Между событиями происходит процесс работы, требующий затрат времени и ресурсов. Работы на сетевом графике обозначаются стрелками, а их продолжительность (в днях) указывается под стрелкой.

Все промежуточные события и связанные с ними работы располагают на сетевом графике между начальным и конечным событиями в соответствии с порядком их осуществления: одни из них технологически зависимы, другие независимы, т. е. могут выполняться параллельно.

Следует отметить, что между событиями возможны связи еще двух видов: "ожидание ", требующее только времени (например, сушка штукатурки, выдерживание бетона), и "зависимость ", не требующая ни времени, ни ресурсов, а только соблюдения последовательности в выполнении работ. Ожидание обозначается на графике так же, как и работа - сплошной линией, зависимость - пунктирной.

Зафиксированную на графике смену событий, связанных между собой работами, называют "путем ". Сеть путей расходится от начального события и сходится к конечному. Продолжительность каждого пути определяют суммированием продолжительности "лежащих " на нем работ. Наиболее длинный по времени путь между начальным и конечным событиями, обусловливающий срок окончания строительства объекта, носит название критического пути.

На рисунке показан для примера фрагмент сетевого графика возведения одноэтажного складского здания. Здание разбито на три захватки. На параллельных потоках выполняются земляные работы, устройство монолитных фундаментов, доставка и подготовка сборных элементов к монтажу, монтаж конструкций.

Согласно графику основные работы по монтажу конструкций (событие 7) можно начать после исполнения подготовительных работ 1-2, а также отрывки котлованов под фундаменты на первом блоке 2-4, устройства монолитных фундаментов 4-6 и окончания твердения бетона в фундаментах 6-7. Работа 6-7 фактически является ожиданием, так как процесс твердения бетона в фундаментах требует незначительных ресурсов, но для этого необходимо определенное время для роста прочности бетона. Кроме того, начало монтажа (событие 7) может быть начато после выполнения работ 1-3, т. е. доставки и монтажа крана для раскладки элементов и 3-5 - раскладки и подготовки к монтажу конструкций на первой захватке. Работы 5-7 и 9-11 являются зависимостями.

Наименование и состав работ, показанных на сетевом графике (рис. 14.1), их продолжительность в днях указаны в табл. 14.1.

Продолжительность путей для работ, намеченных на сетевом графике, подсчитана в табл. 14.2.


Наиболее длинным, т. е. критическим путем, будет путь № 1 продолжительностью в 122 дня. Этот "путь" определяет продолжительность всего комплекса работ по возведению здания.

Расчет критического пути позволяет сравнить общую продолжительность строительных работ с заданным сроком или с нормой продолжительности строительства. Если "критический путь" оказывается более продолжительным, чем это предусмотрено нормами продолжительности строительства, то можно использовать для сокращения общего срока строительства резервы за счет некритических работ. В этом случае продолжительность выполнения "некритических" работ удлиняется в пределах выявленных запасов времени, а высвобождающиеся ресурсы используются для ускорения работ на "критическом пути".

Лабораторная работа №1

Моделирование построения Периодической системы (таблицы) элементов.

Цель: научиться выявлять законы по таблице элементов.

Оборудование: карточки размером 6х10 см

Ход работы:

Заготовьте 20 карточек размером 6 х 10 см для элементов с порядковыми номерами с 1-го по 20 –й в Периодической системе Менделеева. На каждую карточку запишите следующие сведения об элементе:

Химический символ

Название

Значение относительной атомной массы

Формулу высшего оксида (в скобках укажите характер оксида- основный, кислотный или амфотерный)

Формулу высшего гидроксида (для гидроксидов металлов также укажите в скобках характер - основный или амфотерный)

Формулу летучего водородного соединения (для неметаллов).

Расположите карточки по возрастанию значений относительных атомных масс.

Расположите сходные элементы, начиная с 3-го по 18-й друг под другом. Водород и калий над литием и под натрием соответственно, кальций под магнием, а гелий над неоном. Сформулируйте выявленную вами закономерность в виде закона.

Поменяйте в полученном ряду местами аргон и калий. Объясните почему.

Еще раз сформулируйте выявленную вами закономерность в виде закона.

Лабораторная работа №2

Приготовление дисперсных систем.

Цель: получить дисперсные системы и исследовать их свойства

Оборудование и реактивы: - дистиллированная вода;

Раствор желатина;

Кусочки мела;

Раствор серы;

Пробирки, штатив.

1. Приготовление суспензии карбоната кальция в воде.

Налить в 2 пробирки по 5мл дистиллированной воды. В пробирку №1 добавить 1мл 0,5%-ного раствора желатина. Затем в обе пробирки внести небольшое количество мела и сильно взболтать.

Поставить обе пробирки в штатив и наблюдать расслаивание суспензии.

Ответьте на вопросы:

Одинаково ли время расслаивания в обеих пробирках? Какую роль играет желатин? Что является в данной суспензии дисперсной фазой и дисперсионной средой?

2. Исследование свойств дисперсных систем

К 2-3мл дистиллированной воды добавьте по каплям 0,5-1мл насыщенного раствора серы. Получается опалесцирующий коллоидный раствор серы. Какую окраску имеет гидрозоль?

Форма отчёта

Лабораторная работа №3.

Ознакомление со свойствами дисперсных систем.

Классификация дисперсных систем.

Система называется дисперсной, если в каком-либо веществе (дисперсионной среде) распределено другое вещество (дисперсная фаза) в виде мельчайших частиц. Дисперсные системы являются гетерогенными. Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества и дисперсионной среды. Например, нельзя получить дисперсную систему сахара или поваренной соли в воде, но они могут быть получены в керосине или в бензоле, в которых эти вещества практически нерастворимы.

Дисперсные системы классифицируют по размеру частиц, по агрегатному состоянию дисперсной фазы и дисперсионной среды, по характеру взаимодействия между дисперсной фазой и дисперсионной средой. Наиболее распространена классификация по агрегатному состоянию, предложенная Освальдом (табл. 1). Возможны восемь типов дисперсных систем в зависимости от агрегатного состояния распределенного вещества и среды: Г- газообразное вещество, Ж - жидкое, Т - твердое; первая буква относится к распределяемому веществу, вторая - к среде. Все системы, отвечающие коллоидной степени дисперсности, принято называть золями.

Таблица 1.Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды

Дисперсионная

среда

Дисперсная фаза

Примеры дисперсных систем

Твердая

Твердая

Рубиновое стекло; пигментированные волокна; сплавы; рисунок на ткани, нанесенный методом пигментной печати

Твердая

Жидкая

Жемчуг, вода в граните, вода в бетоне, остаточный мономер в полимерно-мономерных частицах

Твердая

Газообразная

Газовые включения в различных твердых телах: пенобетоны, замороженные пены, пемза, вулканическая лава, полимерные пены, пенополиуретан

Жидкая

Твердая

Суспензии, краски, пасты, золи, латексы

Жидкая

Жидкая

Эмульсии: молоко, нефть, сливочное масло, маргарин, замасливатели волокон

Жидкая

Газообразная

Пены, в том числе для пожаротушения и пенных технологий замасливания волокон, беления и колорирования текстильных материалов

Газообразная

Твердая

Дымы, космическая пыль, аэрозоли

Газообразная

Жидкая

Туманы, газы в момент сжижения

Газообразная

Газообразная

Коллоидная система не образуется

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система- раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Способы получения дисперсных систем

Дисперсные системы занимают промежуточное положение между грубодисперсными и молекулярными системами. Поэтому их получают двумя способами: дроблением крупных кусков вещества до требуемой дисперсности (диспергирование) или объединением молекул (ионов) в агрегаты коллоидных размеров (конденсация).

Дисперсионные методы получения дисперсных систем

1. Механический

Твердые тела дробятся в специальных дробилках, жерновах, мельницах различной конструкции. Тонко измельченные вещества приобретают множество полезных свойств. Например, красители - лучшую красящую способность, большую устойчивость, более красивые оттенки. Методом механического измельчения получают краски, смазочные материалы, фармацевтические препараты, пищевые продукты.

2. Ультразвуковой

Твердые тела дробят под действием ультразвука. Этим способом получают гидрозоли различных полимеров, серы, графита, органозоли металлов и сплавов.

Конденсационные методы получения дисперсных систем

1. Физические

К ним относится замена растворителя. Например, в раствор серы в этиловом спирте добавляют воду.

2. Химические

В основе лежат химические реакции окисления, восстановления, обмена, гидролиза. Например, FeCl3 + 3H2O = Fe(OH)3 ¯ + 3HCl.

Коллоидные растворы

Раздробленное (диспергированное) состояние вещества с размером частиц от 10-9 до 10-7 м называют коллоидным состоянием вещества. Коллоидные растворы изучает раздел науки - коллоидная химия.

Коллоидная химия - это наука о свойствах гетерогенных высокодисперсных систем и протекающих в них процессах.

Основоположником коллоидной химии является англичанин Т. Грэм (1805-1869). Он впервые дал общие представления о коллоидных растворах и разработал некоторые методы их исследования.

Коллоидные растворы проявляют специфические свойства : коагуляции и адсорбции.

Коагуляция - процесс слипания коллоидных частиц, т.е. образования при определенных условиях осадка. Коагуляция происходит в результате лишения коллоидных частиц адсорбционной оболочки, нейтрализации заряда или химических превращений.

Причины коагуляции:

1) нагревание . При нагревании уменьшается адсорбционная способность коллоидных частиц, поэтому крупные частицы, ставшие нейтральными, притягиваются друг к другу, образуя осадок;

2) действие электрического тока . Под действием электрического тока крупные заряженные коллоиды притягиваются к соответствующему (противоположно заряженному) электроду и там разряжаются, образовавшиеся нейтральные частицы притягиваются друг к другу и дают осадок. Явление разряда мицелл под действием электрического тока называется электрофорезом;

3) прибавление сильного электролита приводит к нейтрализации коллоидных частиц;

4) замораживание . При замораживании образуются кристаллики воды, в результате в оставшейся части системы происходит концентрирование золя, и частицы могут приходить друг с другом в контакт и слипаться.

Адсорбция - самопроизвольный процесс увеличения концентрации одного вещества (адсорбата) на поверхности другого (адсорбента).

Адсорбция происходит на любых межфазовых поверхностях, адсорбироваться могут любые вещества.

Вывод: свойства дисперсных систем_________________________

ЛПЗ №4 СВОЙСТВА КИСЛОТ, ОСНОВАНИЙ, ОКСИДОВ И СОЛЕЙ.

Цель работы: на основании проведенных опытов сделать вывод о взаимодействии металлов с кислотами, кислот с основаниями, кислот с солями, щелочей с солями, разложении нерастворимых оснований, а также исследовать, как действуют кислоты на индикаторы.

Оборудование: индикаторы, пробирки, кислоты(), основания(), оксиды(), соли(), металлы().

Ход работы:

Задание №1. Испытание растворов кислот и щелочей индикаторами.

Согласуется ли вывод с таблицей «Изменение цвета индикаторов».

Изменение цвета индикаторов

Задание №2. Пользуясь предложенными реактивами, проведите реакции, характеризующие свойства кислот.

Сделайте общий вывод об отношении кислот к металлам. Для этого воспользуйтесь схемой:

Отношение металлов к воде и к некоторым кислотам

Задание №3. Пользуясь предложенными реактивами, проведите реакции, характеризующие свойства щелочей.

Задание №4. Разложение нерастворимых оснований.

Вывод данной работы.

Цель работы:

Друг с другом.

Оборудование:

Ход работы:

Задание №2. Взаимодействие солей друг с другом .

ЛПЗ №5. ВЗАИМОДЕЙСТВИЕ СОЛЕЙ С МЕТАЛЛАМИ.

Цель работы: на основании проведенных опытов сделать

Вывод о взаимодействии металлов с солями, а также солей

Друг с другом.

Оборудование: пробирки, соли(), металлы().

Ход работы:

Задание №1. Взаимодействие металлов с солями .

Задание №3.

Задание №3. 1) Запишите уравнения практически осуществимых реакций:

а) фосфат натрия с нитратом серебра; б) карбонат кальция с хлоридом калия; в) нитрат меди (II) с цинком;

2) Сделайте вывод о проделанной работе.

ЛПЗ №6.

Цель работы:

Ход работы:

ЛПЗ №6. Зависимость скорости взаимодействия соляной кислоты с металлами от их природы. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации. Зависимость скорости взаимодействия оксида меди с серной кислотой от температуры.

Цель работы: практическим путем подтвердить зависимость скорости химической реакции от природы реагирующего вещества, от её концентрации и от температуры.

Ход работы:

1.Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации.

В две пробирки поместите по одной грануле цинка. В одну прилейте 1 мл соляной кислоты (1:3), в другую – столько же этой кислоты другой концентрации (1:10). В какой пробирке более интенсивно протекает реакция? Что влияет на скорость реакции?

2.Зависимость скорости взаимодействия соляной кислоты с металлами от их природы.

В три пробирки (подписанные, под номерами) прилить по 3 мл раствора НCl и внести в каждую из пробирок навески опилок одинаковой массы: в первую - Mg, во вторую - Zn, в третью – Fe.

2 SO 4

Что наблюдаете? В какой пробирке реакция протекает быстрее? (или вообще не протекает). Напишите уравнения реакций. Какой фактор влияет на скорость реакции? Сделайте выводы.

3.Зависимость скорости взаимодействия оксида меди с серной кислотой от температуры.

В три пробирки (под номерами) налить по 3 мл раствора Н 2 SO 4 (одинаковой концентрации). В каждую поместить навеску CuO (II) (порошок). Первую пробирку оставить в штативе; вторую - опустить в стакан с горячей водой; третью - нагреть в пламени спиртовки.

В какой пробирке цвет раствора меняется быстрее (голубой цвет)? Что влияет на интенсивность реакции? Напишите уравнение реакции. Сделайте вывод.