Биографии Характеристики Анализ

Как находить промежутки монотонности функции. b - конечное число

Теорема о пределе монотонной функции. Приводится доказательство теоремы, используя два метода. Также даны определения строго возрастающей, неубывающей, строго убывающей и невозрастающей функций. Определение монотонной функции.

Определения

Определения возрастающей и убывающей функций
Пусть функция f(x) определена на некотором множестве действительных чисел X .
Функция называется строго возрастающей (строго убывающей) , если для всех x′, x′′ ∈ X таких что x′ < x′′ выполняется неравенство:
f(x′) < f(x′′) ( f(x′) > f(x′′) ) .
Функция называется неубывающей (невозрастающей) , если для всех x′, x′′ ∈ X таких что x′ < x′′ выполняется неравенство:
f(x′) ≤ f(x′′) ( f(x′) ≥ f(x′′) ) .

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Для исследования монотонности функции на некотором множестве X , нужно найти разность ее значений в двух произвольных точках , принадлежащих этому множеству. Если , то функция строго возрастает; если , то функция не убывает; если , то строго убывает; если , то не возрастает.

Если на некотором множестве функция положительна: , то для определения монотонности, можно исследовать частное от деления ее значений в двух произвольных точках этого множества. Если , то функция строго возрастает; если , то функция не убывает; если , то строго убывает; если , то не возрастает.

Теорема
Пусть функция f(x) не убывает на интервале (a, b) , где .
Если она ограничена сверху числом M : , то существует конечный левый предел в точке b : . Если f(x) не ограничена сверху, то .
Если f(x) ограничена снизу числом m : , то существует конечный правый предел в точке a : . Если f(x) не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция f(x) не убывает на интервале (a, b) , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Следствие
Пусть функция является монотонной на интервале . Тогда в любой точке из этого интервала, существуют односторонние конечные пределы функции :
и .

Доказательство теоремы

Функция не убывает

b - конечное число
Функция ограничена сверху


1.1.1. Пусть функция ограничена сверху числом M : при .


.
;
.

Поскольку функция не убывает, то при . Тогда
при .
Преобразуем последнее неравенство:
;
;
.
Поскольку , то . Тогда
при .


при .
«Определения односторонних пределов функции в конечной точке»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.1. Пусть число b конечное: .
1.1.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .


.


при .

Обозначим . Тогда для любого существует , так что
при .
Это означает, что предел слева в точке b равен (см. «Определения односторонних бесконечных пределов функции в конечной точке»).

b рано плюс бесконечности
Функция ограничена сверху

1. Пусть функция не убывает на интервале .
1.2.1. Пусть функция ограничена сверху числом M : при .
Докажем, что в этом случае существует предел .

Поскольку функция ограничена сверху, то существует конечная верхняя грань
.
Согласно определению точной верхней грани, выполняются следующие условия:
;
для любого положительного существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при . Или
при .

Итак, мы нашли, что для любого существует число , так что
при .
«Определения односторонних пределов на бесконечности»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.2. Пусть число b равно плюс бесконечности: .
1.2.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .

Поскольку функция не ограничена сверху, то для любого числа M существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при .

Итак, для любого существует число , так что
при .
Это означает, что предел при равен (см. «Определения односторонних бесконечных пределов на бесконечности»).

Функция не возрастает

Теперь рассмотрим случай, когда функция не возрастает. Можно, как и выше, рассмотреть каждый вариант по отдельности. Но мы охватим их сразу. Для этого используем . Докажем, что в этом случае существует предел .

Рассмотрим конечную нижнюю грань множества значений функции:
.
Здесь B может быть как конечным числом, так и бесконечно удаленной точкой . Согласно определению точной нижней грани, выполняются следующие условия:
;
для любой окрестности точки B существует такой аргумент , для которого
.
По условию теоремы, . Поэтому .

Поскольку функция не возрастает, то при . Поскольку , то
при .
Или
при .
Далее замечаем, что неравенство определяет левую проколотую окрестность точки b .

Итак, мы нашли, что для любой окрестности точки , существует такая проколотая левая окрестность точки b , что
при .
Это означает, что предел слева в точке b равен :

(см. универсальное определение предела функции по Коши).

Предел в точке a

Теперь покажем, что существует предел в точке a и найдем его значение.

Рассмотрим функцию . По условию теоремы, функция является монотонной при . Заменим переменную x на - x (или сделаем подстановку , а затем заменим переменную t на x ). Тогда функция является монотонной при . Умножая неравенства на -1 и меняя их порядок приходим к выводу, что функция является монотонной при .

Аналогичным способом легко показать, что если не убывает, то не возрастает. Тогда согласно доказанному выше, существует предел
.
Если не возрастает, то не убывает. В этом случае существует предел
.

Теперь осталось показать, что если существует предел функции при , то существует предел функции при , и эти пределы равны:
.

Введем обозначение:
(1) .
Выразим f через g :
.
Возьмем произвольное положительное число . Пусть есть эпсилон окрестность точки A . Эпсилон окрестность определяется как для конечных, так и для бесконечных значений A (см. «Окрестность точки»). Поскольку существует предел (1), то, согласно определению предела, для любого существует такое , что
при .

Пусть a - конечное число. Выразим левую проколотую окрестность точки -a , используя неравенства:
при .
Заменим x на -x и учтем, что :
при .
Последние два неравенства определяют проколотую правую окрестность точки a . Тогда
при .

Пусть a - бесконечное число, . Повторяем рассуждения.
при ;
при ;
при ;
при .

Итак, мы нашли, что для любого существует такое , что
при .
Это означает, что
.

Теорема доказана.

Мы впервые познакомились в курсе алгебры 7-го класса. Глядя на график функции, мы снимали соответствующую информацию: если двигаясь по графику слева направо мы в то же время движемся снизу вверх (как бы поднимаемся в горку), то мы объявляли функцию возрастающей (рис. 124); если же мы движемся сверху вниз (спускаемся с горки), то мы объявляли функцию убывающей (рис. 125).

Однако математики не очень жалуют такой способ исследования свойств функции. Они считают, что определения понятий не должны опираться на рисунок, - чертеж должен лишь иллюстрировать то или иное свойство функции на ее графике . Дадим строгие определения понятий возрастания и убывания функции.

Определение 1. Функцию у = f(x) называют возрастающей на промежутке X, если из неравенства х 1 < х 2 - где хг и х2 - любые две точки промежутка X, следует неравенство f(x 1) < f(x 2).

Определение 2. Функцию у = f(x) называют убывающей на промежутке X, если из неравенства х 1 < х 2 , где х 1 и х 2 - любые две точки промежутка X, следует неравенство f(x 1) > f(x 2).

На практике удобнее пользоваться следующими формулировками:

функция возрастает, если большему значению аргумента соответствует большее значение функции;
функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Используя эти определения и установленные в § 33 свойства числовых неравенств, мы сможем обосновать выводы о возрастании или убывании ранее изученных функций.

1. Линейная функция у = kx +m

Если k > 0, то функция возрастает на всей (рис. 126); если k < 0, то функция убывает на всей числовой прямой (рис. 127).

Доказательство. Положим f(х) = kx +m. Если х 1 < х 2 и k > О, то, согласно свойству 3 числовых неравенств (см. § 33), kx 1 < kx 2 . Далее, согласно свойству 2, из kx 1 < kx 2 следует, что kx 1 + m < kx 2 + m, т. е. f(х 1) < f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) < f(x 2). Это и означает возрастание функции у = f(х), т.е. линейной функции у = kx+ m.

Если же х 1 < х 2 и k < 0, то, согласно свойству 3 числовых неравенств, kx 1 > kx 2 , а согласно свойству 2, из kx 1 > kx 2 следует, что kx 1 + m> kx 2 + т.

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2). Это и означает убывание функции у = f(x), т. е. линейной функции у = kx + m.

Если функция возрастает (убывает) во всей своей области определения, то ее можно называть возрастающей (убывающей), не указывая промежутка. Например, про функцию у = 2х - 3 можно сказать, что она возрастает на всей числовой прямой, но можно сказать и короче: у = 2х - 3 - возрастающая
функция.

2. Функция у = х2

1. Рассмотрим функцию у = х 2 на луче . Возьмем два неположительных числа х 1 и х 2 , таких, что х 1 < х 2 . Тогда, согласно свойству 3 числовых неравенств, выполняется неравенство - х 1 > - х 2 . Так как числа - х 1 и - х 2 неотрицательны, то, возведя в квадрат обе части последнего неравенства, получим неравенство того же смысла (-х 1) 2 > (-х 2) 2 , т.е. Это значит, что f(х 1) >f(х 2).

Итак, из неравенства х 1 < х 2 следует, что f(х 1) > f(х 2).

Поэтому функция у = х 2 убывает на луче (- 00 , 0] (рис. 128).

1. Рассмотрим функцию на промежутке (0, + 00).
Пусть х1 < х 2 . Так как х 1 и х 2 - , то из х 1 < x 2 следует (см. пример 1 из § 33), т. е. f(x 1) > f(x 2).

Итак, из неравенства х 1 < х 2 следует, что f(x 1) > f(x 2). Это значит, что функция убывает на открытом луче (0, + 00) (рис. 129).


2. Рассмотрим функцию на промежутке (-оо, 0). Пусть х 1 < х 2 , х 1 и х 2 - отрицательные числа. Тогда - х 1 > - х 2 , причем обе части последнего неравенства - положительные числа, а потому (мы снова воспользовались неравенством, доказанным в примере 1 из § 33). Далее имеем , откуда получаем .

Итак, из неравенства х 1 < х 2 следует, что f(x 1) >f(x 2) т.е. функция убывает на открытом луче (- 00 , 0)

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание и убывание называют исследованием функции на монотонность.



Решение.

1) Построим график функции у = 2х 2 и возьмем ветвь этой параболы при х < 0 (рис. 130).

2) Построим и выделим его часть на отрезке (рис. 131).


3) Построим гиперболу и выделим ее часть на открытом луче (4, + 00) (рис. 132).
4) Все три «кусочка» изобразим в одной системе координат - это и есть график функции у = f(x) (рис. 133).

Прочитаем график функции у = f(x).

1. Область определения функции - вся числовая прямая.

2. у = 0 при х = 0; у > 0 при х > 0.

3. Функция убывает на луче (-оо, 0], возрастает на отрезке , убывает на луче , выпукла вверх на отрезке , выпукла вниз на луче Рассмотрим функцию \(f(t)=t^3+t\) . Тогда уравнение перепишется в виде: \ Исследуем функцию \(f(t)\) . \ Следовательно, функция \(f(t)\) возрастает при всех \(t\) . Значит, каждому значению функции \(f(t)\) соответствует ровно одно значение аргумента \(t\) . Следовательно, для того, чтобы уравнение имело корни, нужно: \ Чтобы полученное уравнение имело два корня, нужно, чтобы его дискриминант был положительным: \

Ответ:

\(\left(-\infty;\dfrac1{12}\right)\)

Задание 2 #2653

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при которых уравнение \

имеет два корня.

(Задача от подписчиков.)

Сделаем замену: \(ax^2-2x=t\) , \(x^2-1=u\) . Тогда уравнение примет вид: \ Рассмотрим функцию \(f(w)=7^w+\sqrtw\) . Тогда наше уравнение примет вид: \

Найдем производную \ Заметим, что при всех \(w\ne 0\) производная \(f"(w)>0\) , т.к. \(7^w>0\) , \(w^6>0\) . Заметим также, что сама функция \(f(w)\) определена при всех \(w\) . Т.к. к тому же \(f(w)\) непрерывна, то мы можем сделать вывод, что \(f(w)\) возрастает на всем \(\mathbb{R}\) .
Значит, равенство \(f(t)=f(u)\) возможно тогда и только тогда, когда \(t=u\) . Вернемся к изначальным переменным и решим полученное уравнение:

\ Для того, чтобы данное уравнение имело два корня, оно должно быть квадратным и его дискриминант должен быть положительным:

\[\begin{cases} a-1\ne 0\\ 4-4(a-1)>0\end{cases} \quad\Leftrightarrow\quad \begin{cases}a\ne1\\a<2\end{cases}\]

Ответ:

\((-\infty;1)\cup(1;2)\)

Задание 3 #3921

Уровень задания: Равен ЕГЭ

Найдите все положительные значения параметра \(a\) , при которых уравнение

имеет как минимум \(2\) решения.

Перенесем все слагаемые, содержащие \(ax\) , влево, а содержащие \(x^2\) – вправо, и рассмотрим функцию
\

Тогда исходное уравнение примет вид:
\

Найдем производную:
\

Т.к. \((t-2)^2 \geqslant 0, \ e^t>0, \ 1+\cos{2t} \geqslant 0\) , то \(f"(t)\geqslant 0\) при любых \(t\in \mathbb{R}\) .

Причем \(f"(t)=0\) , если \((t-2)^2=0\) и \(1+\cos{2t}=0\) одновременно, что не выполняется ни при каких \(t\) . Следовательно, \(f"(t)> 0\) при любых \(t\in \mathbb{R}\) .

Таким образом, функция \(f(t)\) строго возрастает при всех \(t\in \mathbb{R}\) .

Значит, уравнение \(f(ax)=f(x^2)\) равносильно уравнению \(ax=x^2\) .

Уравнение \(x^2-ax=0\) при \(a=0\) имеет один корень \(x=0\) , а при \(a\ne 0\) имеет два различных корня \(x_1=0\) и \(x_2=a\) .
Нам нужно найти значения \(a\) , при которых уравнение будет иметь не менее двух корней, учитывая также то, что \(a>0\) .
Следовательно, ответ: \(a\in (0;+\infty)\) .

Ответ:

\((0;+\infty)\) .

Задание 4 #1232

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственное решение.

Домножим правую и левую части уравнения на \(2^{\sqrt{x+1}}\) (т.к. \(2^{\sqrt{x+1}}>0\) ) и перепишем уравнение в виде: \

Рассмотрим функцию \(y=2^t\cdot \log_{\frac{1}{9}}{(t+2)}\) при \(t\geqslant 0\) (т.к. \(\sqrt{x+1}\geqslant 0\) ).

Производная \(y"=\left(-2^t\cdot \log_9{(t+2)}\right)"=-\dfrac{2^t}{\ln9}\cdot \left(\ln 2\cdot \ln{(t+2)}+\dfrac{1}{t+2}\right)\) .

Т.к. \(2^t>0, \ \dfrac{1}{t+2}>0, \ \ln{(t+2)}>0\) при всех \(t\geqslant 0\) , то \(y"<0\) при всех \(t\geqslant 0\) .

Следовательно, при \(t\geqslant 0\) функция \(y\) монотонно убывает.

Уравнение можно рассматривать в виде \(y(t)=y(z)\) , где \(z=ax, t=\sqrt{x+1}\) . Из монотонности функции следует, что равенство возможно только в том случае, если \(t=z\) .

Значит, уравнение равносильно уравнению: \(ax=\sqrt{x+1}\) , которое в свою очередь равносильно системе: \[\begin{cases} a^2x^2-x-1=0\\ ax \geqslant 0 \end{cases}\]

При \(a=0\) система имеет одно решение \(x=-1\) , которое удовлетворяет условию \(ax\geqslant 0\) .

Рассмотрим случай \(a\ne 0\) . Дискриминант первого уравнения системы \(D=1+4a^2>0\) при всех \(a\) . Следовательно, уравнение всегда имеет два корня \(x_1\) и \(x_2\) , причем они разных знаков (т.к. по теореме Виета \(x_1\cdot x_2=-\dfrac{1}{a^2}<0\) ).

Это значит, что при \(a<0\) условию \(ax\geqslant 0\) подходит отрицательный корень, при \(a>0\) условию подходит положительный корень. Следовательно, система всегда имеет единственное решение.

Значит, \(a\in \mathbb{R}\) .

Ответ:

\(a\in \mathbb{R}\) .

Задание 5 #1234

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень из отрезка \([-1;0]\) .

Рассмотрим функцию \(f(x)=2x^3-3x(ax+x-a^2-1)-3a-a^3\) при некотором фиксированном \(a\) . Найдем ее производную: \(f"(x)=6x^2-6ax-6x+3a^2+3=3(x^2-2ax+a^2+x^2-2x+1)=3((x-a)^2+(x-1)^2)\) .

Заметим, что \(f"(x)\geqslant 0\) при всех значениях \(x\) и \(a\) , причем равна \(0\) только при \(x=a=1\) . Но при \(a=1\) :
\(f"(x)=6(x-1)^2 \Rightarrow f(x)=2(x-1)^3 \Rightarrow\) уравнение \(2(x-1)^3=0\) имеет единственный корень \(x=1\) , не удовлетворяющий условию. Следовательно, \(a\) не может быть равно \(1\) .

Значит, при всех \(a\ne 1\) функция \(f(x)\) является строго возрастающей, следовательно, уравнение \(f(x)=0\) может иметь не более одного корня. Учитывая свойства кубической функции, график \(f(x)\) при некотором фиксированном \(a\) будет выглядеть следующим образом:


Значит, для того, чтобы уравнение имело корень из отрезка \([-1;0]\) , необходимо: \[\begin{cases} f(0)\geqslant 0\\ f(-1)\leqslant 0 \end{cases} \Rightarrow \begin{cases} a(a^2+3)\leqslant 0\\ (a+2)(a^2+a+4)\geqslant 0 \end{cases} \Rightarrow \begin{cases} a\leqslant 0\\ a\geqslant -2 \end{cases} \Rightarrow -2\leqslant a\leqslant 0\]

Таким образом, \(a\in [-2;0]\) .

Ответ:

\(a\in [-2;0]\) .

Задание 6 #2949

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \[(\sin^2x-5\sin x-2a(\sin x-3)+6)\cdot (\sqrt2a+8x\sqrt{2x-2x^2})=0\]

имеет корни.

(Задача от подписчиков)

ОДЗ уравнения: \(2x-2x^2\geqslant 0 \quad\Leftrightarrow\quad x\in \) . Следовательно, для того, чтобы уравнение имело корни, нужно, чтобы хотя бы одно из уравнений \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad {\small{\text{или}}}\quad \sqrt2a+8x\sqrt{2x-2x^2}=0\] имело решения на ОДЗ.

1) Рассмотрим первое уравнение \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sin x=2a+2\\ &\sin x=3\\ \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \sin x=2a+2\] Данное уравнение должно иметь корни на \(\) . Рассмотрим окружность:

Таким образом, мы видим, что для любых \(2a+2\in [\sin 0;\sin 1]\) уравнение будет иметь одно решение, а для всех остальных – не будет иметь решений. Следовательно, при \(a\in \left[-1;-1+\sin 1\right]\) уравнение имеет решения.

2) Рассмотрим второе уравнение \[\sqrt2a+8x\sqrt{2x-2x^2}=0 \quad\Leftrightarrow\quad 8x\sqrt{x-x^2}=-a\]

Рассмотрим функцию \(f(x)=8x\sqrt{x-x^2}\) . Найдем ее производную: \ На ОДЗ производная имеет один ноль: \(x=\frac34\) , который к тому же является точкой максимума функции \(f(x)\) .
Заметим, что \(f(0)=f(1)=0\) . Значит, схематично график \(f(x)\) выглядит так:

Следовательно, для того, чтобы уравнение имело решения, нужно, чтобы график \(f(x)\) пересекался с прямой \(y=-a\) (на рисунке изображен один из подходящих вариантов). То есть нужно, чтобы \ . При этих \(x\) :

Функция \(y_1=\sqrt{x-1}\) является строго возрастающей. Графиком функции \(y_2=5x^2-9x\) является парабола, вершина которой находится в точке \(x=\dfrac{9}{10}\) . Следовательно, при всех \(x\geqslant 1\) функция \(y_2\) также строго возрастает (правая ветвь параболы). Т.к. сумма строго возрастающих функций есть строго возрастающая, то \(f_a(x)\) – строго возрастает (константа \(3a+8\) не влияет на монотонность функции).

Функция \(g_a(x)=\dfrac{a^2}{x}\) при всех \(x\geqslant 1\) представляет собой часть правой ветви гиперболы и является строго убывающей.

Решить уравнение \(f_a(x)=g_a(x)\) - значит найти точки пересечения функций \(f\) и \(g\) . Из их противоположной монотонности следует, что уравнение может иметь не более одного корня.

При \(x\geqslant 1\) \(f_a(x)\geqslant 3a+4, \ \ \ 0. Следовательно, уравнение будет иметь единственное решение в том случае, если:


\\cup

Ответ:

\(a\in (-\infty;-1]\cup}