Биографии Характеристики Анализ

Построение прямой на определенном расстоянии от точки. Определение расстояний

Определение расстояний

Расстояния от точки до точки и от точки до прямой

Расстояние от точки до точки определяется длиной отрезка прямой, соединяющей эти точки. Как было показано выше, эту задачу можно решить либо методом прямоугольного треугольника, либо способом замены плоскостей проекций, переводя отрезок в положение линии уровня.

Расстояние от точки до прямой измеряется отрезком перпендикуляра, проведенного из точки к прямой. Отрезок этого перпендикуляра изображается в натуральную величину на плоскости проекций в том случае, если он проведен к проецирующей прямой. Таким образом, сначала прямую необходимо перевести в проецирующее положение, а затем из заданной точки опустить на нее перпендикуляр. На рис. 1 показано решение этой задачи. Для перевода прямой общего положения АВ в положение прямой уровня проводят x14 IIА1 В1 . Затем АВ переводят в проецирующее положение введением дополнительной плоскости проекций П5 , для чего проводят новую ось проекций х45 \А4 В4 .

Рисунок 1

Аналогично точкам А и В, на плоскость проекций П5 проецируют точку М.

Проекция К5 основания К перпендикуляра, опущенного из точки М на прямую АВ, на плоскости проекций П5 совпадет с соответствующими проекциями точек

А и В. Проекция М5 К5 перпендикуляра МК есть натуральная величина расстояния от точки М до прямой АВ.

В системе плоскостей проекций П4 /П5 перпендикуляр МК будет линией уровня, поскольку лежит в плоскости, параллельной плоскости проекций П5 . Поэтому его проекция М4 К4 на плоскость П4 параллельна x45 , т.е. перпендикулярна проекции А4 В4 . Эти условия определяют положение проекции К4 основания перпендикуляра К, которое находят, проводя из М4 прямую параллельно х45 до пересечения с проекцией А4 В4 . Остальные проекции перпендикуляра находят путем проецирования точки К на плоскости проекций П1 и П2 .

Расстояние от точки до плоскости

Решение этой задачи показано на рис. 2. Расстояние от точки М до плоскости (АВС) измеряется отрезком перпендикуляра, опущенного из точки на плоскость.

Рисунок 2

Так как перпендикуляр к проецирующей плоскости есть линия уровня, то переведем в это положение заданную плоскость, в результате чего на новой введенной плоскости проекций П4 получим вырожденную проекцию С4 В4 плоскости ABC. Далее на П4 проецируем точку М. Натуральная величина расстояния от точки М до плоскости определяется отрезком перпендикуляра

[МК]=[М4 К4 ]. Остальные проекции перпендикуляра строятся так же, как и в предыдущей задаче, т.е. с учетом того, что отрезок МК в системе плоскостей проекций П1 /П4 является линией уровня и его проекция М1 К1 параллельна оси

х14 .

Расстояние между двумя прямыми

Кратчайшее расстояние между скрещивающимися прямыми измеряется величиной отрезка общего перпендикуляра к ним, отсекаемого этими прямыми. Задача решается выбором (в результате двух последовательных замен) плоскости проекций, перпендикулярной одной из скрещивающихся прямых. В этом случае искомый отрезок перпендикуляра будет параллелен выбранной плоскости проекций и изобразится на ней без искажения. На рис. 3 показаны две скрещивающиеся прямые, заданные отрезками АВ и CD.

Рисунок 3

Прямые в начале спроецированы на плоскость проекций П4 , параллельную одной (любой) из них, например АВ, и перпендикулярную П1 .

На плоскости проекций П4 отрезок АВ изобразится без искажения. Затем отрезки проецируют на новую плоскость П5 перпендикулярную той же прямой АВ и плоскости П4 . На плоскости проекций П5 проекция перпендикулярного ей отрезка АВ вырождается в точку A5 =B5 , а искомая величина N5 M5 отрезка NM перпендикулярна C5 D5 и изображается в натуральную величину. При помощи соответствующих линий связи строят проекции отрезка MN на первоначальном

чертеже. Как было показано ранее, проекция N4 M4 искомого отрезка на плоскость П4 параллельна оси проекций x45 , так как он в системе плоскостей проекций П4 /П5 является линией уровня.

Задача по определению расстояния D между двумя параллельными прямыми АВ к CD - частный случай предыдущей (рис. 4).

Рисунок 4

Двойной заменой плоскостей проекций параллельные прямые переводят в проецирующее положение, в результате чего на плоскости проекций П5 будем иметь две вырожденные проекции А5 = В5 и С5 = D5 прямых АВ и CD. Расстояние между ними D будет равно его натуральной величине.

Расстояние от прямой до параллельной ей плоскости измеряется отрезком перпендикуляра, опущенного из любой точки прямой на плоскость. Поэтому достаточно плоскость общего положения преобразовать в положение проецирующей плоскости, взять напрямой точку, и решение задачи будет сведено к определению расстояния от точки до плоскости.

Чтобы определить расстояние между параллельными плоскостями, надо перевести их в проецирующее положение и построить перпендикуляр к вырожденным проекциям плоскостей, отрезок которого между ними и будет искомой величиной расстояния.

155*. Определить натуральную величину отрезка АВ прямой общего положения (рис. 153, а).

Решение. Как известно, проекция отрезка прямой на какой-либо плоскости равна самому отрезку (с учетом масштаба чертежа), если он параллелен этой плоскости

(рис. 153, б). Из этого следует, что путем преобразования чертежа надо добиться параллельности данного отрезка пл. V или пл. Н или же дополнить систему V, Н еще одной плоскостью, перпендикулярной к пл. V или к пл. H и в то же время параллельной данному отрезку.

На рис. 153, в показано введение дополнительной плоскости S, перпендикулярной к пл. H и параллельной заданному отрезку АВ.

Проекция a s b s равна натуральной величине отрезка AB.

На рис. 153, г показан другой прием: отрезок АВ повернут вокруг прямой, проходящей через точку В и перпендикулярной к пл. Н, до положения, параллельного

пл. V. При этом точка В остается на месте, а точка А занимает новое положение А 1 . В новом положении горизонт. проекция а 1 b || оси х. Проекция a" 1 b" равна натуральной величине отрезка АВ.

156. Дана пирамида SABCD (рис. 154). Определить натуральную величину ребер пирамиды AS и CS, используя способ перемены плоскостей проекций, и ребер BS и DS, используя способ вращения, причем взять ось вращения перпендикулярно к пл. H.

157*. Определить расстояние от точки А до прямой ВС (рис. 155, а).

Решение. Расстояние от точки до прямой измеряется отрезком перпендикуляра, проведенного из точки на прямую.

Если прямая перпендикулярна к какой-либо плоскости (рис. 155,6), то расстояние от точки до прямой измеряется расстоянием между проекцией точки и точкой- проекцией прямой на этой плоскости. Если прямая занимает в системе V, H общее положение, то, чтобы определить расстояние от точки до прямой способом перемены плоскостей проекций, надо ввести в систему V, H еще две дополнительные плоскости.

Сначала (рис. 155, в) вводим пл. S, параллельную отрезку ВС (новая ось S/H параллельна проекции bс), и строим проекции b s c s и a s . Затем (рис. 155, г) вводим еще пл. Т, перпендикулярную к прямой ВС (новая ось T/S перпендикулярна к b s с s). Строим проекции прямой и точки - с t (b t) и a t . Расстояние между точками a t и с t (b t) равно расстоянию l от точки А до прямой ВС.

На рис. 155, д эта же задача выполнена с помощью способа вращения в той его форме, которую называют способом параллельного перемещения. Сначала прямую ВС и точку А, сохраняя неизменным их взаимное положение, поворачиваем вокруг некоторой (не обозначенной на чертеже) прямой, перпендикулярной к пл. H, так, чтобы прямая ВС расположилась параллельно пл. V. Это равносильно перемещению точек А, В, С в плоскостях, параллельных пл. H. При этом горизонт. проекция заданной системы (BC + A) не изменяется ни по величине, ни по конфигурации, лишь изменяется ее положение относительно оси х. Располагаем горизонт. проекцию прямой ВС параллельно оси х (положение b 1 c 1) и определяем проекцию a 1 , откладывая c 1 1 1 = с-1 и а 1 1 1 = а-1, причем a 1 1 1 ⊥ c 1 1 1 . Проведя прямые b"b" 1 , a"a" 1 , с"с" 1 параллельно оси х, находим на них фронт. проекции b" 1 ,а" 1 , с" 1 . Далее, перемещаем точки В 1 , С 1 и A 1 в плоскостях, параллельных пл. V (также не изменяя их взаимного расположения), так, чтобы получить В 2 С 2 ⊥ пл. H. При этом фронту проекция прямой расположится перпендикулярно к оси x,b 2 c" 2 = b" 1 с" 1 , а для построений проекции а" 2 надо взять b" 2 2" 2 = b" 1 2" 1 , провести 2"a" 2 ⊥ b" 2 с" 2 и отложить а" 2 2" 2 = а" 1 2" 1 . Теперь, проведя с 1 с 2 и а 1 а 2 || х 1 получим проекции b 2 с 2 и а 2 и искомое расстояние l от точки А до прямой ВС. Определить расстояние от А до ВС можно, повернув плоскость, определяемую точкой А и прямой ВС, вокруг горизонтали этой плоскости до положения Т || пл. H (рис. 155, е).

В плоскости, задаваемой точкой А и прямой ВС, проводим горизонталь А-1 (рис. 155, ж) и поворачиваем вокруг нее точку В. Точка В перемещается в пл. R (заданной на чертеже следом R h), перпендикулярной к А-1; в точке О находится центр вращения точки В. Определяем теперь натуральную величину радиуса вращения ВО, (рис. 155, в). В требуемом положении, т. е. когда пл. Т, определяемая точкой А и прямой ВС, станет || пл. H, точка В получится на R h на расстоянии Оb 1 от точки О (может быть и другое положение на том же следе R h , но по другую сторону от О). Точка b 1 - это горизонт. проекция точки В после перемещения ее в положение В 1 в пространстве, когда плоскость, определяемая точкой А и прямой ВС, заняла положение Т.

Проведя (рис. 155, и) прямую b 1 1, получаем горизонт. проекцию прямой ВС, уже расположенной || пл. H в одной плоскости с А. В этом положении расстояние от а до b 1 1 равно искомому расстоянию l. Плоскость Р, в которой лежат заданные элементы, можно совместить с пл. H (рис. 155, к), повернув пл. Р вокругее горизонт. следа. Перейдя от задания плоскости точкой А и прямой ВС к заданию прямыми ВС и А-1 (рис. 155, л), находим следы этих прямых и проводим через них следы Р ϑ и P h . Строим (рис. 155, м) совмещенное с пл. H положение фронт. следа - P ϑ0 .

Через точку а проводим горизонт. проекцию фронтали; совмещенная фронталь проходит через точку 2 на следе Р h параллельно Р ϑ0 . Точка А 0 - совмещенное с пл. H положение точки А. Аналогично находим точку В 0 . Прямая ВС в совмещенном с пл. H положении проходит через точку В 0 и точку m (горизонт. след прямой).

Расстояние от точки A 0 до прямой В 0 С 0 равно искомому расстоянию l.

Можно выполнить указанное построение, найдя только один след Р h (рис. 155, н и о). Все построение аналогично повороту вокруг горизонтали (см. рис. 155, ж, в, и): след Р h - это одна из горизонталей пл. Р.

Из приведенных для решения данной задачи способов преобразования чертежа предпочтительным является способ вращения вокруг горизонтали или фронтали.

158. Дана пирамида SABC (рис. 156). Определить расстояния:

а) от вершины В основания до его стороны АС способом параллельного перемещения;

б) от вершины S пирамиды до сторон ВС и АВ основания способом вращения вокруг горизонтали;

в) от вершины S до стороны AС основания способом перемены плоскостей проекций.


159. Дана призма (рис. 157). Определить расстояния:

а) между ребрами AD и CF способом перемены плоскостей проекций;

б) между ребрами BE и CF вращением вокруг фронтали;

в) между ребрами AD и BE способом параллельного перемещения.

160. Определить натуральную величину четырехугольника ABCD (рис. 158) совмещением с пл. Н. Пользоваться только горизонтальным следом плоскости.

161*. Определить расстояние между скрещивающимися прямыми АВ и CD (рис. 159, а) и построить проекции общего к ним перпендикуляра.

Решение. Расстояние между скрещивающимися прямыми измеряется отрезком (MN) перпендикуляра к обеим прямым (рис. 159, б). Очевидно, если одну из прямых расположить перпендикулярно к какой-либо пл. Т, то

отрезок MN перпендикуляра к обеим прямым окажется параллельным пл. Т него проекция на этой плоскости отобразит искомое расстояние. Проекция прямого угла менаду MN н АВ на пл. Т оказывается также прямым углом между m t n t и а t b t , так как одна из сторон прямого угла AMN, а именно MN. параллельна пл. Т.

На рис. 159, в и г искомое расстояние l определено способом перемены плоскостей проекций. Сначала вводим дополнительную пл. проекций S, перпендикулярную к пл. H и параллельную прямой CD (рис. 159, в). Затем вводим еще одну дополнительную пл. Т, перпендикулярную к пл. S и перпендикулярную к той же прямой CD (рис. 159, г). Теперь можно построить проекцию общего перпендикуляра проведя m t n t из точки c t (d t) перпендикулярно к проекции a t b t . Точки m t и n t - проекции точек пересечения этого перпендикуляра с прямыми АВ и CD. По точке m t (рис. 159, д) находим m s на a s b s: проекция m s n s должна быть параллельна оси Т/S. Далее, по m s и n s находим m и n на ab и cd, а по ним m" и n" на а"b" и c"d".

На рис. 159, в показано решение этой задачи по способу параллельного перемещений. Сначала ставим прямую CD параллельно пл. V: проекция c 1 d 1 || х. Далее перемещаем прямые CD и АВ из положений C 1 D 1 и А 1 В 1 в положения С 2 B 2 и А 2 В 2 так, чтобы С 2 D 2 расположилась перпендикулярно Н: проекция с" 2 d" 2 ⊥ х. Отрезок искомого перпендикуляра располагается || пл. H, и, следовательно, m 2 n 2 выражает искомое расстояние l между АВ и CD. Находим положение проекций m" 2 , и n" 2 на а" 2 b" 2 и c" 2 d" 2 , затем проекций и m 1 и m" 1 , n 1 и n" 1 , наконец, проекций m" и n", m и n.

162. Дана пирамида SABC (рис. 160). Определить расстояние между ребром SB и стороной АС основания пирамиды и построить проекции общего перпендикуляра к SB и АС, применив способ пере-мены плоскостей проекций.


163. Дана пирамида SABC (рис. 161). Определить расстояние между ребром SH и стороной ВС основания пирамиды и построить проекции общего перпендикуляра к SX и ВС, применив способ параллельного перемещения.

164*. Определить расстояние от точки А до плоскости в случаях, когда плоскость задана: а) треугольником BCD (рис. 162, а); б) следами (рис. 162, б).

Решение. Как известно, расстояние от точки до плоскости измеряется величиной перпендикуляра, проведенного из точки на плоскость. Это расстояние проецируется на какую-либо пл. проекций в натуральную величину, если данная плоскость перпендикулярна к пл. проекций (рис. 162, в). Добиться такого положения можно, преобразуя чертеж, например, способом перемены пл. проекций. Введем пл. S (рис. 16ц, г), перпендикулярную к пл. треугольника BCD. Для этого проводим в пл. треугольника горизонталь В-1 и располагаем ось проекций S перпендикулярно к проекции b-1 горизонтали. Строим проекции точки и плоскости - а s и отрезок c s d s . Расстояние от a s до c s d s равно искомому расстоянию l точки до плоскости.

На рио. 162, д применен способ параллельного перемещения. Перемещаем всю систему до тех пор, пока горизонталь В-1 плоскости не станет перпендикулярна к плоскости V: проекция b 1 1 1 должна быть перпендикулярна к оси x. В этом положении плоскость треугольника станет фронтально-проецирующей, и расстояние l от точки А до нее получится на пл. V без искажения.


На рис. 162, б плоскость задана следами. Вводим (рис. 162, е) дополнительную пл. S, перпендикулярную к пл. P: ось S/Н перпендикулярна к Р h . Дальнейшее ясно из чертежа. На рис. 162, ж задача решена при помощи одного перемещения: пл. Р переходит в положение Р 1 , т. е. становится фронтально-проецирующей. След. Р 1h перпендикулярен к оси х. Строим в этом положении плоскости фронт. след горизонтали - точку n" 1 ,n 1 . След P 1ϑ пройдет через Р 1x и n 1 . Расстояние от a" 1 , до Р 1ϑ равно искомому расстоянию l.

165. Дана пирамида SABC (см. рис. 160). Определить расстояние от точки А до грани SBC пирамиды, применив способ параллельного перемещения.

166. Дана пирамида SABC (см. рис. 161). Определить высоту пирамиды, применив способ параллельного перемещения.

167*. Определить расстояние между скрещивающимися прямыми АВ и CD (см.рис. 159,а) как расстояние между параллельными плоскостями, проведенными через эти прямые.

Решение. На рис. 163, а показаны параллельные между собой плоскости Р и Q, из которых пл. Q проведена через CD параллельно АВ, а пл. Р - через АВ параллельно пл. Q. Расстояние между такими плоскостями и считается расстоянием между скрещивающимися прямыми АВ и CD. Однако можно ограничиться построением только одной плоскости, например Q, параллельно АВ, а затем определить расстояние хотя бы от точки А до этой плоскости.

На рис. 163, в показана плоскость Q, проведенная через CD параллельно АВ; в проекциях проведено с"е" || а"b" и се || аb. Применяя способ перемены пл. проекций (рис. 163, в), введем дополнительную пл. S, перпендикулярную к пл. V и в то же время


перпендикулярную к пл. Q. Чтобы провести ось S/V, берем в этой плоскости фронталь D-1. Теперь проводим S/V перпендикулярно к d"1" (рис. 163, в). Пл. Q изобразится на пл. S в виде прямой с s d s . Остальное ясно из чертежа.

168. Дана пирамида SABC (см. рис, 160). Определить расстояние между ребрами SC и AB.Применить: 1) способ перемены пл. проекций, 2) способ параллельного перемещения.

169*. Определить расстояние между параллельными плоскостями, из которых одна задана прямыми АВ и АС, а другая - прямыми DE и DF (рис. 164, а). Выполнить также построение для случая, когда плоскости заданы следами (рис. 164, б).

Решение. Расстояние (рис. 164, в) между параллельными плоскостями можно определить, проведя перпендикуляр из любой точки одной плоскости на другую плоскость. На рис. 164, г введена дополнительная пл. S перпендикулярно к пл. Н и к обеим данным плоскостям. Ось S.H перпендикулярна к горизонт. проекции горизонтали, проведенной в одной из плоскостей. Строим проекцию этой плоскости и точки В другой плоскости на пл. 5. Расстояние точки d s до прямой l s a s равно искомому расстоянию между параллельными плоскостями.

На рис. 164, д дано другое построение (по способу параллельного перемещения). Для того чтобы плоскость, выраженная пересекающимися прямыми АВ и АС,оказалась перпендикулярна к пл. V, горизонт. проекцию горизонтали этой плоскости ставим перпендикулярно к оси х: 1 1 2 1 ⊥ х. Расстояние между фронт. проекцией d" 1 точки D и прямой а" 1 2" 1 (фронт. проекцией плоскости) равно искомому расстоянию между плоскостями.

На рис. 164, е показано введение дополнительной пл. S, перпендикулярной к пл.H и к данным плоскостям Р и Q (ось S/H перпендикулярна к следам Р h , и Q h). Строим следы Р s , и Q s . Расстояние между ними (см. рис. 164, в) равно искомому расстоянию l между плоскостями Р и Q.

На рис. 164, ж показано перемещение плоскостей Р 1 н Q 1 , в положение P 1 и Q 1 , когда горизонт. следы оказываются перпендикулярными к оси x. Расстояние между новыми фронт. следами P 1ϑ и Q 1ϑ равно искомому расстоянию l.

170. Дан параллелепипед ABCDEFGH (рис. 165). Определить расстояния: а) между основаниями параллелепипеда - l 1 ; б) между гранями ABFE и DCGH - l 2 ; в) между гранями ADHE и BCGF-l 3 .

К таким задачам относятся: задачи на определение расстояний от точки до прямой, до плоскости, до поверхности; между параллельными и скрещивающимися прямыми; между параллельными плоскостями и т. п.

Все эти задачи объединяют три обстоятельства:

во-первых , поскольку кратчайшим расстоянием между такими фигурами является перпендикуляр, то все они сводятся к построению взаимно перпендикулярных прямой и плоскости.

во-вторых , в каждой из этих задач необходимо определять натуральную длину отрезка, то есть решать вторую основную метрическую задачу.

в-третьих , это сложные по составу задачи, они решаются в несколько этапов, и на каждом этапе решается отдельная, небольшая конкретная задача.

Рассмотрим решение одной из таких задач.

Задача: Определить расстояние от точки М до прямой общего положения а (рис. 4-26).

Алгоритм:

1 этап : Расстояние от точки до прямой есть перпендикуляр. Поскольку прямая а - общего положения, то для построения перпендикуляра к ней необходимо решать задачу, аналогичную приведённой на стр. М4-4 данного модуля, то есть вначале через точку М провести плоскость S , перпендикулярную а . Задаём эту плоскость, как обычно, h Ç f , при этом h 1 ^ a 1 , a f 2 ^ a 2

2 этап : Для построения перпендикуляра необходимо найти для него вторую точку. Это будет точка К , принадлежащая прямой а . Для её нахождения нужно решить позиционную задачу, то есть, найти точку пересечения прямой а с плоскостью S . Решаем 1ГПЗ по третьему алгоритму (рис. 4-28):

Вводим плоскость - посредник Г , Г ^^ П 1 , Г É а Þ Г 1 = а 1 ;

- Г Ç S = b, Г ^^ П 1 Þ b 1 (1 1 2 1) = Г 1 , b Ì S Þ b 2 (1 2 2 2) Ì S 2 .

- b 2 Ç a 2 = K 2 Þ K 1 .

3 этап : Находим натуральную величину МК методом прямоугольного треугольника

Полное решение задачи показано на рис. 4-30.

Алгоритмическая запись решения:

1. S ^ а, S = h Ç f = M, h 1 ^ a 1 , f 2 ^ a 2 .

2. Вводим плоскость - посредник Г ,

- Г ^^ П 1 , Г É а Þ Г 1 = а 1 ;

- Г Ç S = b, Г ^^ П 1 Þ b 1 (1 1 2 1) = Г 1 , b Ì S Þ b 2 (1 2 2 2) Ì S 2 .

- b 2 Ç a 2 = K 2 Þ K 1 .

3. Находим натуральную величину МК .

Выводы:

1. Решение всех метрических задач сводится к решению первой основной метрической задачи - на взаимную перпендикулярность прямой и плоскости.

2. При определении расстояний между геометрическими фигурами всегда используется вторая основная метрическая задача - на определение натуральной величины отрезка.

3. Плоскость, касательную к поверхности в одной точке, можно задать двумя пересекающимися прямыми, каждая из которых является касательной к данной поверхности.

Контрольные вопросы

1. Какие задачи называются метрическими?

2. Какие две основные метрические задачи Вы знаете?

3. Чем выгоднее задать плоскость, перпендикулярную прямой общего положения?

4. Как называется плоскость, перпендикулярная одной из линий уровня?

5. Как называется плоскость, перпендикулярная одной из проецирующих прямых?

6. Что называется плоскостью, касательной к поверхности?

Требуется определить расстояние от точки до прямой. Общий план решения задачи:

- через заданную точку проводим плоскость, перпендикулярную заданной прямой;

- находим точку встречи прямой

с плоскостью;

- определяем натуральную величину расстояния.

Через заданную точку проводим плоскость, перпендикулярную прямой АВ . Плоскость задаем пересекающимися горизонталью и фронталью, проекции которых строим согласно алгоритму перпендикулярности (обратная задача).

Находим точку встречи прямой АВ с плоскостью. Это типовая задача о пересечении прямой с плоскостью (см. разд. «Пересечение прямой с плоскостью»).

Перпендикулярность плоскостей

Плоскости взаимно перпендикулярны, если одна из них содержит прямую, перпендикулярную другой плоскости. Поэтому для проведения плоскости, перпендикулярной другой плоскости, необходимо сначала провести перпендикуляр к плоскости, а затем через него провести искомую плоскость. На эпюре плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна плоскости ABC .

Если плоскости заданы следами, то возможны следующие случаи:

- если две перпендикулярные плоскости являются проецирующими, то их собирательные следы взаимно перпендикулярны;

- плоскость общего положения и проецирующая плоскость перпендикулярны, ссли собирательный след проецирующей плоскости перпендикулярен одноименному слсду плоскости общего положения;

- если одноименные следы двух плоскостей общего положения перпендикулярны, то плоскости не перпендикулярны друг другу.

Метод замены плоскостей проекций

замены плоскостей проекций

заключается в том, что плоскости про-

екций заменяются другими плоскос-

так, чтобы

геометрический

объект в новой системе плоскостей

проекций стал занимать частное -по

ложение, что позволяет упростить ре-

шение задач. На пространственном ма-

кете показана замена плоскостиV на

новую V 1 . Показано также проециро-

вание точки А на исходные плоскости

проекций и новую плоскость проекций

V 1 . При замене плоскостей проекций

ортогональность системы сохраняется.

Преобразуем пространственный макет в плоскостной путем поворота плоскостей по стрелкам. Получим три плоскости проекций, совмещенные в одну плоскость.

Затем удалим плоскости проекций и

проекции

Из эпюра точки следует правило: при

замене V наV 1 для того, чтобы по-

фронтальную

цию точки, необходимо от новой оси

отложить аппликату точки, взятую из

предыдущей системы плоскостей про-

екций. Аналогично можно доказать,

замене Н наН 1 необходимо

отложить ординату точки.

Первая типовая задача метода замены плоскостей проекций

Первая типовая задача метода замены плоскостей проекций – это преобразование прямой общего положения сначала в линию уровня, а затем в проецирующую прямую. Эта задача является одной из основных, так как применяется при решении других задач, например, при определении расстояния между параллельными и скрещивающимися прямыми, при определении двугранного угла и т.д.

Производим замену V → V 1 .

ось проводим параллельно горизон-

проекции.

фронтальную проекцию прямой, для

откладываем

аппликаты точек. Новая фронтальная

проекция прямой является НВ прямой.

Сама прямая становится фронталью.

Определяется угол α °.

Производим замену Н → Н 1 . Новую ось проводим перпендикулярно фронтальной проекции прямой. Строим новую горизонтальную проекцию прямой, для чего от новой оси откладываем ординаты прямой, взятые из предыдущей системы плоскостей проекций. Прямая становится горизон- тально-проецирующей прямой и «вырождается» в точку.

Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую. В начертательной геометрии она определяется графическим путем по приведенному ниже алгоритму.

Алгоритм

  1. Прямую переводят в положение, в котором она будет параллельна какой-либо плоскости проекции. Для этого применяют методы преобразования ортогональных проекций.
  2. Из точки проводят перпендикуляр к прямой. В основе данного построения лежит теорема о проецировании прямого угла.
  3. Длина перпендикуляра определяется путем преобразования его проекций или с использованием способа прямоугольного треугольника.

На следующем рисунке представлен комплексный чертеж точки M и прямой b, заданной отрезком CD. Требуется найти расстояние между ними.

Согласно нашему алгоритму, первое, что необходимо сделать, это перевести прямую в положение, параллельное плоскости проекции. При этом важно понимать, что после проведенных преобразований фактическое расстояние между точкой и прямой не должно измениться. Именно поэтому здесь удобно использовать метод замены плоскостей , который не предполагает перемещение фигур в пространстве.

Результаты первого этапа построений показаны ниже. На рисунке видно, как параллельно b введена дополнительная фронтальная плоскость П 4 . В новой системе (П 1 , П 4) точки C"" 1 , D"" 1 , M"" 1 находятся на том же удалении от оси X 1 , что и C"", D"", M"" от оси X.

Выполняя вторую часть алгоритма, из M"" 1 опускаем перпендикуляр M"" 1 N"" 1 на прямую b"" 1 , поскольку прямой угол MND между b и MN проецируется на плоскость П 4 в натуральную величину. По линии связи определяем положение точки N" и проводим проекцию M"N" отрезка MN.

На заключительном этапе нужно определить величину отрезка MN по его проекциям M"N" и M"" 1 N"" 1 . Для этого строим прямоугольный треугольник M"" 1 N"" 1 N 0 , у которого катет N"" 1 N 0 равен разности (Y M 1 – Y N 1) удаления точек M" и N" от оси X 1 . Длина гипотенузы M"" 1 N 0 треугольника M"" 1 N"" 1 N 0 соответствует искомому расстоянию от M до b.

Второй способ решения

  • Параллельно CD вводим новую фронтальную плоскость П 4 . Она пересекает П 1 по оси X 1 , причем X 1 ∥C"D". В соответствии с методом замены плоскостей определяем проекции точек C"" 1 , D"" 1 и M"" 1 , как это изображено на рисунке.
  • Перпендикулярно C"" 1 D"" 1 строим дополнительную горизонтальную плоскость П 5 , на которую прямая b проецируется в точку C" 2 = b" 2 .
  • Величина расстояния между точкой M и прямой b определяется длиной отрезка M" 2 C" 2 , обозначенного красным цветом.

Похожие задачи: