Биографии Характеристики Анализ

Приближенные формулы для вычисления коэффициентов активности f при разной ионной силе τ раствора. Правила питания: дневные потребности в калориях, энергетический баланс

Неподчинение растворов сильных электролитов закону действия масс, а также законам Рауля и Вант-Гоффа объясняется тем, что эти законы применяются к идеальным газовым и жидким систе­мам. При выводе и формулировке этих законов не учитывались силовые поля частиц. В 1907 г. Льюис предложил внести в науку понятие «активность».

Активность (α) учитывает взаимное притяжение ионов, взаимодействие растворенного вещества с растворителем, присутствие других электролитов и явления, изменяющие подвижность ионов в растворе. Активностью называется эффективная (кажущаяся) концентрация вещества (иона), соответственно которой ионы проявляют себя в химических процессах в качестве реальной действующей массы. Активность для бесконечно разбавленных растворов равна молярной концентрации вещества: α = с и выражается в грамм ионах на литр.

Для реальных растворов вследствие сильного проявления межионных сил активность меньше молярной концентрации иона. Поэтому активность можно рассматривать как величину, характеризующую степень связанности частиц электролита. С понятием «активность» связано и другое понятие - «коэффициент активности» (f ), который характеризует степень отклонения свойств реальных растворов от свойств идеальных растворов; он является величиной, отражающей все происходящие в растворе явления, вызывающие понижение подвижности ионов и снижающие их химическую активность. Численно коэффициент активности равняется отношению активности к общей молярной концентрации иона:

f = a
c

а активность равна молярной концентрации, умноженной на коэффициент активности: α = cf.

Для сильных электролитов молярную концентрацию ионов (с) вычисляют, исходя из допущения полной диссоциации их в рас­творе. Физико-химики различают активную и аналитическую кон­центрацию ионов в растворе. Активной концентрацией называется концентрация свободных гидратированных ионов в растворе, а аналитической концентрацией - общая молярная концентра­ция ионов, определяемая, например, путем титрования.

Коэффициент активности ионов зависит не только от концентрации ионов данного электролита, но и от концентрации всех посто­ронних ионов, присутствующих в растворе. Величина коэффициен­та активности понижается с возрастанием ионной силы раствора.

Ионной силой раствора (m,) называется величина электрического поля в растворе, являющаяся мерой электростатического взаимодействия между всеми ионами в растворе. Она вычисляется по фор­муле, предложенной Г. Н. Льюисом и М. Ренделом в 1921 г.:

m = (c 1 Z 2 1 + c 2 Z 2 2 + ...... + c n Z 2 n)

где c 1 , c 2 и c n - молярные концентрации отдельных ионов, присутствующие в растворе, a Z 2 1 , Z 2 2 и Z 2 n - их заряды, взятые в квадрате. Недиссоциированные молекулы, как не имеющие зарядов, в формулу подсчета ионной силы раствора не включаются.



Таким обраэом, ионная сила раствора равна полусумме произведений концентраций ионов на квадраты их зарядов, что можно выразить уравнением: µ = i · Z i 2

Рассмотрим несколько примеров.

Пример 1. Вычислить ионную силу 0,01 М раствора хлорида калия КС1.

0,01; Z K = Z Cl - = 1

Следовательно,

т. е. ионная сила разбавленного раствора бинарного электролита типа KtAn равна молярной концентрации электролита: m = с.

Пример 2. Вычислить ионную силу 0,005 М раствора нитрата бария Ва(NO 3) 2 .

Схема диссоциации: Ва(NO 3) 2 ↔ Ва 2+ + 2NO 3 -

[Ва 2+ ] = 0,005, = 2 · 0,005 = 0,01 (г-ион/л)

Следовательно,

Ионная сила разбавленного раствора электролита типа KtAn 2 и Kt 2 An равна: m = 3с.

Пример 3. Вычислить ионную силу 0,002 М раствора сульфата цинка ZnSO 4 .

0,002, Z Zn 2+ = Z SO 4 2- = 2

Отсюда, ионная сила раствора электролита типа Kt 2+ An 2- равна:m = 4с.

В общем виде для электролита типа Кt n + a Аn m - b ионную силу раствора можно вычислять по формуле: m= ( а · · п 2 + b · · т 2 ),

где а, b - индексы при ионах, а п + и т - - заряды ионов, и - концентрации ионов.

Если в растворе присутствует два или несколько электролитов, то вычисляется общая ионная сила раствора.

Примечание. В справочниках по химии даются дифференцированные коэффициенты активности отдельных ионов или же для групп ионов. (См.: Лурье Ю. Ю. Справочник по аналитической химии. М., 1971.)

С увеличением концентрации раствора при полной диссоциации молекул электролита количество ионов в растворе значительно »возрастает, что приводит к увеличению ионной силы раствора и значительному уменьшению коэффициентов активности ионов. Г. Н. Льюис и М. Рендель нашли закон ионной силы, согласно ко­торому коэффициенты активности ионов одной и той же зарядности одинаковые во всех разбавленных растворах, имеющих одинаковую ионную силу. Однако этот закон применим лишь к очень разбав­ленным водным растворам, с ионной силой до 0,02 г-ион/л. При даль­нейшем повышении концентрации, а следовательно, и ионной силы раствора начинаются отступления от закона ионной силы, вызыва­емые природой электролита (табл. 2.2).

Таблица 2.2 Приближенные значения коэффициентов активности при разной ионной силе

В настоящее время для аналитических вычислении пользуются таблицей приближенных значений коэффициентов активности.

Зависимость коэффициентов активности ионов от ионной силы раствора для очень разбавленных растворов электролитов вычисля­ется по приближенной формуле Дебая - Хюккеля:

lg f = - AZ 2 ,

где А - множитель, величина которого зависит от температуры (при 15°С, А = 0,5).

При значениях ионной силы раствора до 0,005 величина 1 + очень близка к единице. В этом случае формула Дебая - Хюккеля

приобретает более простой вид:

lg f = - 0,5 · Z 2 .

В качественном анализе, где приходится иметь дело со сложными смесями электролитов и где часто не требуется большой точности, при вычислении активностей ионов можно пользоваться таблицей 2.2.

Пример 4. Вычислить активность ионов в растворе, содержащем в 1 л 0,001 моль сульфата калия-алюминия.

1. Вычислим ионную силу раствора:

2. Находим приближенное значение коэффициентов активности данных ионов. Так, в рассматриваемом примере ионная сила равна 0,009. Наиболее близкой к ней ионной силой, указанной в таблице 2.2, является 0,01. Следовательно, без большой погрешности можно взять для ионов калия f K + = 0,90; для ионов алюминия f Al 3+ = 0,44, а для сульфат-ионов f SO 2- 4 = 0,67.

3. Вычислим активность ионов:

а K + = cf = 0,001· 0,90 = 0,0009 = 9,0· 10 -4 (г-ион/л)

a Al 3+ = cf = 0,001·0,44 = 0,00044 = 4,4 · 10 -4 (г-ион/л)

a SO 2- 4 = 2cf = 2 · 0,001· 0,67 = 0,00134 = 1,34 · 10 -3 (г-ион/л)

В тех случаях, когда требуются более строгие вычисления, коэффициенты активности находятся или по формуле Дебая - Хюккеля, или же путем интерполяции по таблице 2.2.

Решение примера 4 с использованием метода интер­поляции.

1. Находим коэффициент активности ионов калия f K + .

При ионной силе раствора, равной 0,005, f K + равен 0,925, а при ионной силе раствора, равной 0,01, f K + , равен 0,900. Следователь­но, разности ионной силы раствора m, равной 0,005, соответствует разность f K + , равная 0,025 (0,925-0,900), а разности ионной силы m, равной 0,004 (0,009 - 0,005), соответствует разность f K +, равная х.

Отсюда, х = 0,020. Следовательно, f K + = 0,925 - 0,020 = 0,905

2. Находим коэффициент активности ионов алюминия f Al 3+ . При ионной силе, равной 0,005, f Al 3+ равен 0,51, а при ионной силе, равной 0,01, f Al 3+ равен 0,44. Следовательно, разности ионной силы m, равной 0,005, соответствует разность f Al 3+ , равная 0,07 (0,51 - 0,44), а разности ионной силы m, равной 0,004, соответствует разность f Al 3+ равная х.

откуда х = 0,07·0,004/ 0,005 = 0,056

Значит, f Al 3+ = 0,510 - 0,056 = 0,454

Так же находим коэффициент активности сульфат-ионов.

Активность компонентов раствора - это концентрация компонентов, рассчитанная с учетом их взаимодействия в растворе. Термин «активность» был предложен в 1907 году американским ученым Льюисом в качестве величины, использование которой поможет сравнительно просто описать свойства реальных растворов.

Инструкция

Существуют разнообразные экспериментальные методы определения активности компонентов раствора. Например, по повышению температуры кипения исследуемого раствора. Если эта температура (обозначьте ее символом T) выше, чем температура кипения чистого растворителя (То), то натуральный логарифм активности растворителя вычисляется по следующей формуле: lnA = (-?H/RT0T) х?T. Где, ?Н – теплота испарения растворителя в температурном интервале между То и Т.

Можете определить активность компонентов раствора по понижению температуры замерзания исследуемого раствора. В этом случае, натуральный логарифм активности растворителя рассчитывается по следующей формуле: lnA = (-?H/RT0T) х?T, где, ?H – теплота замерзания раствора в интервале между температурой замерзания раствора (Т) и температурой замерзания чистого растворителя (То).

Рассчитайте активность с помощью метода изучения равновесия химической реакции с газовой фазой. Предположим, у вас проходит химическая реакция между расплавом оксида какого-нибудь металла (обозначьте его общей формулой МеО) и газом. Например: МеО + Н2 = Ме + Н2О - то есть оксид металла восстанавливается до чистого металла, с образованием воды в виде водяного пара.

В этом случае константа равновесия реакции рассчитывается следующим образом: Кр = (pH2O х Аме) / (рН2 х Амео), где p – парциальное давление паров водорода и воды соответственно, А – активности чистого металла и его оксида соответственно.

Вычислите активность методом вычисления электродвижущей силы гальванического элемента, образованного раствором или расплавом электролита. Этот способ считается одним из самых точных и надежных для определения активности.

Оборачиваемость капитала – это скорость прохождения денежными средствами различных стадий производства и обращения. Чем больше скорость обращения капитала, тем большую прибыль получит организация, что говорит о росте ее деловой активности.

Инструкция

Оборачиваемость активов в оборотах рассчитайте делением размера выручки на среднегодовую стоимость активов.

где А – среднегодовая стоимость активов (всего капитала)-
В – выручка за анализируемый период (год).

Найденный показатель укажет, какое количество оборотов совершают средства, вложенные в имущество организации за анализируемый период. При росте значения данного показателя повышается деловая активность фирмы.

Разделите длительность анализируемого периода на оборачиваемость активов, тем самым вы найдете длительность одного оборота. При анализе следует учесть, что чем меньше значение данного показателя, тем лучше для организации.

Для наглядности используйте таблицы.

Рассчитайте коэффициент закрепления оборотных активов, который равен средней сумме оборотных активов за анализируемый период, деленных на выручку организации.

Данный коэффициент говорит о том, сколько оборотных средств затрачено на 1 рубль реализованной продукции.

Теперь сделайте расчет продолжительности операционного цикла, который равен длительности оборота сырья и материалов, плюс длительность оборота готовой продукции, плюс длительность оборота незавершенного производства, а также длительность оборота дебиторской задолженности.

Данный показатель должен рассчитываться за несколько периодов. Если замечена тенденция к его росту, это говорит об ухудшении состояния деловой активности компании, т.к. при этом замедляется оборачиваемость капитала. Поэтому у компании повышаются потребности в денежных средствах, и она начинает испытывать финансовые затруднения.

Помните, что продолжительность финансового цикла - это продолжительность операционного цикла за минусом длительности оборота кредиторской задолженности.

Чем меньшее значение имеет данный показатель, тем выше деловая активность.

На оборачиваемость капитала влияет и коэффициент устойчивости экономического роста. Этот показатель считается по формуле:

(Чпр-Д)/ Ск

где Чпр - чистая прибыль компании;
Д – дивиденды;
Ск - собственный капитал.

Данный показатель характеризует средний темп роста развития организации. Чем выше его значение, тем лучше, так как это говорит о развитии предприятии, расширении и росте возможностей для повышения его деловой активности в последующих периодах.

Полезный совет

Понятие «активность» тесно связано с понятием «концентрация». Их взаимоотношение описывается формулой: В = А/С, где А – активность, С – концентрация, В – «коэффициент активности».

Любая физическая или умственная активность требует энергии, поэтому расчет дневной нормы калорий в день для женщины или мужчины должен учитывать не только пол, вес, но и образ жизни.

Сколько калорий нужно употребить за день

Мы ежедневно тратим энергию на метаболизм (обмен веществ в покое) и на движение (физическая нагрузка). Схематично это выглядит так:

Энергия = Е основного обмена + Е физической нагрузки

Энергия основного обмена, или базовый уровень метаболизма (БРМ) — Basal Metabolic Rate (BMR) — это энергия нужна для жизнедеятельности (метаболизма) организма без физической нагрузки. Базовый уровень метаболизма величина, что зависит от веса, роста и возраста человека. Чем выше человек, и чем больше его вес, тем больше энергии нужно для обмена веществ, тем выше базовый уровень метаболизма. И, наоборот, ниже, худее люди будут иметь более низкий базовый уровень метаболизма.

Для мужчин
= 88,362 + (13,397 * вес, кг) + (4,799 * рост, см) — (5,677 * возраст, годы)
Для женщин
= 447,593 + (9.247 * вес, кг) + (3,098 * рост, см) — (4.330 * возраст, годы)
Например, женщина с весом 70 кг, ростом 170 см, 28 лет, требует для основного обмена веществ (базового метаболизма)
= 447,593 + (9.247 * 70) + (3,098 *170) — (4.330 *28)
=447,593+647,29+526,66−121,24=1500,303 ккал

Еще можно свериться с таблицей: Суточные энергозатраты взрослого населения без физической активности согласно Норм физиологических потребностей населения в основных пищевых веществах и энергии.

Физически неактивный человек тратит 60−70% дневной энергии на основной обмен, а остальные 30−40% на физическую активность.

Как рассчитать общее количество энергии, расходуемой организмом в день

Напомним, что общая энергия — это сумма энергии основного обмена веществ (или базовый уровень метаболизма), и энергии, что идет для движения (физической активности).
Для вычисления общей энергии расходов с учетом физической нагрузки существует Коэффициент физической активности .

Что такое коэффициент физической активности (КФА)

Коэффициент физической активности (КФА) = Уровень физической активности — Physical Activity Level (PAL) — это соотношение общих энергозатрат при определенном уровне физической активности к величине основного обмена, или, проще, значение общей затраченной энергии разделить на базовый уровень метаболизма.

Чем интенсивнее физическая нагрузка, тем коэффициент физической активности будет выше.

  • Люди, которые очень мало двигаются имеют КФА = 1,2. Для них общая энергия, затрачиваемая организмом будет исчисляться: Е=БРМ*1,2
  • Люди, которые выполняют легкие упражнения 1−3 дня в неделю, имеют КФА = 1,375. Итак формула: Е=БРМ*1,375
  • Люди, выполняющие средней тяжести упражнения, а именно 3−5 дня в неделю, имеют КФА=1,55. Формула для расчета: Е=БРМ*1,55
  • Люди, которые выполняют тяжелые упражнения 6−7 дней в неделю, имеют КФА=1,725. Формула для расчета: Е=БРМ*1,725
  • Люди, которые выполняют очень тяжелые упражнения дважды в день, или работники с большими физическими нагрузками, имеют КФА=1,9. Соответственно формула для расчета: Е=БРМ*1,9

Итак, чтобы посчитать общее количество энергии потраченной за день, необходимо: величину основного обмена соответственно возрасту и весу (Базовый уровень метаболизма) умножить на коэффициент физической активности согласно группы физической активности (Уровень физической активности).

Что такое энергетический баланс? И когда я похудею?

Энергетический баланс — это разница между энергией, поступившей в организм, и энергией, которую организм потратил.

Равновесие в энергетическом балансе — это, когда энергия, поступившая с пищей в организм, равна энергии затраченной организмом. В такой ситуации вес остается стабильным.
Соответственно положительный энергетический баланс — это когда энергия, поступившая от потребленной пищи больше, чем энергия нужная для жизнедеятельности организма. В состоянии положительного энергетического баланса человек набирает лишние килограммы.

Отрицательный энергетический баланс — это, когда поступило меньше энергии, чем организм потратил. Чтобы похудеть необходимо создать отрицательный энергетический баланс.

Всесторонний анализ довольно многочисленных способов вычисления активности составляет один из главных разделов современной термодинамической теории растворов. Нужные сведения можно найти в специальных руководствах. Ниже кратко рассмотрены только некоторые простейшие методы определения активности:

Вычисление активности растворителей по давлению их насыщенных паров. Если достаточно изучены летучесть чистой фазы растворителя и ее уменьшение, вызываемое наличием растворенных веществ, то активность растворителя вычисляется прямо по отношению (10.44). Давление насыщенного пара растворителя часто существенно отличается от летучести Но опыт, да и теоретические соображения показывают, что отклонение давления пара от летучести (если говорить об отношении остается приблизительно одинаковым для растворов не слишком большой концентрации. Поэтому приближенно

где давление насыщенного пара над чистым растворителем, тогда как давление насыщенного пара растворителя над раствором. Поскольку понижение давления насыщенного пара над растворами хорошо изучено для многих растворителей, то соотношение оказалось практически одним из наиболее удобных для вычисления активности растворителей.

Вычисление активности растворенного вещества по равновесию в двух растворителях. Пусть вещество В растворено в двух не смешивающихся друг с другом растворителях . И допустим, что активность (как функция концентрации В) изучена; обозначим ее Тогда нетрудно вычислить активность того же вещества В в другом растворителе А для всех райновесных концентраций. Понятно, что при этом нужно исходить из равенства химических потенциалов вещества В в равновесных фазах Однако равенство потенциалов не означает, что равны активности. Действительно, стандартные состояния В в растворах не одинаковы; они различаются разной энергией взаимодействия частиц вещества В с растворителями и эти стандартные состояния, вообще говоря, не равновесны друг с другом. Поэтому не одинаковы и летучести В в этих стандартных состояниях Но для рассматриваемых нами равновесных концентраций и А летучести В в этих фазах тождественны равн Поэтому для всех равновесных концентраций отношение активностей обратно пропорционально отношению летучестей В в стандартных состояниях

Этот простой и удобный способ вычисления активности вещества в одном растворителе по активности того же вещества в другом растворителе становится неточным, если один из этих растворителей заметно смешивается с другим.

Определение активности металлов измерением электродвижущей силы гальванического элемента. Следуя Льюису [А - 16], поясним этот способна примере твердых растворов меди и серебра. Пусть один из электродов, гальванического элемента изготовлен из совершенно чистой меди, а другой

электрод - из твердого раствора меди и серебра интересующей нас концентрации меди. Вследствие неодинаковых значений химического потенциала меди в этих электродах возникает электродвижущая сила та, которая при валентности носителей тока электролита растворов окисной меди для закйсной меди связана с разностью химических потенциалов меди соотношением

где число Фарадея; активность чистой фазы меди Приняв во внимание численные значения (10.51) можно переписать так ):

Вычисление активности растворителя по активности растворенного вещества. Для бинарного раствора (вещества В в растворителе А) по уравнению Гиббса-Дюгема (7.81) при и с учетом (10.45)

Поскольку в данном случае то и поэтому

Прибавляя это соотношение к (10.52), получаем

Интегрируем это выражение от чистой фазы растворителя когда до концентрации растворенного вещества Учитывая, что для стандартного состояния растворителя находим

Таким образом, если известна зависимость активности растворенного вещества В от его мольной доли, то графическим интегрированием (10.52) можно вычислить активность растворителя.

Вычисление активности растворенного вещества по активности растворителя. Нетрудно убедиться, что для вычисления активности растворенного вещества получается формула

симметричная (10.52). Однако в данном случае оказывается, что графическое интегрирование трудно выполнить с удовлетворительной точностью.

Льюис нашел выход из этого затруднения [А - 16]. Он показал, что подстановка простой функции

приводит формулу (10.53) к виду, удобному для графического интегрирования:

Здесь число молей вещества В в растворителя А. Если молекулярный вес растворителя, то

Вычисление активности растворителя по точкам отвердевания раствора. Выше была рассмотрена зависимость активности от состава растворов, причем предполагалось, что температура и давление постоянны. Именно для анализа изотермических изменений состава растворов представление об активности наиболее полезно. Но в некоторых случаях важно знать, как изменяется активность с температурой. На использовании температурного изменения активности основан один из наиболее важных способов определения активностей - по температурам отвердевания растворов. В дифференциальной форме получить зависимость активности от температуры нетрудно. Для этого достаточно сопоставить работу изменения состава раствора при от стандартного состояния до концентрации с работой того же процесса при или же просто повторить рассуждения, приводящие для летучести к формуле (10.12).

Химический потенциал растворов аналитически определяется через активность в точности так же, как для чистых фаз через летучесть. Поэтому для активностей получается та же формула (10.12), в которой место занимает разность парциальных энтальпий компонента в рассматриваемом состоянии и в его стандартном состоянии:

Здесь производная по температуре берется при неизменном составе раствора и постоянном внешнем давлении. Если известны парциальные теплоемкости, то по соотношению можно принять что после подстановки в (10.54) и интегрирования приводит к формуле

Льюис показал на примерах [А - 16], что для металлических растворов приближенное уравнение (10.55) пригодно с точностью до нескольких процентов в интервале температур 300-600° К.

Применим формулу (10.54) к растворителю А бинарного раствора вблизи точки отвердевания раствора, т. е. считая, что Более высокую

точку плавления чистой твердой фазы растворителя обозначим через а понижение точки отвердевания раствора обозначим

Если в качестве стандартного состояния принять чистую твердую фазу, то величина будет означать приращение парциальной энтальпии одного моля растворителя при плавлении, т. е. парциальную теплоту

плавления Таким образом, по (10.54)

Если принять, что

где мольная теплота плавления чистого растворителя при теплоемкости вещества А в жидком и твердом состояниях, и если при интегрировании (10.56) воспользоваться разложением подынтегральной функции в ряд, то получается

Для воды как растворителя коэффициент при в первом члене правой части равен

Вычисление активности растворенного вещества по точкам отвердевания раствора. Подобно тому, как это было сделано при выводе формулы (10.52), воспользуемся уравнением Гиббса - Дюгема; применим его для бинарного раствора, но, в отличие от вывода формулы (10.52), не будем переходить от числа молей к мольным долям. Тогда получим

Совмещая это с (10.56), находим

Далее, будем иметь в виду раствор, содержащий указанные числа молей в растворителя, имеющего молекулярный вес В этом случае Заметим, что для растворов в воде коэффициент при в (10.58) получается равным Для интегрирования (10.58) вводят следуя Льюису, вспомогательную величину

(Для растворов не в воде, а в каком-либо другом растворителе вместо 1,86 подставляется соответствующее значение криоскопической константы.) В итоге получается [А - 16]

Активность радионуклида – это количество радиоактивного вещества, выраженное числом распадов атомных ядер в единицу времени.

Активность радионуклида в источнике А р определяется как отношение числа dN 0 спонтанных (самопроизвольных) ядерных превращений, происходящих в источнике (образце) за интервал времени dt :

А р = dN 0 / dt (5.12)

Единица активности радионуклида – беккерель (Бк). Беккерель равен активности радионуклида в источнике (образце), в котором за время 1с происходит одно спонтанное ядерное превращение.

Активность радионуклида А р (t) или число радиоактивных атомов нуклида N(t), уменьшается во времени t по экспоненциальному закону

А р (t)=А р 0 exp(-λt)=А р 0 exp(-0,693t/T 1/2) (5.13)

N(t)=N 0 exp(-λt)=N 0 exp(-0.693t/T 1/2) (5.14)

где А р 0, N 0 – активность радионуклида и число радиоактивных атомов нуклида в источнике в начальный момент времени t=0 соответственно; λ – постоянная распада – отношение доли ядер dN/N радионуклида, распадающихся за интервал времени dt, к этому интервалу времени: λ=-(1/N)(dN/dt); Т 1/2 - период полураспада радионуклида – время, в течение которого число ядер радионуклида в результате радиоактивного распада уменьшается в два раза; 0,693=ln2.

Из приведенных определений следует, что активность радионуклида А р связана с числом радиоактивных атомов в источнике в данный момент времени соотношением

А р =λN=0,693N/Т 1/2 (5.15)

Свяжем массу m радионуклида в граммах (без учета массы неактивного носителя) с его активностью А р в беккерелях. Число радиоактивных атомов N, соответствующих активности, определяется из формулы (5.15), где Т 1/2 выражен в секундах; масса одного атома в граммах m а =А/N А, где А – атомная масса, N А – постоянная Авогадро.

m = Nm а =(А р Т 1/2 /0,693)*(А/N А)=2*40*10 -24 АТ 1/2 А р (5.16)

Из формулы (5.16) можно также выразить активность в беккерелях радионуклида массой m в граммах:

А р = 4,17*10 23 m/(А*Т 1/2) (5.17).

Расчет эффективной эквивалентной дозы

Разные органы или ткани имеют разную чувствительность к излучению. Известно, например, что при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение гонад (половые железы) особенно опасно из-за риска генетических повреждений. Поэтому в последние годы для случаев неравномерного облучения разных органов или тканей тела человека введено понятие эффективной эквивалентной дозы Н Е.

Эффективная эквивалентная доза

Н Е = ∑ w i Н i , (5.18)

где Н i – средняя эквивалентная доза в i-том органе или ткани; w i – взвешивающий фактор, представляющий собой отношение стохастического риска смерти в результате облучения i- того органа или ткани к риску смерти от равномерного облучения тела при одинаковых эквивалентных дозах (таблица 5.11). Таким образом, w i определяет весомый вклад данного органа или ткани в риск неблагоприятных последствий для организма при равномерном облучении:

∑w i = 1 (5.19)

Таблица 5.11 Взвешивающие факторы

Орган или ткань

Заболевание

Наследственные дефекты

Молочная железа

Красный костный мозг

Лейкемия

Щитовидная железа

Поверхность кости

Злокачественные новообразования

Все другие органы