Биографии Характеристики Анализ

Реферат: Развитие научных знаний Древнего Египта. Развитие научных знаний древнего востока Определение начала, максимума и окончания подъема воды в Ниле, сроков посевов, вызревания зерна и жатвы, необходимость в измерении земельных участков, границы котор

  • 2.3. Философские основания науки
  • 3.1. Преднаука Древнего Востока. Научные знания Античности.
  • 3.2. Наука эпохи Средневековья. Основные черты
  • 3.3. Наука Нового Времени. Основные черты классической науки
  • 3.4. Неклассическая наука
  • 3.5. Современная постнеклассическая наука. Синергетика
  • 4.1. Традиции и новации в развитии науки. Научные революции, их типы
  • 4.2. Формирование частных теоретических схем и законов. Выдвижение гипотез и их предпосылки
  • 4.3. Построение развитой научной теории. Теоретические модели.
  • 5.1. Философская проблематика естественных наук. Основные принципы современной физики
  • 5.2. Философские проблемы астрономии. Проблема стабильности и
  • 5.3. Философские проблемы математики. Специфика математических
  • 6.1. Особенности научно-технического знания. Смысл вопроса о сущности техники
  • 6.2. Понятие «техника» в истории философии и культуры
  • 6.3. Инженерная деятельность. Основные этапы инженерной деятельности. Усложнение инженерной деятельности
  • 6.4. Философия техники и глобальные проблемы современной цивилизации. Гуманизация современной техники
  • 7.1. Понятие информации. Роль информации в культуре. Информационные теории в объяснении эволюции общества
  • 7.2. Виртуальная реальность, ее концептуальные параметры. Виртуальность в истории философии и культуры. Проблема симулякров
  • 7.3 Философский аспект проблемы построения «искусственного интеллекта»
  • 8.1. Науки естественные и гуманитарные. Научный рационализм в перспективе философской антропологии
  • 8.2. Субъект и объект социально-гуманитарного знания: уровни рассмотрения. Ценностные ориентации, их роль в социально-гуманитарных науках
  • 8.3. Проблема коммуникативности в социально-гуманитарных науках.
  • 8.4. Объяснение, понимание, интерпретация в социально-гуманитарных
  • 3.1. Преднаука Древнего Востока. Научные знания Античности.

    1. Необходимо признать, что наиболее развитая по тем временам (до VIв. до н. э.) в аграрном, ремеслен­ном, военном, торговом отношении восточная цивили­зация (Египет, Месопотамия, Индия, Китай) выработа­ла определенные знания.

    Разливы рек, необходимость количественных оце­нок затопленных площадей земли стимулировали раз­витие геометрии, активная торговля, ремесленная, строительная деятельность обусловливали разработку приемов вычисления, счета; морское дело, отправле­ние культов способствовали становлению «звездной науки» и т. д. Таким образом, восточная цивилизация располагала знаниями, которые накапливались, храни­лись, передавались от поколений к поколениям, что позволяло им оптимально организовывать деятель­ность. Однако, как отмечалось, факт наличия некото­рого знания сам по себе не конституирует науку. На­уку определяет целенаправленная деятельность по выработке, производству нового знания. Имела ли место такого рода деятельность на Древнем Востоке?

    Знания в самом точном смысле вырабатывались здесь путем популярных индуктивных обобщений не­посредственного практического опыта и циркулирова­ли в социуме по принципу наследственного професси­онализма: а) передача знаний внутри семьи в ходе ус­воения ребенком деятельностных навыков старших; б) передача знаний, которые квалифицируются как иду­щие от бога - покровителя данной профессии, в рам­ках профессионального объединения людей (цех, кас­та), в ходе их саморасширения. Процессы изменения знания протекали на Древнем Востоке стихийно; отсут­ствовала критико-рефлексивная деятельность по оценке генезиса знаний - принятие знаний осуществлялось на бездоказательной пассивной основе путем «насиль­ственного» включения человека в социальную деятель­ность по профессиональному признаку; отсутствовала интенция на фальсификацию, критическое обновление наличного знания; знание функционировало как набор готовых рецептов деятельности, что вытекало из его уз­коутилитарного, практико-технологического характера.

    2. Особенностью древневосточной науки является отсутствие фундаментальности. Наука, как указывалось, представляет не деятельность по выработке рецептур-но-технологических схем, рекомендаций, а самодостаточ­ную деятельность по анализу, разработке теоретических вопросов - «познание ради познания». Древневосточная же наука ориентирована на решение прикладных задач. Даже астрономия, казалось бы, не практическое заня­тие, в Вавилоне функционировала как прикладное искус­ство, обслуживавшее либо культовую (времена жерт­воприношений привязаны к периодичности небесных явлений - фазы Луны и т. п.), либо астрологическую (вы­явление благоприятных и неблагоприятных условий для отправления текущей политики и т. д.) деятельность. В то время как, скажем, в Древней Греции астрономия пони­малась не как техника вычисления, а как теоретическая наука об устройстве Вселенной в целом.

    3. Древневосточная наука в полном смысле слова не была рациональной. Причины этого во многом оп­ределялись характером социально-политического уст­ройства древневосточных стран. В Китае, например, жесткая стратификация общества, отсутствие демок­ратии, равенства всех перед единым гражданским законом и т. п. приводило к «естественной иерархии» людей, где выделялись наместники неба (правители), совершенные мужи («благородные» - родовая арис­тократия, государственная бюрократия), родовые об­щинники (простолюдины). В странах же Ближнего Во­стока формами государственности были либо откровен­ная деспотия, либо иерократия, которые означали отсутствие демократических институтов.

    Антидемократизм в общественной жизни не мог не отразиться на жизни интеллектуальной, которая также была антидемократичной. Пальма первенства, пра­во решающего голоса, предпочтение отдавались не рациональной аргументации и интерсубъективному доказательству (впрочем, как таковые они и не могли сложиться на таком социальном фоне), а общественно­му авторитету, в соответствии с чем правым оказывал­ся не свободный гражданин, отстаивающий истину с позиций наличия оснований, а наследственный арис­тократ, власть имущий. Отсутствие предпосылок обще­значимого обоснования, доказательства знания (при­чиной этого являлись «профессионально-именные» правила подключения человека к социальной деятель­ности, антидемократизм общественного устройства), с одной стороны, и принятые в древневосточном обще­стве механизмы аккумуляции, трансляции знания - с другой, в конечном счете приводили к его фетишиза­ции. Субъектами знания, или людьми, которые в силу своего социального статуса репрезентировали «уче­ность», были жрецы, высвобожденные из материаль­ного производства и имевшие достаточный образова­тельный ценз для интеллектуальных занятий. Знание же, хотя и имеющее эмпирико-практический генезис, оставаясь рационально необоснованным, пребывая в лоне эзотеричной жреческой науки, освященной боже­ственным именем, превращалось в предмет поклоне­ния, таинство. Так отсутствие демократии, обусловлен­ная этим жреческая монополия на науку определили на Древнем Востоке ее нерациональный, догматичес­кий характер, в сущности превратив науку в разновид­ность полумистического, сакрального занятия, священ­нодейство.

    4. Решение задач «применительно к случаю», вы­полнение вычислений, носящих частный нетеорети­ческий характер, лишало древневосточную науку си­стематичности. Успехи древневосточной мысли, как указывалось, были значительными. Древние матема­тики Египта, Вавилона умели решать задачи на «урав­нение первой и второй степени, на равенство и подо­бие треугольников, на арифметическую и геомет­рическую прогрессию, на определение площадей треугольников и четырехугольников, объема параллелепипедов»,1 им также были известны формулы объе­ма цилиндра, конуса, пирамиды, усеченной пирами­ды и т. п. У вавилонян имели хождение таблицы умно­жения, обратных величин, квадратов, кубов, решений уравнений типа х в кубе + х в 5вадрате = N и т. п.

    Однако никаких доказательств, обосновывающих применение того или иного приема, необходимость вычислять требуемые величины именно так, а не ина­че, в древневавилонских текстах нет.

    Внимание древневосточных ученых концентриро­валось на частной практической задаче, от которой не перебрасывался мост к теоретическому рассмотрению предмета в общем виде. Поскольку поиск, ориентиро­ванный на нахождение практических рецептов, «как поступать в ситуации данного рода», не предполагал выделение универсальных доказательств, основания для соответствующих решений были профессиональ­ной тайной, приближая науку к магическому действу. Например, не ясно возникновение правила о «квадра­те шестнадцати девятых, который, согласно одному папирусу восемнадцатой династии, представляет отно­шение окружности к диаметру»2.

    Кроме того, отсутствие доказательного рассмотре­ния предмета в общем виде лишало возможности вы­вести необходимую о нем информацию, к примеру, о свойствах тех же геометрических фигур. Вероятно, поэтому восточные ученые, писцы вынуждены руко­водствоваться громоздкими таблицами (коэффициен­тов и т. п.), позволявших облегчить разрешение той или иной конкретной задачи на непроанализированный типичный случай.

    Следовательно, если исходить из того, что каждый из признаков гносеологического эталона науки необ­ходим, а их совокупность достаточна для специфика­ции науки как элемента надстройки, особого типа ра­циональности, можно утверждать, что наука в этом понимании не сложилась на Древнем Востоке. По­скольку, хотя мы и крайне мало знаем о древневосточной культуре, не вызывает сомнении принципиальная несовместимость свойств обнаруживаемой здесь науки с эталонными. Иначе говоря, древневосточная культу­ра, древневосточное сознание еще не вырабатывало таких способов познания, которые опираются на дис­курсивные рассуждения, а не на рецепты, догмы или прорицания, предполагают демократизм в обсуждении вопросов, осуществляют дискуссии с позиций силы рациональных оснований, а не с позиций силы соци­альных и теологических предрассудков, признают га­рантом истины обоснование,а не откровение.

    С учетом этого наше итоговое оценочное сужде­ние таково: тот исторический тип познавательной деятельности (и знания), который сложился на Древ­нем Востоке, соответствует донаучной стадии развития интеллекта и научным еще не является.

    Античность. Процесс оформления в Гре­ции науки можно реконструировать следующим об­разом. О возникновении математики следует сказать, что вначале она ничем не отличалась от древневос­точной. Арифметика и геометрия функционировали как набор технических приемов в землемерной прак­тике, подпадая под технэ. Эти приемы «были так про­сты, что могли передаваться устно»1. Другими слова­ми, в Греции, как и на Древнем Востоке, они не име­ли: 1) развернутого текстового оформления, 2) строгого рационально-логического обоснования. Чтобы стать наукой, они должны были получить и то и другое. Когда это случилось?

    У историков науки имеются на этот счет разные предположения. Есть предположение, что это сделал в VIв. до н. э. Фалес. Другая точка зрения сводится к утверждению, что это сделал несколько позже Демок­рит и др. Однако собственно фактическая сторона дела для нас не столь важна. Нам важно подчеркнуть, что это осуществилось в Греции, а не, скажем, в Египте, где существовала вербальная трансляция знаний от поколения к поколению, а геометры выступали в каче­стве практиков, а не теоретиков (по-гречески они на­зывались арпедонаптами, т. е. привязывающими верев­ку). Следовательно, в деле оформления математики в текстах в виде теоретико-логической системы необхо­димо подчеркнуть роль Фалеса и, возможно, Демокри­та. Говоря об этом, разумеется, нельзя обойти внима­нием пифагорейцев, развивавших на текстовой основе математические представления как сугубо абстракт­ные, а также элеатов, впервые внесших в математику ранее не принятую в ней демаркацию чувственного от умопостигаемого. Парменид «установил как необходимое условие бытия егомыслимость . Зенон отрицал, что точки, следовательно, и линии, и поверхность суть вещи, существующие в действительности, однако эти вещи в высшей степени мыслимые. Итак, с этих пор положено окончательное разграничение точек зрения геометрической и физической»1. Все это составляло фундамент становления математики как теоретико-рациональной науки, а не эмпирико-чувственного ис­кусства.

    Следующий момент, исключительно важный для реконструкции возникновения математики, - разра­ботка теории доказательства. Здесь следует акценти­ровать роль Зенона, способствовавшего оформлению теории доказательства, в частности, за счет развития аппарата доказательства «от противного», а также Аристотеля, осуществившего глобальный синтез изве­стных приемов логического доказательства и обобщив­шего их в регулятивный канон исследования, на кото­рый сознательно ориентировалось всякое научное, в том числе математическое, познание.

    Так, первоначально ненаучные, ничем не отличав­шиеся от древневосточных, эмпирические математи­ческие знания античных греков, будучи рационали­зированы, подвергшись теоретической переработке, логической систематизации, дедуктивизации, превра­тились в науку.

    Охарактеризуем древнегреческое естествозна­ние - физику. Грекам были известны многочислен­ные опытные данные, составившие предмет изучения последующего естествознания. Греки обнаружили «притягательные» особенности натертого янтаря, маг­нитных камней, явление преломления в жидких сре­дах и т. п. Тем не менее, опытного естествознания в Греции не возникло. Почему? В силу особенностей надстроечных и социальных отношений, господство­вавших в античности. Отправляясь от изложенного выше, можно сказать: грекам был чужд опытный, экс­периментальный тип познания в силу: 1) безраздельного господства созерцательности; 2) идиосинкразии к отдельным «малозначащим» конкретным действиям, считавшимся недостойными интеллектуалов - свобод­ных граждан демократических полисов и неподходя­щим для познания нерасчленимого на части мирового целого.

    Греческое слово «физика» в современных иссле­дованиях по истории науки не случайно берется в кавычки, ибо физика греков - нечто совсем иное, нежели современная естественно-научная дисципли­на. У греков физика - «наука о природе в целом, но не в смысле нашего естествознания». Физика была такой наукой о природе, которая включала познание не путем «испытания», а путем умозрительного уясне­ния происхождения и сущности природного мира как целого. По сути своей это была созерцательная наука, очень схожая с более поздней натурфилософией, ис­пользующей метод спекуляции.

    Усилия античных физиков нацеливались на поиск первоосновы (субстанции) сущего - архэ - и его эле­ментов, стихий - стоихенон.

    За таковые Фалес принимал воду, Анаксимен - воздух, Анаксимандр - апейрон, Пифагор - число, Парменид - «форму» бытия, Гераклит - огонь, Анак­сагор - гомеомерии, Демокрит - атомы, Эмпедокл - корни и т. д. Физиками, таким образом, были все до-сократики, а также Платон, развивший теорию идей и Аристотель, утвердивший доктрину гилеморфизма. Во всех этих с современной точки зрения наивных, неспециализированных теориях генезиса, строения природы последняя выступает как целостный, синк­ретичный, нерасчленимый объект, данный в живом созерцании. Поэтому не приходится удивляться, что единственно подходящей формой теоретического ос­воения такого рода объекта могла быть умозритель­ная спекуляция.

    Нам предстоит ответить на два вопроса: каковы предпосылки возникновения в античности комплекса естественно-научных представлений и каковы причи­ны, обусловившие их именно такой гносеологический характер?

    К числу предпосылок возникновения в эпоху ан­тичности описанного выше комплекса естественно­научных представлений относятся следующие. Во-пер­вых, утвердившееся в ходе борьбы с антропоморфиз­мом (Ксенофан и др.) представление о природе как некоем естественно возникшем (мы не отваживаемся сказать «естественно-историческом») образовании, имеющем основание в самом себе, а не в темисе или номосе (т. е. в божественном или человеческом зако­не). Значение элиминации из познания элементов антропоморфизма заключается в разграничении обла­сти объективно-необходимого и субъективно-произ­вольного. Это как гносеологически, так и организаци­онно позволяло соответствующим образом нормировать познание, ориентировать его на совершенно опреде­ленные ценности и во всяком случае не допускать возможности ситуации, когда мираж и достоверный факт, фантазм и результат строго исследования оказы­вались слитыми воедино.

    Во-вторых, укоренение идеи «онтологической не­релятивности» бытия, явившееся следствием критики наивно эмпирического мировоззрения беспрестанно­го изменения. Философско-теоретический вариант этого мировоззрения разработал Гераклит, в качестве центрального понятия своей системы принявший по­нятие становления.

    Оппозиция «знание - мнение», составляющая сущность антитетики элеатов, проецируясь на онтоло­гический комплекс вопросов, приводит к обоснованию двойственности бытия, которое слагается из неизмен­ной, нестановящейся основы, представляющей пред­мет знания, и подвижной эмпирической видимости, выступающей предметом чувственного восприятия и / мнения (по Пармениду, есть бытие, а небытия нет, как у Гераклита; нет собственно и перехода бытия в небы­тие, ибо то, что есть- есть и может быть познано). Поэтому фундамент онтологии Парменида в отличие от Гераклита составляет закон тождества, а не закон борьбы и взаимопереходов, принятый им -по сугубо гносеологическим соображениям.

    Взгляды Парменида разделял Платон, разграничи­вавший мир знания, коррелированный с областью инвариантных идей, и мир мнения, коррелированный с чувственностью, фиксирующей «естественный по­ток» сущего.

    Результаты продолжительной полемики, в которой приняли участие практически все представители ан­тичной философии, обобщил Аристотель, который, раз­вивая теорию науки, подытожил: объект науки должен быть устойчивым и носить общий характер, между тем у чувственных предметов этих свойств нет; таким об­разом, выдвигается требование особого, отдельного от чувственных вещей, предмета.

    Идея умопостигаемого предмета, неподвластного сиюминутным изменениям, с гносеологической точки зрения являлась существенной, закладывая основы возможности естественно-научного знания.

    В-третьих, оформление взгляда на мир как на вза­имосвязанное целое, проникающее все сущее и дос­тупное сверхчувственному созерцанию. Для перспек­тив оформления науки данное обстоятельство имело существенное гносеологическое значение. Прежде всего, оно способствовало учреждению столь фунда­ментального для науки принципа, как каузальность, на фиксации которого, собственно, базируется наука. Кроме того, обусловливая абстрактно-систематичный характер потенциальных концептуализации мира, оно стимулировало возникновение такого неотъемлемого атрибута науки, как теоретичность, или даже теорийность, т. е. логически обоснованное мышление с исполь­зованием понятийно-категориального арсенала.

    Таковы в самой конспективной форме предпосыл­ки возникновения в эпоху античности комплекса есте­ственно-научных представлений, которые выступали лишь прообразом будущей естественной науки, но сами по себе ею еще не являлись. Перечисляя причи­ны этого, укажем на следующие.

    1. Существенной предпосылкой возникновения есте­ствознания в Античности, как указывалось, была борьба с антропоморфизмом, завершившаяся офор­млением программы архэ, т. е. поиска естествен­ной монистической основы природы. Эта програм­ма, конечно, способствовала утверждению понятия естественного закона. Однако и препятствовала ему ввиду своей фактической неконкретности и при учете равноправности многочисленных претендентов - стихий на роль архэ. Здесь срабаты­вал принцип недостаточного основания, который не допускал унификации известных «фундамен­тальных» стихий, не позволяя выработать понятие единого принципа порождения (в перспективе закона). Таким образом, хотя по сравнению с си­стемами теогонии, в этом отношении довольно бес­порядочными и только намечающими тенденцию к монизму, «фисиологические» доктрины досократиков монистичны, монизм со своей, так ска­зать, фактической стороны, не был глобальным. Иначе говоря, хотя в пределах отдельных физи­ческих теорий греки были монистами, они не могли организовать картину онтологически еди­нообразно (монистично) возникающей и изменя­ющейся действительности. На уровне культуры в целом греки не были физическими монистами, что, как указывалось, препятствовало оформлению по­нятий универсальных природных законов, без которых не могло возникнуть естествознание как наука.

    2. Отсутствие в эпоху Античности научного есте­ствознания обусловливалось невозможностью при­менения в рамках физики аппарата математики, поскольку, по Аристотелю, физика и математика - разные науки, относящиеся к разным предметам, между которыми нет общей точки соприкоснове­ния. Математику Аристотель определял как науку о неподвижном, а физику - как науку о подвиж­ном бытии. Первая являлась вполне строгой, вто­рая же, по определению, не могла претендовать на строгость - этим и объяснялась их несовмести­мость. Как писал Аристотель, «математической точности нужно требовать не для всех предметов, а лишь для нематериальных. Вот почему этот спо­соб не подходит для рассуждающего о природе, ибо вся природа, можно сказать, материальна»1. Не бу­дучи сращена с математикой, лишенная количественных методов исследования, физика функцио­нировала в античности как противоречивый сплав фактически двух типов знания. Одно из них - теоретическое природознание, натурфилософия - было наукой о необходимом, всеобщем, существен­ном в бытии, использовавшей метод абстрактного умозрения. Другое - наивно эмпирическая систе­ма качественных знаний о бытии - в точном смыс­ле слова даже не было наукой, поскольку с точки зрения гносеологических установок античности не могла существовать наука о случайном, данном в восприятии бытии. Естественно, невозможность введения в контекст того и другого точных количе­ственных формулировок лишала их определенно­сти, строгости, без чего естествознание как наука не могло оформиться.

    3. Несомненно, в Античности проводились отдельные эмпирические исследования, примером их могут быть выяснение размера Земли (Эратосфен), из­мерение видимого диска Солнца (Архимед), вы­числения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей) и т. д. Однако Античность не знала эксперимента как «искусственного вос­приятия природных явлений, при котором устра­няются побочные и несущественные эффекты и которое имеет своей целью подтвердить или оп­ровергнуть то или иное теоретическое предполо­жение».

    Это объяснялось отсутствием социальных санкций на материально-вещественную деятельность свободных граждан. Добропорядочным, общественно значимым знанием могло быть только такое, которое было «непрак­тичным», удаленным от трудовой деятельности. Подлин­ное знание, будучи всеобщим, аподиктичным, ни с ка­кой стороны не зависело, не соприкасалось с фактом ни гносеологически, ни социально. Исходя из сказанно­го очевидно, что научное естествознание как фактуаль-но (экспериментально) обоснованный комплекс теорий сформироваться не могло.

    Естествознание греков было абстрактно-объясни­тельным, лишенным деятельностного, созидательного компонента. Здесь не было места для эксперимента как способа воздействия на объект искусственными сред­ствами с целью уточнить содержание принятых абст­рактных моделей объектов.

    Для оформления же естествознания как науки одних навыков идеального моделирования действитель­ности недостаточно. Помимо этого нужно выработать технику идентификации идеализации с предметной об­ластью. Это означает, что «от противопоставления иде­ализированных конструкций чувственной конкретнос­ти следовало перейти к их синтезу».

    А это могло произойти лишь в иной социальности, на основе отличных от имевшихся в Древней Греции общественно-политических, мировоззренческих, акси­ологических и других ориентиров мыслительной дея­тельности.

    Вместе с тем не вызывает сомнения факт оформ­ления науки именно в лоне античной культуры. Иначе говоря, древневосточная ветвь науки в ходе развития цивилизации оказалась бесперспективной. Является ли данное заключение окончательным? Для нас - да. Однако это не означает невозможности других мнений.

    Древний этап синкретического сосуществования философии и науки намечает тем не менее предпосыл­ки их дифференциации. Объективная логика сбора, систематизации, концептуализации фактического ма­териала, рефлексия вечных проблем бытия (жизнь, смерть, природа человека, его назначение в мире, индивид перед лицом тайн Вселенной, потенциал по­знающей мысли и т. д.) стимулируют обособление дис­циплинарной, жанровой, языковой систем философии и науки.

    В науке автономизируются математика, естествоз­нание, история.

    В философии упрочаются онтология, этика, эсте­тика, логика.

    Начиная, пожалуй, с Аристотеля философский язык отходит от обыденной разговорной и научной речи, обогащается широким спектром технических терминов, становится профессиональным диалектом, кодифици­рованной лексикой. Далее идут заимствования из эл­линистической культуры, ощущается латинское влия­ние. Сложившаяся в Античности выразительная база философии составит основу различных философских школ в будущем.

    Если мы рассмотрим науку по критерию (1), то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и ее передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда -стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это — профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.

    Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность. Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.

    Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, при том что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.

    Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации.

    Дата публикования: 2014-11-04; Прочитано: 183 | Нарушение авторского права страницы

    studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

    — основные этапы развития и бытия науки как особого вида познавательной деятельности Человека, обусловленные как внутренними возможностями и закономерностями ее становления, так и влиянием со стороны социокультурного контекста, органическим элементом которого наука, как и остальные подсистемы культуры, всегда являлась и является. Выделяют обычно шесть различных исторических форм науки: 1) древняя преднаука (или пранаука (Вавилон, шумеры, Древний Египет); 2) античный тип науки (VII в до н. э. - III в. н. э.; 3) средневековая европейская наука (IV в. - XVI в.); 4) классическая (XVII - XIX вв.); 5) неклассическая (начало XX в. - 70-е гг. XX в.); 6) постнеклассическая (70-е гг. XX в. по наст. вр.). Каждая из исторических форм науки отличается от других не только своей предметной спецификой, но и идеологическими, социально-культурными и методологическими основаниями. Особенности древней пранауки: непосредственная связь с практикой, рецептурный, эмпирический, сакрально-кастовый и догматический характер знания. Характерные черты античной науки: созерцательность, внутренняя самодостаточность, логическая доказательность, системность, методологическая рефлексивность, демократизм, открытость к критике. Особенности европейской средневековой науки: теологизм, телеологизм, герменевтика, схоластика, догматизм.

    Принципиально новые интенции и особенности естествознания складываются в эпоху Возрождения и Новое время (XV -XVII вв.): светский характер, Е1атурализм, объектность, экспериментально-математический характер, практическая применимость, доказательность. Триумфом развития классической науки становится создание механики Галилея -Ньютона, гелиоцентрической космологии Коперника -Кеплера, механико-математической картины мира. Гуманитарные дисциплины (история, педагогика, медицина, языкознание) также постепенно освобождаются от влияния теологии и рассматриваются как средство совершенствования человека и его самореализации. К XVIII в. в Европе полностью формируется новая социокультурная реальность: классическая наука. Ее идеология: критический дух, объективность, практическая направленность. Принципы онтологии классической науки: антителсологизм, детерминизм, механицизм. Ее гносеологические основания: однозначный характер научных законов, эмпирическая проверяемость и логическая доказательность научного знания. Методология классической науки: количественные методы исследования, эксперимент, математическая модель объекта, дедуктивный метод построения научных теорий, критицизм. Постепенно происходит институализация науки, создаются профессиональные научные сообщества со своими уставами, возникают научные и учебные заведения нового типа (инженерные, политехнические вузы и школы, лаборатории, испытательные стенды, полевые исследования, академии наук, научные журналы). Во второй половине XIX в. происходит резкое усиление социальной базы науки, возникает «большая наука», укрепляется связь науки с производством, создается промышленный сектор науки, происходит формирование новой системы «наука-техника-технология». В конце XIX в. - начале XX в. возникает кризис в основаниях классической науки, происходят научные революции в математике, физике, социальных науках, создаются и принимаются научным сообществом новые фундаментальные теории, во многом несоизмеримые с прежними: неевклидовы геометрии, теория относительности (частная и общая), квантовая механика, генетика, синтетическая теория эволюции, интуиционистская математика и логика, неклассические экономические социальные и гуманитарные теории. Создается неклассическая наука с новыми философскими основаниями. Онтология неклассической науки: релятивизм, вероятностный детерминизм, массовость, системность, эволюционность научных объектов. Гносеология неклассической науки: субъект-объектность научного знания, гипотетичность научных законов и теорий, частичная эмпирическая и теоретическая верифицируемость научного знания, антифундаментализм. Методология неклассической науки: отсутствие универсального научного метода, плюрализм научных методов и средств, интуиция, когнитивный конструктивизм. В середине XX в. происходит научно-техническая революция, результатом которой становится создание в развитых странах наукоемкой экономики, главным источником массовых инноваций в которой становится наука. С превращением науки в решающую силу общественного развития наука становится важнейшим объектом государственной научной политики развитых стран. В конце XX в. начала складываться новая историческая форма науки - постнеклассическая (или неонеклассическая, или постмодернистская). Ее преимущественный предмет исследования - сверхсложные и эволюционные системы. Лидерами постнеклассической науки становятся биология, экология, глобалистика, науки о человеке. Социальным основанием постнеклассической науки является необходимость экологического и гуманитарного контроля над научно-техническим развитием, уменьшением его негативных последствий для настоящего и будущего человечества. В настоящее время происходит формирование новых философских оснований науки. Принципы онтологии постнеклассической науки: системность, нелинейность, эволюционизм, антропологизм. Ее гносеологические основания: проблемность, коллективность научно-познавательной деятельности, контекстуальность научного знания, полезность, экологическая и гуманитарная направленность научной информации. Методология постнеклассической науки: методологический плюрализм, конструктивизм, коммуникативность, консенсуальность, эффективность и целесообразность научных решений. В современной науке и обществе происходят компьютерная, телекоммуникационная и биотехнологическая революции. Основой развития экономики все более становятся высокие технологии. В гуманитарных и социальных науках происходит «лингвистический поворот», начинает преобладать установка, с одной стороны, на микроанализ, а, с другой - на контекстуальность рассмотрения, возможный и необходимый плюрализм подходов, на «демистификацию факта», на социокультурное и ценностное измерение гуманитарных и социальных теорий.

    Будущее науки видится в сосуществовании и интеграции сформированных ранее исторических типов научности: классического, неклассического и постнеклассического. В разных научных дисциплинах в зависимости от степени их развития и характера решаемых теоретических и практических проблем реализуется один из ни-х как более эффективный. Глобализация науки становится одним из главных резервов дальнейшего поддержания высоких темпов развития и эффективности мировой и национальной науки. (См. наука, история науки, развитие науки, методологический кластер, парадигма, фон науки).

    Элементы естественных знаний, знаний в области естественных наук, накапливались постепенно в процессе практической деятельности человека и формировались большей частью исходя из потребностей этой практической жизни, не становясь самодостаточным предметом деятельности. Выделяться из практической деятельности эти элементы начали в наиболее организованных обществах, сформировавших государственную и религиозную структуру и освоивших письменность: Шумер и Древний Вавилон, Древние Египет, Индия, Китай. Чтобы понять, почему одни моменты естествознания появляются ранее других, вспомним, области деятельности, знакомые человеку той эпохи: — сельское хозяйство, включая земледелие и скотоводство; — строительство, включая культовое; — металлургия, керамика и прочие ремесла; — военное дело, мореплавание, торговля; — управление государством, обществом, политика; — религия и магия. Рассмотрим вопрос: развитие каких наук стимулируют эти занятия? 1. Развитие сельского хозяйства требует развития соответствующей с/х техники. Однако от развития последней до обобщений механики слишком долгий период, чтобы всерьез рассматривать генезис механики из, скажем, потребностей земледелия. Хотя практическая механика, несомненно, развивалась в это время. Например, можно проследить появление из примитивной древнейшей зернотерки, через зерновую мельницу (жернова) водяной мельницы (V-III вв. до н.э.) - первой машины в мировой истории.

    2. Ирригационные работы в Древнем Вавилоне и Египте требовали знания практической гидравлики. Управление разливом рек, орошение полей при помощи каналов, учет распределяемой воды развивает элементы математики. Первые водоподъемные приспособления - ворот, на барабан которого был намотан канат, несущий сосуд для воды; «журавль» - древнейшие предки кранов и большинства подъемных приспособлений и машин.

    3. Специфические климатические условия Египта и Вавилона, жесткое государственное регулирование производства диктовали необходимость разработки точного календаря, счета времени, а отсюда - астрономических познаний. Египтяне разработали календарь, состоящий из 12-ти месяцев по 30 дней и 5-ти дополнительных дней в году. Месяц был разделен на 3 десятидневки, сутки на 24 часа: 12 дневных часов и 12 ночных (величина часа была не постоянной, а менялась со временем года). Ботаника и биология еще долго не выделялись из сельскохозяйственной практики. Первые начатки этих наук появились только у греков.

    4. Строительство, особенно грандиозное государственное и культовое требовали, по крайней мере, эмпирических знаний строительной механики и статики, а также геометрии. ДревнийВосток был хорошо знаком с такими механическими орудиями как рычаг и клин. На сооружение пирамиды Хеопса пошло 23 300 000 каменных глыб, средний вес которых равен 2,5 тонны. При сооружении храмов, колоссальных статуй и обелисков вес отдельных глыб достигал десятков и даже сотен тонн. Такие глыбы доставлялись из каменоломен на специальных салазках. В каменоломнях для отрыва каменных глыб от породы служил клин. Подъем тяжестей осуществлялся с помощью наклонных плоскостей. Например, наклонная дорога к пирамиде Хефрена имела подъем 45,8 м и длину 494,6 м. Следовательно, угол наклона к горизонту составлял 5,3 0 , и выигрыш в силе при поднятии тяжести на эту высоту был значительным. Для облицовки и пригонки камней, а возможно и при подъеме их со ступеньки на ступеньку, применялись качалки. Для поднятия и горизонтального перемещения каменных глыб служил также рычаг. К началу последнего тысячелетия до н.э. народам Средиземноморья были достаточно хорошо известны те пять простейших подъемных приспособлений, которые впоследствии получили название простых машин: рычаг, блок, ворот, клин, наклонная плоскость. Однако до нас не дошел ни один древнеегипетский или вавилонский текст с описанием действия подобных машин, результаты практического опыта, видимо, не подвергались теоретической обработке. Строительство больших и сложных сооружений диктовало необходимость знаний в области геометрии, вычислении площадей, объемов, которое впервые выделилось в теоретическом виде. Для развития строительной механики необходимо знание свойств материалов, материаловедение. Древний Восток хорошо знал, умел получать очень высокого качества кирпич (в том числе обожженный и глазурованный), черепицу, известь, цемент.

    5. В древности (еще до греков) было известно 7 металлов: золото, серебро, медь, олово, свинец, ртуть, железо, а также сплавы между ними: бронзы (медь с мышьяком, оловом или свинцом) и латуни (медь с цинком). Цинк и мышьяк использовались в виде соединений. Существовала и соответствующая техника для плавки металлов: печи, кузнечные мехи и древесный уголь как горючее, что позволяло достигнуть температуры 1500 0С для плавления железа. Разнообразие керамики, производимой древними мастерами, позволило, в частности, археологии в будущем стать почти точной наукой. В Египте варили стекло, причем разноцветное, с применением разнообразных пигментов-красителей. Широкой гамме пигментов и красок, применявшихся в различных областях древнего мастерства, позавидует современный колорист. Наблюдения над изменениями природных веществ в ремесленной практике, наверное, послужили основой для рассуждений о первооснове материи у греческих физиков. Некоторые механизмы, применяемые ремесленниками, чуть ли не до сей поры, изобретены в глубокой древности. Например, токарный станок (конечно, ручной, деревообрабатывающий), прялка.

    6. Нет нужды долго распространяться о влиянии торговли, мореплавания, военного дела на процесс возникновения научных знаний. Отметим только, что даже простейшие виды оружия должны делаться с интуитивным знанием их механических свойств. В конструкции стрелы и метательного копья (дротика) уже заложено неявное понятие об устойчивости движения, а в булаве и боевом топоре - оценка значения силы удара. В изобретении пращи и лука со стрелами проявилось осознание зависимости между дальностью полета и силой броска. В целом, уровень развития техники в военном деле был значительно выше, чем в сельском хозяйстве, особеннов Греции и Риме. Мореплавание стимулировало развитие той же астрономии для координации во времени и пространстве, техники строительства судов, гидростатики и многого другого. Торговля способствовала распространению технических знаний. Кроме того, свойство рычага - основы любых весов было известно задолго до греческих механиков-статиков. Следует отметить, что в отличие от сельского хозяйства и даже ремесла, эти области деятельности были привилегией свободных людей.

    7. Управление государством требовало учета и распределения продуктов, платы, рабочего времени, особенно, в восточных обществах. Для этого были нужны хотя бы начатки арифметики. Иногда (Вавилон) государственные нужды требовали знаний астрономии. Письменность, сыгравшая важнейшую роль в становлении научных знаний - во многом продукт государства.

    8. Взаимоотношения религии и зарождающихся наук предмет особого глубокого и отдельного исследования. В качестве примера укажем лишь, что связь между звездными небом и мифологией египтян очень тесная и прямая, а потому развитие астрономии и календаря диктовалось не только нуждами сельского хозяйства. В дальнейшем, в контексте материала лекций,мы будем обращать внимание на эти связи.

    Постараемся просуммировать сведения о том, что было выделено на Древнем Востоке как теоретическое знание.

    Математика. Известны египетские источники II-го тысячелетия до н.э. математического содержания: папирус Ринда (1680 г. до н.э., Британский музей) и Московский папирус. Они содержат решение отдельных задач, встречающихся в практике, математические вычисления, вычисления площадей и объемов. В Московском папирусе дана формула для вычисления объема усеченной пирамиды. Площадь круга египтяне вычисляли, возводя в квадрат 8/9 диаметра, что дает для числа пи остаточно хорошее приближение - 3,16. Несмотря на существование всех предпосылокНейгебауэр /1/ отмечает достаточно низкий уровень теоретической математики в древнем Египте. Это объясняется следующим: “Даже в наиболее развитых экономических структурах древности потребность в математике не выходила за пределы элементарной домашней арифметики, которую ни один математик не назовет математикой. Требования же к математике со стороны технических проблем таковы, что средств древней математики было недостаточно для каких бы то ни было практических приложений”. Шумеро-вавилонская математика была на голову выше египетской. Тексты, на которых основаны наши сведения о ней относятся к 2-м резко ограниченным и далеко отстоящим друг от друга периодам: большая часть - ко времени древневавилонской династии Хаммурапи 1800 - 1600 гг. до н.э., меньшая часть - к эпохе Селевкидов 300 - 0 гг. до н. э. Содержание текстов отличается мало, появляется лишь знак “0”. Невозможно проследить развитие математических знаний, все появляется сразу, без эволюции. Существует две группы текстов: большая - тексты таблиц арифметических действий, дробей и т.п., в том числе ученические, и малочисленная, содержащая тексты задач (около 100 из найденных500 000 табличек). Вавилоняне знали теорему Пифагора, знали очень точно значение главного иррационального числа -корня из 2, вычисляли квадраты и квадратные корни, кубы и кубические корни, умели решать системы уравнений и квадратные уравнения. Вавилонская математика носит алгебраический характер. Так же как для нашей алгебры ее интересует только алгебраические соотношения, геометрическая терминология не употребляется. Однако и для египетской и для вавилонской математики характерно полное отсутствие теоретических изысканий методов счета. Нет попытки доказательства. Вавилонские таблички с задачами делятся на 2 группы: “задачники” и “решебники”. В последних из них решение задачи иногда завершается фразой: “такова процедура”. Классификация задач по типам была той высшей ступенью развития обобщения, до которой сумела подняться мысль математиков Древнего Востока. Видимо, правила находились эмпирическим путем, путем многократных проб и ошибок. При этом математика носила сугубо утилитарный характер. С помощью арифметики египетские писцы решали задачи о расчете заработной платы, о хлебе, о пиве для рабочих и т.п. Нет еще четкого различия между геометрией и арифметикой. Геометрия является лишь одним из многих объектов практической жизни, к которым можно применить арифметические методы.

    Структура научного знания на Древнем Востоке. Наука древнего востока

    В этом отношении характерны специальные тексты, предназначенные для писцов, занимавшихся решением математических задач. Писцы должны были знать все численные коэффициенты, нужные им для вычислений. В списках коэффициентов содержатся коэффициенты для “кирпичей”, для “стен”, для “треугольника”, для “сегмента круга”, далее для “меди, серебра, золота”, для “грузового судна”, “ячменя”, для “диагонали”, “резки тростника” и т.д./2/. Как считает Нейгебауэр, даже вавилонская математика не перешагнула порога донаучного мышления. Он, впрочем, связывает этот вывод не с отсутствием доказательств, а с неосознанностью вавилонскими математиками иррациональности корня из 2.

    Астрономия.

    Египетская астрономия на протяжении всей своей истории находилась на исключительно незрелом уровне /1/. Судя по всему, никакой иной астрономии кроме наблюдений за звездами для составления календаря в Египте не было. В египетских текстах не нашлось ни одной записи астрономических наблюдений. Астрономия применялась почти исключительно для службы времени и регулирования строгого расписания ритуальных обрядов. Египетская астрономическая терминология оставила следы в астрологии. Ассиро-вавилонская астрономия вела систематические наблюдения с эпохи Набонассара (747 г до н.э.). За период “доисторический” 1800 - 400 гг. до н.э. в Вавилоне разделили небосвод на 12 знаков Зодиака по 300 каждый, как стандартную шкалу для описания движения Солнца и планет, разработали фиксированный лунно-солнечный календарь. После ассирийского периода становится заметен поворот к математическому описанию астрономических событий. Однако наиболее продуктивным был достаточно поздний период 300 - 0 гг. Этот период снабдил нас текстами, основанными на последовательной математической теории движения Луны и планет. Главной целью месопотамской астрономии было правильное предсказание видимого положения небесных тел: Луны, Солнца и планет. Достаточно развитая астрономия Вавилона объясняется обычно таким важным ее применением как государственная астрология (астрология древности не имела личностного характера). Ее задачей было предсказание благоприятного расположения звезд для принятия важных государственных решений. Таким образом, несмотря на нематериалистическое применение (политика, религия) астрономия на Древнем Востоке также как и математика носила сугубо утилитарный, а также догматический, бездоказательный характер. В Вавилоне ни одному наблюдателю не пришла в голову мысль: “А соответствует ли видимое движение светил их действительному движению и расположению?”. Однако среди астрономов, работавших уже в эллинистическое время, был известен Селевк Халдеянин, который, в частности, отстаивал гелиоцентрическую модель мира Аристарха Самосского.

    

    Обратная связь

    ПОЗНАВАТЕЛЬНОЕ

    Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

    Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

    Целительная привычка

    Как самому избавиться от обидчивости

    Противоречивые взгляды на качества, присущие мужчинам

    Тренинг уверенности в себе

    Вкуснейший "Салат из свеклы с чесноком"

    Натюрморт и его изобразительные возможности

    Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

    Как научиться брать на себя ответственность

    Зачем нужны границы в отношениях с детьми?

    Световозвращающие элементы на детской одежде

    Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

    Классификация ожирения по ИМТ (ВОЗ)

    Глава 3. Завет мужчины с женщиной

    Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

    Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

    Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

    Доклад по Истории Философии

    На тему: Предпосылки научных знаний в культуре древнего востока

    Научные знания на древнем Востоке

    Если мы рассмотрим науку по первому критерию, то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и её передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда – стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это — профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.

    Лично-именной тип передачи знаний связан с ранними этапами человеческой истории, когда необходимые для жизни сведения передаются каждому человеку через обряды инициации, мифы как описания деяний предков. Так передаются знания-персоналии, являющиеся индивидуальными умениями.

    Универсально-понятийный тип трансляции знаний не регламентирует субъекта познания родовыми, профессиональными и прочими рамками, делает знание доступным любому человеку. Этому типу трансляции соответствуют знания-предметы, являющиеся продуктом познавательного освоения субъектом определенного фрагмента реальности, что говорит о появлении науки.

    Профессионально-именной тип трансляции знаний характерен для древнеегипетской цивилизации, просуществовавшей четыре тысячи лет почти без изменений. Если там и происходило медленное накопление объема знаний, то совершалось это стихийным образом.

    Более динамичной в этом отношении была вавилонская цивилизация. Так, вавилонские жрецы настойчиво исследовали звездное небо и добились в этом больших успехов, но это был не научный, а вполне практический интерес. Именно они создали астрологию, которую считали вполне практическим занятием.

    То же самое можно утверждать о развитии знаний в Индии и Китае. Эти цивилизации дали миру множество конкретных знаний, но это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших там важнейшей частью повседневной жизни.

    Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность.

    Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.

    Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, притом, что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.

    Третьим критерием науки является рациональность. Сегодня нам это кажется тривиальным, но ведь вера в возможности разума появилась далеко не сразу и не везде. Восточная цивилизация так и не приняла этого положения, отдавая предпочтение интуиции и сверхчувственному восприятию. Например, вавилонская астрономия (точнее, астрология), вполне рационалистическая по своим методам, основывалась на вере в иррациональную связь небесных светил и человеческих судеб. Там знание было эзотерическим, предметом поклонения, таинством. Рациональность и в Греции появилась не ранее VI в. до н.э. Науке там предшествовали магия, мифология, вера в сверхъестественное. И переход от мифа к логосу был шагом огромной важности в развитии человеческого мышления и человеческой цивилизации вообще.

    Не соответствовали научные знания Древнего Востока и критерию системности. Они были просто набором алгоритмов и правил для решения отдельных задач. И не имеет значения, что некоторые из этих задач были достаточно сложными (например, вавилоняне решали квадратные и кубические алгебраические уравнения). Решение частных задач не выводило древних ученых на общие законы, отсутствовала система доказательств (а греческая математика с самого начала пошла путем строгого доказательства математической теоремы, формулируемой в максимально общей форме), что делало способы их решения профессиональной тайной, сводившей, в конечном счете, знание к магии и фокусам.

    Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации

    Науке как таковой предшествует преднаука (доклассический этап), где зарождаются элементы (предпосылки) науки. Здесь имеются в виду зачатки знаний на Древнем Востоке, в Греции и Риме.

    Становление преднауки на Древнем Востоке. Формированию феномена науки предшествовал длительный, многотысячелетний этап накопления простейших, преднаучных форм знания. Возникновение древнейших цивилизаций Востока (Месопотамия, Египет, Индия, Китай), выразившееся в появлении государств, городов, письменности и др., способствовало накоплению значительных запасов медицинского, астрономического, математического, сельскохозяйственного, гидротехнического, строительного знания. Потребности мореплавания (морской навигации) стимулировали развитие астрономических наблюдений, потребности лечения людей и животных – древней медицины и ветеринарии, потребности торговли, мореплавания, восстановления земельных участков после разливов рек – развития математических знаний и т.п.

    Особенностями древневосточной преднауки являлись :

    1. непосредственная вплетенность и подчиненность практическим потребностям (искусству измерения и счета - математика, составлению календарей и обслуживанию религиозных культов - астрономия, техническим усовершенствованиям орудий производства и строительства - механика)

    2. рецептурность (инструментальность) “научного” знания;

    3. индуктивный характер;

    4. разрозненность знания;

    5. эмпирический характер его происхождения и обоснования;

    6. кастовость и закрытость научного сообщества, авторитет субъекта – носителя знания

    Есть мнение, что преднаучное знание не имеет отношения к науке, поскольку оперирует абстрактными понятиями.

    Развитие сельского хозяйства стимулировало развитие сельскохозяйственных механизмов (мельниц, например). Ирригационные работы требовали знания практической гидравлики. Климатические условия требовали разработки точного календаря. Строительство требовало знаний в области геометрии, механики, материаловедения. Развитие торговли, мореплавания и военного дела способствовали развитию оружия, техники строительства судов, астрономии и т. д.

    В античности и в Средние века в основном имело место философское познание мира. Здесь понятия “философия”, “наука”, “знание” фактически совпадали. Все знания существовали в рамках философии.

    Многие ученые считают, что наука возникла в Античности, в рамках античной натурфилософии зародилось естествознание и сформировалась дисциплинарность как особая форма организации знания. В натурфилософии возникли первые образцы теоретической науки: геометрия Евклида, учение Архимеда, медицина Гиппократа, атомистика Демокрита, астрономия Птоломея и пр. первые натурфилософы были в большей степени учеными, чем философами, изучающими многообразные природные явления. Социально-политические условия в Древней Греции способствовали образованию самостоятельных городов-полисов с демократическими формами правления Греки чувствовали себя свободными людьми, любили во всем доискиваться до причин, рассуждать, доказывать. Кроме того, греки переходят к рациональному в отличие от мифа осмыслению действительности, создают теоретическое знание.

    Греки заложили фундамент будущей науки, для появления науки они создали следующиеусловия :

    1. Систематическое доказательство

    2. Рациональное обоснование

    3. Развили логическое мышление, особенно дедуктивное умозаключение

    4. Использовали абстрактные объекты

    5. Отказались от использования науки в материально-предметных действиях

    6. Осуществили переход к созерцательному, умозаключительному постижению сущности, т.е. к идеализации (использование идеальных объектов, которые в реальном мире не существует, например, точка в математике)

    7. Новый тип знания – “теория”, которая позволяла из эмпирических зависимостей получить некие теоретические постулаты.

    Но в эпоху античности наука в современном значении этого слова не существовала : 1. Не был открыт эксперимент как метод 2. Не использовались математические методы 3. Отсутствовало научное естествознание

    Античный мир обеспечил применение метода в математике и вывел ее на теоретический уровень. В Античности большое внимание уделялось постижению истины, т.

    Научные знания на древнем Востоке

    е. логике и диалектике. Происходили всеобщая рационализация мышления, освобождение от метафоричности, переход от чувственного мышления к интеллекту, оперирующему абстракциями.

    Первую систематизацию того, что впоследствии стали называть наукой, предпринял Аристотель – величайший мыслитель и наиболее универсальный ученый античности. Он делил все науки на теоретические, имеющие целью само знание (философия, физика, математика); практические, руководящие человеческим поведением (этика, экономика, политика); творческие, направленные на достижение прекрасного (этика, риторика, искусство). Изложенная Аристотелем логика господствовала более 2 тысяч лет. В ней классифицировались высказывания (общие, частные, отрицательные, утвердительные), выявлялась их модальность: возможность, случайность, невозможность, необходимость, определялись законы мышления: закон тождества, закон исключения противоречия, закон исключенного третьего. Особое значение имело его учение об истинных и ложных суждениях и выводах. Аристотель разрабатывал логику как всеобщую методологию научного познания. Говоря о Римской Империи необходимо заметить, что в ней не было философов и ученых, которые могли бы сравниться с Платоном, Аристотелем или Архимедом. Наука была подчинена практике, а все труды римских писателей носили компилятивно-энциклопедический характер.

    Т. о., античная цивилизация характеризовалась наличием античной логики и математики, астрономии и механики, физиологии и медицины. Античная наука носила математико-механистический характер, первоначальной программой провозглашалось целостное осмысление природы, а также отделение науки от философии, вычисление особых предметных областей и методов.

    Научные аспекты античной мысли. Систематизация и развитие Аристотелем древнегреческой философии и науки. Теория познания и логика Аристотеля

    Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникновения науки.

    Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесение генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV - XVII вв.), когда появляется опытное естествознание.

    Современное науковедение пока не дает однозначного ответа на этот вопрос, так как рассматривает саму науку в нескольких аспектах. Согласно основным точкам зрения наука - это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт; непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизводства кадров. Мы уже называли и довольно подробно говорили об этих сторонах науки. В зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:

    Наука как система подготовки кадров существует с середины XIX в.;

    Как непосредственная производительная сила - со второй половины XX в.;

    Как социальный институт - в Новое время;

    Как форма общественного сознания - в Древней Греции;

    Как знания и деятельность по производству этих знаний - с начала человеческой культуры.

    Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику, Новое время - современное естествознание, в XIX в. появляется обществознание.

    Для того чтобы понять этот процесс, нам следует обратиться к истории.

    Наука - это сложное многогранное общественное явление: вне общества наука не может ни возникнуть, ни развиваться. Но наука появляется тогда, когда для этого создаются особые объективные условия: более или менее четкий социальный запрос на объективные знания; социальная возможность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; начавшееся разделение труда внутри этой группы; накопление знаний, навыков, познавательных приемов, способов символического выражения и передачи информации (наличие письменности), которые и подготавливают революционный процесс возникновения и распространения нового вида знания - объективных общезначимых истин науки.

    Совокупность таких условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складывается в Древней Греции в VII-VI вв. до н.э.

    Чтобы доказать это, необходимо соотнести критерии научности с ходом реального исторического процесса и выяснить, с какого момента начинается их соответствие. Напомним критерии научности: наука - это не просто совокупность знаний, но и деятельность по получению новых знаний, что предполагает существование особой группы людей, специализирующейся на этом, соответствующих организаций, координирующих исследования, а также наличие необходимых материалов, технологий, средств фиксации информации (1); теоретичность - постижение истины ради самой истины (2); рациональность (3); системность (4).

    Прежде чем говорить о великом перевороте в духовной жизни общества - появлении науки, происшедшем в Древней Греции, необходимо изучить ситуацию на Древнем Востоке, традиционно считающемся историческим центром рождения цивилизации и культуры.

    НАУЧНЫЕ ЗНАНИЯ НА ДРЕВНЕМ ВОСТОКЕ

    Если мы рассмотрим науку по критерию (1), то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и ее передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда - стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это - профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.

    Лично-именной тип передачи знаний связан с ранними этапами человеческой истории, когда необходимые для жизни сведения передаются каждому человеку через обряды инициации, мифы как описания деяний предков. Так передаются знания-персоналии, являющиеся индивидуальными умениями.

    Универсально-понятийный тип трансляции знаний не регламентирует субъекта познания родовыми, профессиональными и прочими рамками, делает знание доступным любому человеку. Этому типу трансляции соответствуют знания-предметы, являющиеся продуктом познавательного освоения субъектом определенного фрагмента реальности, что говорит о появлении науки.

    Профессионально-именной тип трансляции знаний характерен для древнеегипетской цивилизации, просуществовавшей четыре тысячи лет почти без изменений. Если там и происходило медленное накопление объема знаний, то совершалось это стихийным образом.

    Более динамичной в этом отношении была вавилонская цивилизация. Так, вавилонские жрецы настойчиво исследовали звездное небо и добились в этом больших успехов, но это был не научный, а вполне практический интерес. Именно они создали астрологию, которую считали вполне практическим занятием.

    То же самое можно утверждать о развитии знаний в Индии и Китае. Эти цивилизации дали миру множество конкретных знаний, но это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших там важнейшей частью повседневной жизни.

    Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность. Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.

    Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, при том что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.

    Третьим критерием науки является рациональность. Сегодня нам это кажется тривиальным, но ведь вера в возможности разума появилась далеко не сразу и не везде. Восточная цивилизация так и не приняла этого положения, отдавая предпочтение интуиции и сверхчувственному восприятию. Например, вавилонская астрономия (точнее, астрология), вполне рационалистическая по своим методам, основывалась на вере в иррациональную связь небесных светил и человеческих судеб. Там знание было эзотерическим, предметом поклонения, таинством. Рациональность и в Греции появилась не ранее VI в. до н.э. Науке там предшествовали магия, мифология, вера в сверхъестественное. И переход от мифа к логосу был шагом огромной важности в развитии человеческого мышления и человеческой цивилизации вообще.

    Не соответствовали научные знания Древнего Востока и критерию системности. Они были просто набором алгоритмов и правил для решения отдельных задач. И не имеет значения, что некоторые из этих задач были достаточно сложными (например, вавилоняне решали квадратные и кубические алгебраические уравнения). Решение частных задач не выводило древних ученых на общие законы, отсутствовала система доказательств (а греческая математика с самого начала пошла путем строгого доказательства математической теоремы, формулируемой в максимально общей форме), что делало способы их решения профессиональной тайной, сводившей, в конечном счете, знание к магии и фокусам.

    Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации.


    Похожая информация.


    Научные знания Древнего Египта.

    Древний Египет представляется нам страной хитроумных строителей и мудрых жрецов, жестоких фараонов и покорных рабов, но прежде всего это была стран учёных. Пожалуй, среди всех древних цивилизаций наиболее далеко в отношении науки продвинулся именно Древний Египет. Знания египтян, хоть и разрозненные и не систематизированные, не могут не удивить современного человека. Математика, физика, химия, медицина, архитектура и строительство – вот далеко не полный перечень научных дисциплин, в которых оставила свой след цивилизация Древнего Египта. Во время строительства пирамид египетские архитекторы всерьёз продвинулись в вычислении пропорций строимого здания, глубины фундамента и уровней уступов в каменной кладке. Потребности сельского хозяйства вынудили жрецов научиться вычислять разливы Нила, для чего потребовались знания астрономии. Древние египтяне пришли к необходимости составления календаря. Древнеегипетский календарь, принципы построения которого актуальны и в наши дни, разделял на 3 времени года, которые состояли из 4 месяцев каждое. В месяце было 30 дней, при этом существовало ещё 5 дней вне месяцев. Отметим, что високосные годы египтяне не использовали, поскольку их календарь опережал природный. Также египетские астрономы выделяли на небе созвездия и понимали, что они находятся на небосводе не только ночью, но и днём. В физической науке египтяне использовали силу трения – во время строительства пирамид рабы лили масло под телеги, что облегчало движение грузов. От древних египтян до нас дошли первые учебные пособия – задачники – по математики. Из них мы узнаём, что египтяне умели решать сложные задачи с использованием дробей и неизвестных, а также глубоко продвинулись в вычислении объёма пирамиды. Активно развивалась и медицина. Многочисленные военные походы фараонов приводили к необходимости лечения большого количества воинов, в первую очередь представителей знати. Поэтому не случайно, что большинство дошедших до нас медицинских текстов говорят о способах лечения тех или иных повреждений. Особенно большое значение придаётся черепно-мозговым травмам (хоть египтяне и не считали мозг главным жизненно важным органом) и ранам, нанесённым оружием. Резюмируя, отметим, что по своим научным достижениям вряд ли какая-либо древневосточная цивилизация сумела превзойти Древний Египет. Знания египтян настолько превосходили научные познания их современников, что даже греки считали жителей долины Нила мудрейшими из людей и стремились учиться у наиболее образованной группы населения Древнего Египта – жрецов.



    4. Научные знания Древнего мира. Двуречье (иначе Междуречье или Месопотамия) - древнейший центр неолитических культур, а затем первый очаг цивилизации. Важнейшими достижениями жителей Двуречья, обогатившими мировую культуру, были: развитое земледелие и ремесло; шумерское иероглифическое письмо, быстро трансформировавшееся в упрощенную клинопись, что впоследствии привело к возникновению алфавита; система календарного счисления, тесно связанная с астрономическими наблюдениями; элементарная математика, в частности, десятичная и шестидесятеричная система счета (математика и астрономия находились на уровне раннего европейского Возрождения); религиозная система с множеством богов и храмов в их честь; высокоразвитое изобразительное искусство, особенно каменные рельефы и барельефы, а также декоративно-прикладное искусство; культура архивного дела; впервые в истории появились географические карты и путеводители; на высочайшем уровне находилась астрология; архитектура дала арки, купола, ступенчатые пирамиды. От Двуречья сохранились десятки тысяч глиняных табличек с записями. Среди них особый интерес представляют «Законы царя Хаммурапи» (XVIII в. до н.э.), включавшие 282 статьи, регулировавшие различные стороны жизни Вавилона: первый в истории кодекс законов, а также произведения литературы. Наиболее заметным памятником шумерской литературы является цикл эпических сказаний о Гильгамеше или «Обо все видавшем», древнейшие тексты, которого насчитывают 3,5 тыс. лет. Большой интерес представляет «Беседа господина и раба», в которой прослеживается кризис религиозно-мифологического авторитарного мышления, автор рассуждает о смысле жизни и приходит к идее бессмысленности существования (близко книге Екклесиаста из «Ветхого Завета»). О невинном страдальце, о претензиях к богам, их несправедливости говорится в «Вавилонской теодицее» (аналог книги Иова из «Ветхого Завета»).

    Культура Древней Индии является одной из самых самобытных в истории. Уже в древности об Индии знали, как о стране мудрецов. Индийцы и европейцы - выходцы из единой праиндоевропейской общности. В истории Древней Индии можно выделить несколько периодов: особенно интересны доарийский и послеарийский этапы. Ранний до- арийский период представлен, так называемой, Индской цивилизацией (Хараппа и Мохенджо-Даро), существовавшей с ХХV по ХVШ вв. до н.э. Эта цивилизация открыта лишь в 20-е гг. ХХ в. и пока плохо изучена, хотя можно говорить о ее величии: имелись города с населением до 100 тыс. человек с системой водопровода и канализации, развитое сельское хозяйство и ремесло, письменность и искусства. Цивилизация погибла по не вполне ясным причинам.

    Древний Китай развивался в стороне от основных центров цивилизации. Условия для возникновения цивилизации здесь были менее благоприятными, чем в субтропиках, государство сложилось позже, зато на более высоком уровне производительных сил. До второй половины I тысячелетия до н.э. Китай развивался в отрыве от других цивилизаций. Отличием Китая является и более поздний переход к орошаемому земледелию. Сначала использовались естественные осадки, в отличие от сегодняшнего, климат был теплее и влажнее, росло много лесов. На культуру Древнего Китая было оказано некоторое влияние извне, с севера Евразии. От индоевропейцев пришли пшеница, ячмень, породы домашнего скота (корова, овца, коза), лошади и колесницы, гончарный круг, хотя массового притока населения с северо-запада не было. О влиянии извне говорит наличие индоевропейских слов, обозначающих эти приобретения, которых не было в древнекитайском языке. В ХIV - XI вв. до н.э. существовало государство Шан-Инь. В это время появились три важнейших достижения: а) употребление бронзы; б) возникновение городов; в) появление письменности.

    В VI - III вв. до н. э, в эпоху «соперничества ста школ», как ее называют, складывались основные направления философской мысли Древнего Китая: конфуцианство, даосизм, легизм, создавались авторские художественные произведения. Именно тогда, как результат длительного процесса преодоления архаических форм общественного сознания и трансформации мифологического мышления, в древнекитайском обществе сформировался новый социально-психологический тип личности, вырвавшийся из оков традиционного мировосприятия. Вместе с ней возникает критическая философия и теоретическая научная мысль. Вопросам, связанным с изучением природы, уделялось второстепенное внимание. При изучении чего-либо особо указывалось на возможность практического применения узнанного.

    Научные знания античности.

    Этап развития науки с VI в. до н.э. до VI в.н.э. Древняя Греция является прародительницей науки (здесь впервые появляются научные школы – милетская, пифагорейский союз, элейская, ликей, сады и др.). Ученые были одновременно и философами. Возникшая наука о природе была натурфилософией, исполняя роль «науки наук» (была вместилищем всех человеческих знаний об окружающем мире, а естественные науки были только ее составной частью). Этот этап развития науки характеризовался: 1) попыткой целостного охвата и объяснения действительности; 2) созданием умозрительных конструкций (не связанных с практическими задачами); 3) вплоть до XIX в. отсутствием дифференцированостью наук (только в XVIII в. самостоятельными областями науки стали механика, математика, астрономия и физика; химия, биология и геология – только начали формироваться); 4) отрывчатостью знаний об объектах природы (оставалось место для вымышленных связей). Античная натурфилософия прошла несколько этапов в своем развитии: ионийский, афинский, эллинистический, римский. Развитие науки в античном мире, как обособленной сферы духовной культуры было связано с появлением людей, которые специализировались на получении новых знаний. Естественные науки существуют и развиваются неотделимо от философии в форме натурфилософии, знания носят умозрительный (рациональный) и теоретический характер. Экспериментальная база наук практически отсутствует. Методологической основой античности является создание дедуктивного метода исследований («Логика» Аристотеля) и аксиоматического метода изложения научных теорий («Начала» Эвклида). В античной науке формируются умозрительные догадки, обоснованные в более поздние времена: атомизм, гелиоцентрическое устройство мира и др. Формируются традиции научных школ, основными долгожителями которых являются Академия Платона и Ликей Аристотеля. Огромное значение для развития науки имело возникновение письменности на основе более совершенного, нежели древневосточный папирус, писчий материал – пергамент. Возникают библиотеки, крупнейшей из которых была Александрийская библиотека. Письменность входит в повседневный быт и процесс обучения. Научные труды античности были оформлены в форме литературных произведений, то есть имели гуманитарную составляющую. Основными заказчиками научных исследований являются правители, используя их в основном для военных целей. Зарождается техника: строительное дело (благоустройство городов требовало создание системы водоснабжения и канализации, строительство бань, цирков, театров), механика, промышленное производство металлов способствовало изготовлению инструментов и оружия. На этой основе формируется знание в области химии.